Extensions of mini-ML: tuples

Idea:

$$(a_1, a_2, \ldots, a_n) : \tau_1 \times \tau_2 \ldots \times \tau_n$$

Extensions to mini-ML:

Expressions: $a ::= \dots | (a_1, \dots, a_n) | \operatorname{proj}_i^n a$ Values: $v ::= \dots | (v_1, \dots, v_n)$ Evaluation contexts: $E ::= \dots | (E, a_2, \dots, a_n) | (v_1, E, \dots, a_n) | \dots |$ $(v_1, v_2, \dots, v_{n-1}, E) | \operatorname{proj}_i^n E$

Reduction: $\operatorname{proj}_{i}^{n}(v_{1},\ldots,v_{n}) \xrightarrow{\varepsilon} v_{i}$

Tuples, ctd.

Types: for all integer $n \ge 0$, a type constructor \times_n . Notation: we write $\tau_1 \times \ldots \times \tau_n$ for $\times_n(\tau_1, \ldots, \tau_n)$ Type rules:

$$\frac{\Gamma \vdash a_1 : \tau_1 \qquad \dots \qquad \Gamma \vdash a_n : \tau_n}{\Gamma \vdash (a_1, \dots, a_n) : \tau_1 \times \dots \times \tau_n} \qquad \qquad \frac{\Gamma \vdash a : \tau_1 \times \dots \times \tau_n}{\Gamma \vdash \mathsf{proj}_i^n \ a : \tau_i}$$

When n = 0 the product type \times_0 contains only one value (): this corresponds to the unit type of OCaml.

Sums

Idea:

- a value of type $\tau_1 \times \tau_2$ is composed by a value of type τ_1 and by a value of type τ_2 ;
- a value of type $au_1 + au_2$ is composed by a value of type au_1 or by a value of type au_2 ;

Example: a value v of type int + string is

- either an integer \mathtt{inj}_1 5,
- or a string inj_2 "foo".

To deconstruct it:

match
$$v$$
 (fun $i \rightarrow \ldots$) (fun $s \rightarrow \ldots$)

Sums, formally

Expressions: $a ::= \dots | inj_i^n a | match_n a a_1 \dots a_n$ Values: $v ::= \dots | inj_i^n v$ Evaluation contexts: $E ::= \dots | inj_i^n E | match_n E a_1 \dots a_n | match_n v E \dots a_n$ $| \dots | match_n v v_1 \dots E$

Reduction: $\operatorname{match}_n(\operatorname{inj}_i^n v) v_1 \ldots v_n \xrightarrow{\varepsilon} v_i v$

Sums, ctd.

Types: for all integer $n \ge 0$, a type constructor $+_n$. Notation: we write $\tau_1 + \ldots + \tau_n$ for $+_n(\tau_1, \ldots, \tau_n)$ Type rules:

$$\begin{split} & \Gamma \vdash a: \tau_i \\ & \overline{\Gamma \vdash \operatorname{inj}_i^n a: \tau_1 + \ldots + \tau_n} \\ \\ & \underline{\Gamma \vdash a: \tau_1 + \ldots + \tau_n \quad \Gamma \vdash a_1: \tau_1 \to \tau \quad \ldots \quad \Gamma \vdash a_n: \tau_n \to \tau} \\ & \Gamma \vdash \operatorname{match}_n a \ a_1 \ \ldots \ a_n: \tau \end{split}$$

Recursive types

Until here, the universe of types was *finite*. We can relax this constraint, and work with *recursive* types.

Add

 $\tau ::= \dots \mid \mu \alpha . \tau$

to the syntax of types and consider types up-to

$$\mu\alpha.\tau \approx \tau[\alpha \leftarrow \mu\alpha.\tau]$$

In the type inference algorithm, the equation $\alpha \stackrel{?}{=} \alpha \rightarrow \alpha$ now has a solution: the substitution that associates the regular tree $\mu t.t \rightarrow t$ to α .

