
Limitations of OCAML records

• The record types must be declared before they are used;

• a label e can belong to only one record type (otherwise fun x → x.e) would
have several incompatible types;

• we cannot build a record incrementally.

We will define a system that has:

polymorphic records: fun x → x.e can be applied to all records that have a
field e);

extensible records: fun x → fun v → x@{e = v} returns a record like x to
which a field e containing v has been added.

97

Extensible records, reduction semantics

Let L be a finite set of labels.

Expressions: a ::= . . . | {(e = ae)e∈L}
Operators: op ::= . . . | proje | extene

Values: v ::= . . . | {(e = ve)e∈L}
Evaluation contexts: E ::= . . . | {(e = ae)e∈L; e = E}

Reduction rules:

{(e = ve)e∈L}.e ε→ ve if e ∈ L

{(e = ve)e∈L}@{e′ = w} ε→ {(e = v′e)e∈L∪{e′}} where v′ = v[e′ #→ w]

98

Simplified type rules for extensible records

Idea: suppose that the set of labels is fixed, known, and reasonably small...

Types:
τ ::= α | T | τ1 → τ2 | τ1 × τ2 as before

| {e : τ1; f : τ2; g : τ3} record type
| Abs undefined
| Pre τ defined, with type τ

Examples:

• {e : Pre int; f : Abs; g : Abs} : type of records with a field e of type int.

• {e : Pre bool; f : Abs; g : Pre int} : type of records with a field e of type
bool and a field g of type int.

99

More examples

• {e : Abs; f : Abs; g : Abs} : type of the empty record.

• {e : α1; f : α2; g : α3} → {e : Pre int; f : α2; g : α3} : type of a function
that takes an arbitrary record, and extends it with a field e of type int.

100

Type rule

∀e ∈ L Γ & ae : τe

Γ & {(e = ae)e∈L} : {(e : Pre τe)e∈L; (e : Abs)e $∈L}

proje : ∀α, α1, α2. {e : Pre α; f : α1; g : α2}→ α

projf : ∀α, α1, α2. {e : α1; f : Pre α; g : α2}→ α

projg : ∀α, α1, α2. {e : α1; f : α2; g : Pre α}→ α

extene : ∀α, α1, α2, α3. {e : α1; f : α2; g : α3}× α → {e : Pre α; f : α2; g : α3}
extenf : ∀α, α1, α2, α3. {e : α1; f : α2; g : α3}× α → {e : α1; f : Pre α; g : α3}
exteng : ∀α, α1, α2, α3. {e : α1; f : α2; g : α3}× α → {e : α1; f : α2; g : Pre α}

101

Free extension vs. strict extension

Observe that extene can be used with the type

{e : Abs . . .}× τ → {e : Pre τ ; . . .}

and with the type

{e : Pre τ ′ . . .}× τ → {e : Pre τ ; . . .}

In the first case, we extend the record with the label e, in the second, we replace
the content of the field e.

If we want the strict extension, we must consider less polymorphic types as

extene : ∀α, α2,α3. {e : Abs; f : α2; g : α3}× α → {e : Pre α; f : α2; g : α3}

102

Rows

Idea: add the concept of model for the fields that are not explicitely mentioned
in the record type:

• ∂Abs to say that all other fields are absent;

• a variable α that represents an arbitrary set of presence informations.

Example: {e : Pre int; ∂Abs} : type of records that have a field e of type int,
and the other fields are absent.

103

Rows, formally

Types: τ ::= α | T | τ1 → τ2 | τ1 × τ2 as before
| {τ} records
| ∂Abs empty row
| e : τ1; τ2 row containing e : τ1 and the row τ2

| Abs undefined
| Pre τ defined, with type τ

e1 : τ1; e2 : τ2; τ = e2 : τ2; e1 : τ1; τ (commutativity)

∂Abs = e : Abs; ∂Abs (absorption)

Example: these two types are equal:

{e1 : Pre int; ∂Abs} and {e2 : Abs; e1 : Pre int; ∂Abs}

104

Type rules

∀e ∈ L Γ & ae : τe

Γ & {(e = ae)e∈L} : {(e : Pre τe)e∈L; ∂Abs}
The schemas associated with the operators:

proje : ∀α, β. {e : Pre α; β}→ α

extene : ∀α, β, γ. {e : α; β}× γ → {e : Pre γ; β}

For the strict semantics:

extene : ∀β, γ. {e : Abs; β}× γ → {e : Pre γ; β}

105

Meaningless types

In the type algebra we now have some meaningless types:

• ∂Abs→ ∂Abs or Abs× Pre τ or α → Pre α;

We need some discipline to not mix:

• ”normal” types, like int ou int→ bool;

• rows, that can appear inside a record {. . .}, like. ∂Abs or (e : Abs; . . .).
• the presence informations Abs and Pre τ , that can appear as annotations of a

label in a row.