More on recursive types

```
$ ocaml -rectypes
        Objective Caml version 3.08.1
# fun x -> x x;;
```

```
- : ('a -> 'b as 'a) -> 'b = \langle fun \rangle
```

Too many programs now pass the type checker (for instance, all the terms of the untyped lambda-calculus).

But recursive types might be useful:

```
\mathsf{IntList} = \mathtt{unit} + \mathtt{int} \times \mathsf{IntList}
```

How to reconcile the type inference philosophy and recursive types?

Algebraic types: examples

A concrete type to talk about integers and floats:

```
type num = Integer of int | Real of float
```

The type of points in the space:

```
type point = { x : float; y : float; z : float }
```

The type of arithmetic expressions:

```
type expr = Constant of int
    | Variable of string
    | Add of expr * expr
    | Diff of expr * expr
    | Prod of expr * expr
    | Quotient of expr * expr
```

More examples

We can parametrize an algebraic type:

```
type 'a option = None of unit | Some of 'a
type 'a list = Nil of unit | Cons of 'a * 'a list
type ('a, 'b) pair = { fst : 'a; snd : 'b }
```

- option and list are not types, but *type constructors* of arity 1, pair is a type constructor of arity 2.
- int list and (int, float) pair are types.

Concrete types

The general form of a concrete type declaration is

type
$$(\alpha_1, \ldots, \alpha_p)$$
 $t = C_1$ of $\tau_1 \mid \ldots \mid C_n$ of τ_n

If p = 0 we write type $t = C_1$ of $\tau_1 \mid \ldots \mid C_n$ of τ_n .

We require that for all *i*, it holds $\mathcal{L}(\tau_i) \subseteq \{\alpha_1, \ldots, \alpha_p\}$.

Concrete type, ctd.

$$\begin{array}{lll} \mbox{Expressions:} & a::= \dots \mid C_i \, a \mid \mbox{match} \, a \, C_1:a_1 \, \dots \, C_n:a_n \\ \mbox{Values:} & v::= \dots \mid C_i(v) \\ \mbox{Evaluation contexts:} & E::= \dots \mid C_i(E) \mid \mbox{match} \, E \, C_1:a_1 \, \dots \, C_n:a_n \\ & \mid \mbox{match} \, v \, C_1:E \, \dots \, C_n:a_n \mid \dots \\ \mbox{Types:} & \tau::= \dots \mid (\tau_1, \dots, \tau_p) \, t \\ \end{array}$$

Reduction:

$$\mathsf{match}\left(C_{i}\,v\right)\,C_{1}:v_{1}\,\ldots\,C_{n}:v_{n} \stackrel{\varepsilon}{\to} v_{i}\,v$$

Concrete types, ctd. [2]

Type rules:

$$\frac{\Gamma \vdash a : \varphi(\tau_i) \quad \operatorname{dom}(\varphi) = \{\alpha_1, \dots, \alpha_p\}}{\Gamma \vdash C_i \, a : \varphi((\alpha_1, \dots, \alpha_p) \, t)}$$

$$\Gamma \vdash a : \varphi((\alpha_1, \dots, \alpha_p) \ t) \quad \begin{array}{c} \Gamma \vdash a_1 : \varphi(\tau_1 \to \tau) \\ \operatorname{dom}(\varphi) = \{\alpha_1, \dots, \alpha_p\} \end{array} \qquad \begin{array}{c} \Gamma \vdash a_n : \varphi(\tau_n \to \tau) \\ \end{array}$$

 $\Gamma \vdash \mathtt{match} \ a \ C_1:a_1 \ \ldots \ C_n:a_n: \varphi(\tau)$

where the substitution φ highlights the fact that the type rule is valid for all the instantiations of the parameters $(\alpha_1, \ldots, \alpha_p)$.