106

Other meaningless types

• {a : Pre int; a : Abs; ∂Abs};
• {a : Pre int; a : Pre bool; ∂Abs}

We need a stronger invariant:

a label e cannot appear more than once in a given row.

It is difficult to prevent that a substitution of row variables breaks the invariant:
the type τ = {a : Pre int; ρ} satisfies the invariant, as the row ϕ = a :
Pre bool; ∂Abs. But the substitution τ [ρ ← ϕ] breaks the invariant.

107

Kinds

Kinds: κ ::= TYPE | PRE | R({e1, . . . , en})

• TYPE is the kind of well-formed types;

• PRE is the kind of well-formed presence informations;

• R({e1, . . . , en}) is the kind of well-formed rows that do not associate
informations to the labels e ∈ L.

108

Kind rules

Let K be a function that associates to every variable α its kind.

& α :: K(α) & T :: TYPE
& τ1 :: TYPE & τ2 :: TYPE

& τ1 → τ2 :: TYPE

& τ1 :: TYPE & τ2 :: TYPE

& τ1 × τ2 :: TYPE

& τ :: R(∅)
& {τ} :: TYPE

& ∂Abs :: R(L)

e /∈ L & τ1 :: PRE & τ2 :: R(L ∪ {e})
& (e : τ1; τ2) :: R(L)

& Abs :: PRE
& τ :: TYPE

& Pre τ :: PRE

109

Example

Suppose a row τ defines twice the same label.

By commutativity we obtain

τ = e : τ1; e : τ2; τ ′

As & τ :: R(L), it should hold

(e : τ2; τ ′) :: R(L ∪ {e})

but this is impossible because e ∈ L ∪ {e}.

110

Some care is required...

• A substitution θ preserves kinding if and only if for all variable α, it holds
& θ(α) :: K(α).

It is easy to see that if θ preserves kinding, then (τ :: κ implies (θ(τ) :: κ.

• Every type scheme ∀*α. τ must satisfy & τ :: TYPE.

The safety proof follows by parametrising the proof for mini-ML with the new
algebra of values and the new operators.

111

Type inference

We added an equational theory to a free algebra (the algebra of types), and this
can radically change the nature and the properties of the unification problem.

Examples:

• ∂Abs and (e : α; β) can be unified by taking α ← Abs, β ← ∂Abs, and by
using the absorption axiom.

• the types e : Pre int; α and f : Pre bool; β can be unified by the substitution

α ← f : Pre bool; τ β ← e : Pre int; τ

where τ is an arbitrary type.

112

Unification algorithm
mgu(∅) = id

mgu({α
?
= α} ∪ C = mgu(C)

mgu({α
?
= τ} ∪ C) = mgu(C[α ← τ]) ◦ [α ← τ] if α is not free in τ

mgu({τ
?
= α} ∪ C) = mgu(C[α ← τ]) ◦ [α ← τ] if α is not free in τ

mgu({τ1 → τ2
?
= τ ′1 → τ ′2} ∪ C) = mgu({τ1

?
= τ ′1; τ2

?
= τ ′2} ∪ C)

mgu({τ1 × τ2
?
= τ ′1 × τ ′2} ∪ C) = mgu({τ1

?
= τ ′1; τ2

?
= τ ′2} ∪ C)

mgu({ {τ1} ?
= {τ2} } ∪ C) = mgu({τ1

?
= τ2} ∪ C)

mgu({Abs ?
= Abs} ∪ C) = mgu(C)

mgu({Pre τ1
?
= Pre τ ′} ∪ C) = mgu({τ1

?
= τ2} ∪ C)

113

Unification, ctd.

mgu({∂Abs ?= ∂Abs} ∪ C) = mgu(C)

mgu({e : τ ; τ ′ ?= ∂Abs} ∪ C) = mgu({τ ?= Abs; τ ′ ?= ∂Abs} ∪ C)

mgu({∂Abs ?= e : τ ; τ ′} ∪ C) = mgu({τ ?= Abs; τ ′ ?= ∂Abs} ∪ C)

mgu({e : τ1; τ ′1
?= e : τ2; τ ′2} ∪ C) = mgu({τ1

?= τ2; τ ′1
?= τ ′2} ∪ C)

mgu({(e : τ1; τ ′1)
?= (f : τ2; τ ′2)} ∪ C) = do α = fresh

(e *= f) mgu({τ ′1 ?= (f : τ2; α);

τ ′2
?= (e : τ1; α)} ∪ C)

Modiffying the W algorithm to take into account extensible records is easy.