Alternative approach: constructors and destructors

For the type num, we might define:

For the type α list, we might define:

Records

The general form of a concrete type declaration is

type
$$(\alpha_1, ..., \alpha_p) \ t = \{e_1 : \tau_1; ...; e_n : \tau_n\}$$

Expressions:	$a ::= \dots \{e_1 = a_1; \dots; e_n = a_n\} a.e_i$
Values:	$v ::= \dots \mid \{e_1 = v_1; \dots; e_n = v_n\}$
Evaluation contexts:	$E ::= \dots \{e_1 = E; \dots; e_n = a_n\} \dots$
	$ \{e_1 = v_1; \dots; e_n = E\} E.e$
Types:	$\tau ::= \dots \mid (\tau_1, \dots, \tau_p) \ t$

Reduction:

$$\{e_1 = v_1; \ldots; e_n = v_n\}.e_i \xrightarrow{\varepsilon} v_i$$

Records, ctd.

Type rules:

$$\frac{\Gamma \vdash a_1 : \varphi(\tau_1) \qquad \dots \qquad \Gamma \vdash a_n : \varphi(\tau_n) \qquad \qquad \Gamma \vdash a : \varphi((\alpha_1, \dots, \alpha_n) \ t) \\
\text{dom}(\varphi) = \{\alpha_1, \dots, \alpha_p\} \qquad \qquad \frac{\Gamma \vdash a : \varphi((\alpha_1, \dots, \alpha_n) \ t) \\
\overline{\Gamma \vdash \{e_1 = a_1; \dots; e_n = a_n\} : \varphi((\alpha_1, \dots, \alpha_n) \ t)} \qquad \qquad \frac{\Gamma \vdash a : \varphi((\alpha_1, \dots, \alpha_n) \ t)}{\Gamma \vdash a . e_i : \varphi(\tau_i)}$$

Again, the substitution φ highlights the fact that the type rule is valid for all the instantiations of the parameters $(\alpha_1, \ldots, \alpha_p)$.

Digression: generalised algebraic data types

An interpreter for a simple language of arithmetic expressions:

```
type term = Num of int | Inc of term | IsZ of term | If of term * term * term
```

```
type value = VInt of int | VBool of bool
```

Unsatisfactory: nonsensical terms like Inc (IfZ (Num 0)), lots of fruitless tagging and un-tagging.

GADT

Remember that we can see constructors as functions:

Num : int -> term If : term * term * term -> term (etc...) Idea: generalise this into: type 'a term = Num : int -> int term Inc : int term -> int term IsZ : int term -> bool term If : bool term * 'a term * 'a term -> 'a term

This rules out nonsensical terms like (Inc (IfZ (Num 0))), because (IfZ (Num 0)) has type bool term, which is incompatible with the type of Inc.

GADT, ctd.

```
Also, the evaluator becomes stunningly direct:
let rec eval = fun a -> match a with
  | Num i -> i
  | Inc t -> (eval t) + 1
  | IsZ t -> (eval t) = 0
  | If (c,t1,t2) -> if (eval c) then (eval t1) else (eval t2)
where eval : a term -> a.
See:
```

- S. Peyton Jones, G. Washburn, S. Weirich, *Wobbly types: type inference for generalised algebraic data types*, 2004.
- V. Simonet, F. Pottier, *Constraint-based type inference with guarded algebraic data types*, INRIA TR, 2003.

Imperative programming: references

A *reference* is a cell of memory whose content can be updated.

allocation : ref a creates a new memory cell, initialises it with a, and returns its address;

access : if a is a reference, !a returns its content;

update : if a_1 is a reference, $a_1 := a_2$ change its content into a_2 , and returns () of type unit.

Notation:

 $a_1; a_2$ means let $x = a_1$ in a_2

References: reduction semantics

Example

$$\begin{aligned} & \text{let } r = \text{ref } 3 \text{ in } r := !r + 1; !r/\emptyset \\ & \rightarrow \quad \text{let } r = \ell \text{ in } r := !r + 1; !r/\{\ell \mapsto 3\} \\ & \rightarrow \quad \ell := !\ell + 1; !\ell/\{\ell \mapsto 3\} \\ & \rightarrow \quad \ell := 3 + 1; !\ell/\{\ell \mapsto 3\} \\ & \rightarrow \quad \ell := 4; !\ell/\{\ell \mapsto 3\} \\ & \rightarrow \quad \ell := 4; !\ell/\{\ell \mapsto 4\} \\ & \rightarrow \quad !\ell/\{\ell \mapsto 4\} \\ & \rightarrow \quad 4 \end{aligned}$$

References: types

Types: $\tau ::= \dots | \tau \text{ ref } \text{ type of references whose content type is } \tau$. Operators: $\text{ref } : \forall \alpha. \ \alpha \to \alpha \text{ ref}$ $! : \forall \alpha. \ \alpha \text{ ref} \to \alpha$

 $:= : \quad \forall \alpha. \ \alpha \ \texttt{ref} \times \alpha \to \texttt{unit}$

Is this enough? Is the resulting language *safe*?

The polymorphic references problem

Consider

```
let r = ref (fun x \rightarrow x) in
r := (fun x \rightarrow x+1);
(!r) true
```

- r receives the polymorphic type $\forall \alpha. \ (\alpha \rightarrow \alpha) \ \texttt{ref};$
- the update r := (fun x \rightarrow x + 1) is well-typed (use r at type (int \rightarrow int) ref);
- the application (!r) true is also well-typed (use r at type (bool \rightarrow bool) ref);
- the expression is well-typed, but...
- ...its reduction blocks on true+1.

Analysis of the problem

Memory addresses are like identifiers: the typing environment associates types/type-schemas to memory addresses.

If Γ associates type-schemas σ to addresses ℓ , we have

$$\frac{\Gamma(\ell) \le \tau}{\Gamma \vdash \ell : \tau}$$
 (loc-inst)

This is not safe because if $\ell : \forall \alpha. \tau$ with α free in τ , then we can write a value of type $\tau[\alpha \leftarrow int]$, and read at a different type $\tau[\alpha \leftarrow bool]$ (see previous example).

Analysis of the problem, ctd.

If Γ associates types τ to addresses ℓ , we have

 $\Gamma \vdash \ell : \Gamma(\ell) \ (\text{loc})$

and the operations ! and := are safe again. But the well-typed expression $\emptyset \vdash \texttt{let} \ r = \texttt{ref}(\texttt{fun} \ x \to x) \ \texttt{in} \ (!r) \ 1; (!r) \ \texttt{true} : \texttt{bool}$

reduces to (reduce the ref (fun $x \rightarrow x$) subterm):

let $r = \ell$ in (!r) 1; (!r) true / $\{\ell \mapsto \text{fun } x \to x\}$

which cannot be typed anymore! It should hold

 $\ell: (\alpha \to \alpha) \text{ ref} \vdash \text{let } r = \ell \text{ in } (!r) 1; (!r) \text{ true : bool}$

but α is now free in the environment and cannot be generalised.

Conclusion

We must:

- 1. associate types to addresses in the environment;
- 2. restrict the type system so that it satisfies the property:

When we type let x = a in b, we should not generalise the variables in the type of a that might appear in the type of a reference allocated during the evaluation of a.

A solution

Generalise only non-expansive expressions:

 $\frac{\Gamma \vdash a_1 : \tau_1 \qquad a_1 \text{ non-expansive} \quad \Gamma; x : Gen(\tau_1, \Gamma) \vdash a_2 : \tau_2}{\Gamma \vdash \texttt{let } x = a_1 \text{ in } a_2 : \tau_2}$

In the other cases:

 $\frac{\Gamma \vdash a_1 : \tau_1 \qquad \Gamma; x : \tau_1 \vdash a_2 : \tau_2}{\Gamma \vdash \texttt{let } x = a_1 \texttt{ in } a_2 : \tau_2}$

78

Non-expansive expressions

Idea: the syntactic structure of the non-expansive expressions ensures that their evaluation does not create references.