114

Row polymorphism in OCaml

Some (weird?) syntactic sugar:

let o = let o =
{ object

x = 3; method x = 3
y = "foo"; method y = "string"

} end

OCaml answers:

val o : < x : int; y : string >

Observe that the ∂Abs annotation is ommitted in the row.

115

Row polymorphism, ctd.

The polymorphic projection function

let f = fun z -> z#x

can be associated with a schema

∀αβ.〈z : Pre α; β〉 → α

written by OCaml as (the .. stand for a type variable in the row)

val f : < x : ’a; .. > -> ’a

The “row polymorphism” comes from the fact that, when typing function
application, the variable β can be unified with an arbitrary row.

116

A simple object calculus (without classes)

Idea: an object can be seen as a polymorphic record2, each field corresponds to
a method of the object; use auto-application to implement the self parameter
(self-application semantics).

Expressions: a ::= . . . | obj(x)〈(m = am)m∈M〉 object construction
Oprateurs: op ::= . . . | #m method selection
Values: v ::= . . . | obj(x)〈(m = am)m∈M〉

Reduction rules:

v#m
ε→ am[x ← v]

if v = obj(x)〈(m = am)m∈M〉
2This explains OCaml syntax for polymorphic records.

117

Example

We can encode recursive functions using the self-application semantics:

let o = obj(s)
< method fact = fun n →

if n = 0 then 1 else n * s#fact (n-1) >
in o#fact 5

reduces to

5 * (
(obj(s)

< method fact = fun n →
if n = 0 then 1 else n * s#fact (n-1) >) # 4)

118

Types for simple objects

Idea: use polymorphic record types...

Types: τ ::= α | T | τ1 → τ2 | τ1 × τ2 as before
| 〈τ〉 type of objects
| ∂Abs empty row
| m : τ1; τ2 row containing m : τ1, and τ2

| Abs undefined
| Pre τ defined, with type τ

τ = 〈(m : Pre τm)m∈M ; ∂Abs〉 ∀m ∈ M Γ;x : τ & am : τm

Γ & obj(x)〈(m = am)m∈M〉 : τ

#m : ∀α, β. 〈m : Pre α; β〉 → α

119

Example

The type
〈m : Pre int; α〉

is the type of the objects with a method m returning an integer, and possibly
other methods. Such ”open” types arise naturally for the function parameters:

fun obj → 1 + obj#m

can be associated to the type schema

∀α.〈m : Pre int; α〉 → int

120

How to forget methods

If
a : 〈m : Pre int; ∂Abs〉

and
b : 〈m : Pre int; n : Pre string; ∂Abs〉

the expression
if cond then a else b

cannot be typed. In particular, it does not have the “natural” type

〈m : Pre int; ∂Abs〉

121

“natural” type

Can we formalise this idea of “natural” type?

The term
b : 〈m : Pre int; n : Pre string; ∂Abs〉

can be used in all contexts where a term of type

〈m : Pre int; ∂Abs〉

is expected (these contexts will never call the method n).

We can relax the typing relation, and say that b can be seen as a term that has
the type 〈m : Pre int; ∂Abs〉.

122

The subtyping relation

The subtyping relation <: specifies which types can be seen as other types.

The two key rules are

τ <: ∂Abs
ϕ <: ϕ′

(m : τ ; ϕ) <: (m : τ ; ϕ′)

The subtyping relation lifts to all the other types in the natural way, for instance

τ <: τ ′ ϕ <: ϕ′

(τ × ϕ) <: (τ ′ × ϕ′)

but some care is required with function types.

123

Subtyping function types

When is it safe to pass a function of one type in a context where a different
function type is expected?

τ ′ <: τ ϕ <: ϕ′

(τ → ϕ) <: (τ ′ → ϕ′)

Intuition: we have a function f of type τ → ϕ, and a context that expects a
function of type τ ′ → ϕ′.