Non-expansive expressions:

identifiers
constants
operators
functions
pairs of non-expansive expressions
projections of non-expansive expressions
if $op eq \texttt{ref}$
let binding

Examples

Not well-typed anymore:

```
let r = ref (fun x \rightarrow x) in
r := (fun x \rightarrow x+1);
(!r) true
```

- \bullet ref (fun x \rightarrow x) is expansive,
- $\bullet\ {\bf r}$ receives a type $(\tau\to\tau)\ {\bf ref}$,
- the second line requires $\tau = int$,
- the third $\tau = bool$.

Well-typed terms:

let id = fun $x \rightarrow x$ in (id 1, id true) let id = fst((fun $x \rightarrow x$), 1) in (id 1, id true)

Examples, ctd.

Surprise! Not well-typed:

let $k = fun \ x \rightarrow fun \ y \rightarrow x$ in let $f = k \ 1$ in (f 2, f true)

because k 1 is expansive, and f receives a type $\tau \rightarrow \text{int.}$

But η -expansion saves us. This expression is now well-typed:

let $k = fun x \rightarrow fun y \rightarrow x$ in let $f = fun x \rightarrow k 1 x$ in (f 2, f true)

Why isn't application non-expansive?

Reference creation can be hidden inside function application:

```
let f x = ref(x) in
let r = f(fun x \rightarrow x) in ...
```

Wait, the type of r is $(\alpha \rightarrow \alpha)$ ref and it mentions explicitly ref: maybe we can use this information...

A more subtle example

```
let functional_ref =
  fun x \rightarrow
    let r = ref x in ((fun newx \rightarrow r := newx), (fun () \rightarrow !r)) in
let p = functional_ref(fun x \rightarrow x) in
let write = fst p in
let read = snd p in
write(fun x \rightarrow x+1);
(read()) true
```

Observe that the type of functional_ref is $\forall \alpha. \alpha \rightarrow (\alpha \rightarrow \text{unit}) \times (\text{unit} \rightarrow \alpha)$, and does not mention ref, but the result of functional_ref is functionally equivalent to a value of type α ref.

Safety with references, begin

Remark: all the previous results about the typing relation $\Gamma \vdash a : \tau$ still hold (including the Substitution Lemma).

Definition: a memory state s is well-typed in Γ , denoted $\Gamma \vdash s$, iff $Dom(s) = Dom(\Gamma)$ and for all address $\ell \in Dom(s)$, there exists τ such that $\Gamma(\ell) = \tau$ ref and $\Gamma \vdash s(\ell) : \tau$.

Definition: we say that an environment Γ extends Γ_1 if Γ extends Γ_1 when considered as partial functions.

The less-typable-than relation revisited

Definition: a_1/s_1 is less typable than a_2/s_2 , denoted $a_1/s_1 \sqsubseteq a_2/s_2$, if for all environment Γ and type τ ,

- if a_1 is non-expansive: a_2 is non-expansive, and $\Gamma \vdash a_1 : \tau$ and $\Gamma \vdash s_1$ imply $\Gamma \vdash a_2 : \tau$ and $\Gamma \vdash s_2$.
- if a_1 is expansive: $\Gamma \vdash a_1 : \tau$ and $\Gamma \vdash s_1$ imply that there exists Γ' extending Γ such that $\Gamma' \vdash a_2 : \tau$ and $\Gamma' \vdash s_2$.

Reduction preserves typing

Proposition 12. If $a_1/s_1 \xrightarrow{\varepsilon} a_2/s_2$, then $a_1/s_1 \sqsubseteq a_2/s_2$.

Proof: Case analysis on the reduction rule applied.

Proposition 13. [Monotonicity of \sqsubseteq] For all evaluation context E, $a_1/s_1 \sqsubseteq a_2/s_2$ implies $E[a_1]/s_1 \sqsubseteq E[a_2]/s_2$.

Proof: See next slide.

Proposition 14. [Reduction preserves typing] If $a_1/s_1 \rightarrow a_2/s_2$, then $a_1/s_1 \sqsubseteq a_2/s_2$.

Proof: Consequence of Lemmas 12 and 13.

86

Proof of monotonicity of \Box

Proof: Induction on the structure of the evaluation contexts. The interesting case is when the context is let x = E in a. (We could not prove this case without the restriction of generalisation to non-expansive expressions). Let Γ and τ such that $\Gamma \vdash \text{let } x = E[a_1]$ in $a : \tau$ and $\Gamma \vdash s_1$. The typing derivation is of the form below:

$$\begin{array}{ll} \Gamma \vdash E[a_1]:\tau_1 & E[a_1] \text{ non-expansive } & \Gamma; x: Gen(\tau_1, \Gamma) \vdash a:\tau\\ \\ & \\ & \\ \Gamma \vdash \texttt{let } x = E[a_1] \text{ in } a:\tau \end{array}$$

Applying the induction hypothesis to $E[a_1]$, we obtain $E[a_1]/s_1 \sqsubseteq E[a_2]/s_2$. Then, since $E[a_1]$ is non-expansive, we obtain $\Gamma \vdash E[a_2] : \tau_1$ and $\Gamma \vdash s_2$ and $E[a_2]$ is non-expansive. Thus, we can build the derivation below:

$$\frac{\Gamma \vdash E[a_2] : \tau_1 \quad E[a_2] \text{ non-expansive } \quad \Gamma; x : Gen(\tau_1, \Gamma) \vdash a : \tau}{\Gamma \vdash \text{let } x = E[a_2] \text{ in } a : \tau}$$

and the expected result follows.

 \square

Shape of values

Proposition 15. [Shape of values acccording to their type] Let Γ be an environment that binds only advesses ℓ . Let $\Gamma \vdash v : \tau$ and $\Gamma \vdash s$.

If τ = τ₁ → τ₂, then either v is of the form fun x → a, or v is an operator op;
 if τ = τ₁ × τ₂, then v is a pair (v₁, v₂);
 if τ is a base type T, then v is a constant c.
 if τ = τ₁ ref, then v is a memory address l ∈ Dom(s).

Proof: by inspection of the typing rules.

 \square

Safety, end

Proposition 16. [Progression Lemma] Let Γ be an environment that binds only addresses ℓ . Suppose $\Gamma \vdash a : \tau$ and $\Gamma \vdash s$. Then, either a is a value, or there exists a' and s' such that $a/s \to a'/s'$.

Proof: analogous to that of the Progression Lemma for mini-ML.

Theorem 5. [Safety] If $\emptyset \vdash a : \tau$ and $a/\emptyset \rightarrow^* a'/s'$ and a'/s' is a normal form with respect to \rightarrow , then a' is a value.

The approach of SML'90

Idea: distinguish applicative type variables from *imperative type variables*, and generalise only the first ones.

Substitutions: $[\alpha_a \leftarrow \tau, \alpha_i \leftarrow \overline{\tau}].$

Operators:

$$\begin{array}{lll} & ! & : & \forall \alpha_a. \ \alpha_a \ \mathrm{ref} \to \alpha_a \\ & := & : & \forall \alpha_a. \ \alpha_a \ \mathrm{ref} \times \alpha_a \to \mathrm{unit} \\ & \mathrm{ref} & : & \forall \alpha_i. \ \alpha_i \to \alpha_i \ \mathrm{ref} \end{array}$$

SML'90, ctd.