• if τ ′ <: τ , then none of values passed by the context to the function will
surprise it;

• if ϕ <: ϕ′, then none of the values returned by the function will surprise the
context.

124

The subtyping relation, formally

T <: T α <: α
τ ′ <: τ ϕ <: ϕ′

(τ → ϕ) <: (τ ′ → ϕ′)

τ <: τ ′ ϕ <: ϕ′

(τ × ϕ) <: (τ ′ × ϕ′)

τ <: τ ′

〈τ〉 <: 〈τ ′〉
τ <: ∂Abs

τ <: τ ′ ϕ <: ϕ′

(m : τ ; ϕ) <: (m : τ ′; ϕ′)

Abs <: Abs
τ <: τ ′

Pre τ <: Pre τ ′

125

Examples

〈m : Pre int; ∂Abs〉 <: 〈∂Abs〉
〈o : 〈m : Pre int; ∂Abs〉〉 <: 〈o : 〈∂Abs〉〉

〈m : Pre int; α〉 *<: 〈α〉
int→ 〈m : Pre int; ∂Abs〉 <: int→ 〈∂Abs〉
〈m : Pre int; ∂Abs〉 → int *<: 〈∂Abs〉 → int

〈∂Abs〉 → int <: 〈m : Pre int; ∂Abs〉 → int

126

Explicit subtyping

Idea: add an explicit operator to see the object type τ as a “supertype” τ ′.

Operators: op ::= coerceτ,τ ′ for all τ, τ ′ such that τ <: τ ′

Type rule:

coerceτ,τ ′ : ∀*α. τ → τ ′ if τ <: τ ′ and *α = L(τ) ∪ L(τ ′)

Reduction rule:

coerceτ,τ ′(v) ε→ v

127

Example

Let τ1 = 〈m : Pre int; ∂Abs〉 and τ2 = 〈m : Pre int; n : Pre string; ∂Abs〉.
Let a : τ1 and let b : τ2. The expression

if cond then a else (coerceτ2,τ1 b)

is now well typed, with type

〈m : Pre int; ∂Abs〉

128

Implict subtyping

Idea: add the subsumption rule:

Γ & a : τ τ <: τ ′
(sub)

Γ & a : τ ′

(Observe that to prove the subject reduction of the simple object calculus we
need this rule in the type system.)

Question: can we get rid of row polymorphism and use subtyping on records?

Answer: yes, but type inference is now undecidable (see all the papers on local
type inference).

129

A simple object calculus with classes

Idea: classes are stamps for objects.

Expressions:

a ::= . . .
| new creation of an object from a class
| class(x)〈(m = am)m∈M〉 class
| class(x)〈inherit a; m = a〉 inheritance, (re)definition of a method

(x is bound in the method body, but not in the inherit clause.)

Values: v ::= . . . | class(x)〈(m = am)m∈M〉

130

Reduction semantics for classes

Evaluation contexts: E ::= . . . | new E | class(x)〈inherit E; m = a〉

Reduction rules:

new class(x)〈(m = am)m∈M〉 ε→ obj(x)〈(m = am)m∈M〉
class(x)〈inherit class(x)〈(m = am)m∈M〉); n = b〉 ε→

class(x)〈(m = a′m)m∈M∪{n}〉
where a′ = a[n #→ b]

131

Types for classes

Types: τ ::= . . . | class(τ1) τ2 type of a class

We record two types:

• τ1 is the type of the parameter self,

• τ2 is an object type, representing the types of the methods defined in the class.

Quite often these will coincide, unless we added an explicit type constraint on τ1.
Why do we want to do so?

132

Virtual classes

A virtual class defines some “default methods”, and relies on classes inheriting it
to provide the other methods. Using OCaml syntax, we can define:

class virtual c =
object(self)
method virtual m : int
method n = 1 + self#m

end

has type

class(〈m : Pre int; n : Pre int; α〉) 〈n : Pre int; ∂Abs〉

Before creating an object of this class with new, we must define an implementation
of the method m, by inheriting the class and defining the method.

133

Type rules

Γ & a : class(τ) τ
(new)

Γ & new a : τ

τ = 〈(m : Pre τm)m∈M ; τ ′〉 ∀m ∈ M Γ;x : τ & am : τm (class)
Γ & class(x)〈(m = am)m∈M〉 : class(τ) 〈(m : Pre τm)m∈M ; ∂Abs〉

Γ & a : class(τ) 〈m : τ0
m; τ ′〉 Γ;x : τ & b : τm τ = 〈m : Pre τm; τ ′′〉

(inherit)
Γ & class(x)〈inherit a; m = b〉 : class(τ) 〈m : Pre τm; τ ′〉

134

Inheritance is not subtyping

If a class A is defined by inheritance from a class B, then the type of the objects
of the class B is sometimes, but not always, a subtype of the type od the obects
of the class A.