$$\begin{split} \frac{\Gamma \vdash a_1:\tau_1 \quad \Gamma; x: GenAppl(\tau_1,\Gamma) \vdash a_2:\tau_2}{\Gamma \vdash \texttt{let } x = a_1 \texttt{ in } a_2:\tau_2} \\ GenAppl(\tau,\Gamma) = \forall \alpha_{a,1} \dots \alpha_{a,n}. \ \tau \end{split} \\ \end{split}$$
 where $\{\alpha_{a,1}, \dots, \alpha_{a,n}\} = \mathcal{L}_a(\tau) \setminus \mathcal{L}_a(\Gamma)$ are the applicative variables free in τ but not in Γ .

 $\label{eq:General} \frac{\Gamma \vdash a_1:\tau_1 \quad a_1 \text{ non expansive } \quad \Gamma; x: Gen(\tau_1,\Gamma) \vdash a_2:\tau_2}{\Gamma \vdash \texttt{let } x = a_1 \text{ in } a_2:\tau_2}$

Examples

```
let id = fun x \rightarrow x in id : \forall \alpha_a. \ \alpha_a \rightarrow \alpha_a
let f = id id in
(f 1, f true)
```

```
f : \forall \alpha_a. \ \alpha_a \rightarrow \alpha_a
ok
```

```
let r = ref(fun x \rightarrow x) in r : (\alpha_i \rightarrow \alpha_i) ref
r := fun x \rightarrow x+1;
(!r) true
```

```
lpha_i is now int
error
```

```
let f = fun x \rightarrow ref(x) in f : \forall \alpha_i. \alpha_i \rightarrow \alpha_i
let r = f(fun x \rightarrow x) in r : (\alpha_i \rightarrow \alpha_i) ref
r := fun x \rightarrow x+1;
(!r) true
```

```
lpha_i is now int
 error
```

Effects and regions

The type and effect discipline, Jean-Pierre Talpin and Pierre Jouvelot, Information and Computation 111(2), 1994.

Typed Memory Management in a Calculus of Capabilities, Karl Crary, David Walker, Greg Morrisett, *Conference Record of POPL'99, San Antonio, Texas*.

Exceptions

Idea: have a mechanism to signal an error. The signal propagates across the calling functions, unless it is catched and treated.

Example:

try 1 + (raise "Hello") with $x \rightarrow x$

reduces to

"Hello"

Exceptions, formally

Expressions: $a ::= \dots | \operatorname{try} a_1 \text{ with } x \to a_2$ Operators: $op ::= \dots | \operatorname{raise}$ $\operatorname{try} v \text{ with } x \to a \xrightarrow{\varepsilon} v$

$$\begin{array}{rcl} \texttt{try raise } v \texttt{ with } x \to a & \stackrel{\varepsilon}{\to} & a[x \leftarrow v] \\ & & \Delta[\texttt{raise } v] & \to & \texttt{raise } v & \quad \texttt{if } \Delta \texttt{ is not } [] \end{array}$$

Evaluation contexts:

$$E::=\ldots \mid \texttt{try}\; E\; \texttt{with}\; x
ightarrow a$$

Exception contexts:

 $\Delta ::= [] \mid \Delta \ a \mid v \ \Delta \mid \texttt{let} \ x = \Delta \ \texttt{in} \ a \mid (\Delta, a) \mid (v, \Delta) \mid \texttt{fst} \ \Delta \mid \texttt{snd} \ \Delta$

Answers:

$$r \ ::= v \mid \texttt{raise} \ v$$

The type of exceptions:

$$\tau ::= \dots \mid exn$$

Type rules:

$$\texttt{raise}: orall lpha. \texttt{exn}
ightarrow lpha$$

 $\Gamma \vdash a_1 : \tau \qquad \Gamma; x : exn \vdash a_2 : \tau$

 $\Gamma \vdash \operatorname{try} a_1 \text{ with } x \to a_2: \tau$