W. R. Cook, W. L. Hill, and P. S. Canning. Inheritance is not subtyping.
ACM Press, Proceedings of POPL’90.

135

Inheritance is not subtyping, ctd.

class point =
object (self: ’selftype)

val x = 0 method coord = x
method equal (p : ’selftype) = (p#coord = x)

end
class colorpoint =
object (self: ’selftype)

inherit point as super
val c = "black" method colour = c
method equal (p : ’selftype) = (p#coord = x) && (p#colour = c)

end

colorpoint must not be a subtype of point; otherwise the wrong code below
would pass the typecheck:
let p = new point and cp = (new colorpoint :> point) in cp#equal p

136

Concrete types in an object soup

class virtual [’a] list =
object (self)

method virtual isnil : bool method virtual tail : ’a list
method virtual head : ’a
method length = if self#isnil then 0 else 1 + self#tail#length

end
class [’a] nil = class [’a] cons h0 t0 =
object object

inherit [’a] list val h = h0
method isnil = true val t = t0
method head = failwith "nil" inherit [’a] list
method tail = failwith "nil" method isnil = false

end method head = h
method tail = t

end

137

The Marshal module

OCaml standard library defines a Marshal module. Its signature looks like:

sig
val to_string : ’a -> string
val from_string : string -> ’a
[...]

end

Idea: the function to string converts an arbitrary value into a sequence of
bytes (which can then be written on file, sent over a network connection,...). The
function from string converts a sequence of bytes back into a value.

138

The Marshal module is unsafe

Suppose

Network.send : string -> unit
Network.receive : unit -> string

Consider these two programs, running on different machines:

program A:
let x = 5
in Network.send (Marshal.to_string x)

program B:
let y = Marshal.from_string (Network.receive())
in print_bool y

end

Both programs are well-typed, but executing them will raise a run-time error.

139

Dynamic types

Idea: send the type of the value together with its byte representation (eg, (v, τ)).

Add a new type dyn, that represents pairs of values together with their type.

Operators: dynτ : τ → dyn if τ is a type without type variables

hastypeτ : dyn→ bool

coerceτ : dyn→ τ if τ is a type without type variables

Example:

fun d →
if hastype string (d) then print_string(coerce string(d))
else if hastype int(d) then print_int(coerce int(d))
else print_string "???"

140

Dynamic types, ctd.

Values: v ::= ... | dynτ(v)

Reduction rules:

hastypeτ(dynτ ′(v)) ε→ true if τ = τ ′

hastypeτ(dynτ ′(v)) ε→ false if τ *= τ ′

coerceτ(dynτ ′(v)) ε→ v if τ = τ ′

141

Exercises

1. Prove that the reduction rules above respect the hypothesis H1, that is, show that if
E (a : τ and a

ε→ a′ using one the rules above, then E (a′ : τ .

2. Prove hypothesis H2 for the operator hastypeτ , that is, show that if ∅ (hastypeτ(v) : τ ′,
then the term hastypeτ(v) can be reduced.

3. Does the operator coerceτ preserve hypothesis H2? If yes, prove it. If not, give a
counter-example, and suggest a way to solve this problem (add some reduction rules, or
propose another operator that satisfies H2 and has the same expressive power as coerceτ).

4. Show that if the condition that the type τ in coerceτ and hastypeτ must not contain type
variables is removed, the language is not safe (hint, show that H1 does not hold).

142

What we covered

• A simple higher-order call-by-value language, called mini-ML;

• monomorphic type system, type inference;

• polymorphic type system, importance of let, algorithm W;

• proof of safety of the polymorphic type system;

• simple extensions: tuples, sums, algebraic data types;

• imperative programming: references, exceptions;

• polymorphic records, a (simple) object system, subtyping.

• OCaml modules.

143

Key ideas

• The idea of safe language;

• type vs. type schemas, generalisation of type variables;

• type inference as unification of equations;

• compromise between expressiveness, feasibility of type inference, and simplicity
of use;

• the polymorphic reference problem;

• row polymorphism vs. subtyping.

144

What we did not cover

...too many things.

145

