
Extensions of mini-ML: tuples

Idea:
(a1, a2, . . . , an) : τ1 × τ2 . . .× τn

Extensions to mini-ML:

Expressions: a ::= . . . | (a1, . . . , an) | projn
i a

Values: v ::= . . . | (v1, . . . , vn)
Evaluation contexts: E ::= . . . | (E, a2, . . . , an) | (v1, E, . . . , an) | . . . |

(v1, v2, . . . , vn−1, E) | projn
i E

Reduction: projn
i (v1, . . . , vn) ε→ vi
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Tuples, ctd.

Types: for all integer n ≥ 0, a type constructor ×n.

Notation: we write τ1 × . . .× τn for ×n(τ1, . . . , τn)

Type rules:

Γ $ a1 : τ1 . . . Γ $ an : τn

Γ $ (a1, . . . , an) : τ1 × . . .× τn

Γ $ a : τ1 × . . .× τn

Γ $ projn
i a : τi

When n = 0 the product type ×0 contains only one value (): this corresponds to
the unit type of OCaml.
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Sums

Idea:
- a value of type τ1 × τ2 is composed by a value of type τ1 and by a value of

type τ2;

- a value of type τ1 + τ2 is composed by a value of type τ1 or by a value of type
τ2;

Example: a value v of type int + string is

- either an integer inj1 5,

- or a string inj2 "foo".

To deconstruct it:

match v (fun i → . . .) (fun s → . . .)
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Sums, formally

Expressions: a ::= . . . | injn
i a | matchn a a1 . . . an

Values: v ::= . . . | injn
i v

Evaluation contexts: E ::= . . . | injn
i E | matchn E a1 . . . an | matchn v E . . . an

| . . . | matchn v v1 . . . E

Reduction: matchn (injn
i v) v1 . . . vn

ε→ vi v
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Sums, ctd.

Types: for all integer n ≥ 0, a type constructor +n.

Notation: we write τ1 + . . . + τn for +n(τ1, . . . , τn)

Type rules:

Γ $ a : τi

Γ $ injn
i a : τ1 + . . . + τn

Γ $ a : τ1 + . . . + τn Γ $ a1 : τ1 → τ . . . Γ $ an : τn → τ

Γ $ matchn a a1 . . . an : τ
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Recursive types

Until here, the universe of types was finite. We can relax this constraint, and
work with recursive types.

Add
τ ::= . . . | µα.τ

to the syntax of types and consider types up-to

µα.τ ≈ τ [α ← µα.τ ]

In the type inference algorithm, the equation α
?= α → α now has a solution: the

substitution that associates the regular tree µt.t → t to α.
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More on recursive types

$ ocaml -rectypes
Objective Caml version 3.08.1

# fun x -> x x;;
- : (’a -> ’b as ’a) -> ’b = <fun>

Too many programs now pass the type checker (for instance, all the terms of the
untyped lambda-calculus).

But recursive types might be useful:

IntList = unit + int× IntList

How to reconcile the type inference philosophy and recursive types?
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Algebraic types: examples

A concrete type to talk about integers and floats:

type num = Integer of int | Real of float

The type of points in the space:

type point = { x : float; y : float; z : float }

The type of arithmetic expressions:

type expr = Constant of int
| Variable of string
| Add of expr * expr
| Diff of expr * expr
| Prod of expr * expr
| Quotient of expr * expr
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More examples

We can parametrize an algebraic type:

type ’a option = None of unit | Some of ’a
type ’a list = Nil of unit | Cons of ’a * ’a list
type (’a, ’b) pair = { fst : ’a; snd : ’b }

• option and list are not types, but type constructors of arity 1, pair is a
type constructor of arity 2.

• int list and (int, float) pair are types.
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Concrete types

The general form of a concrete type declaration is

type (α1, . . . ,αp) t = C1 of τ1 | . . . | Cn of τn

If p = 0 we write type t = C1 of τ1 | . . . | Cn of τn.

We require that for all i, it holds L(τi) ⊆ {α1, . . . ,αp}.
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Concrete type, ctd.

Expressions: a ::= . . . | Ci a | match a C1:a1 . . . Cn:an

Values: v ::= . . . | Ci(v)
Evaluation contexts: E ::= . . . | Ci(E) | matchE C1:a1 . . . Cn:an

| match v C1:E . . . Cn:an | . . .

Types: τ ::= . . . | (τ1, . . . , τp) t

Reduction:
match (Ci v) C1:v1 . . . Cn:vn

ε→ vi v
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Concrete types, ctd. [2]

Type rules:

Γ $ a : ϕ(τi) dom(ϕ) = {α1, . . . ,αp}
Γ $ Ci a : ϕ((α1, . . . ,αp) t)

Γ $ a : ϕ((α1, . . . ,αp) t) Γ $ a1 : ϕ(τ1 → τ) . . . Γ $ an : ϕ(τn → τ)
dom(ϕ) = {α1, . . . ,αp}

Γ $ match a C1:a1 . . . Cn:an : ϕ(τ)

where the substitution ϕ highlights the fact that the type rule is valid for all the
instantiations of the parameters (α1, . . . ,αp).
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Alternative approach: constructors and destructors

For the type num, we might define:

Integer : int→ num

Real : float→ num

matchnum : ∀β. num→ (int→ β) → (float→ β) → β

For the type α list, we might define:

Nil : ∀α. unit→ α list

Cons : ∀α. (α× α list) → α list

matchlist : ∀α, β. α list→ (unit→ β) → (α× α list→ β) → β
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Records

The general form of a concrete type declaration is

type (α1, . . . ,αp) t = {e1 : τ1; . . . ; en : τn}

Expressions: a ::= . . . | {e1 = a1; . . . ; en = an} | a.ei

Values: v ::= . . . | {e1 = v1; . . . ; en = vn}
Evaluation contexts: E ::= . . . | {e1 = E; . . . ; en = an} | . . .

| {e1 = v1; . . . ; en = E} | E.e
Types: τ ::= . . . | (τ1, . . . , τp) t

Reduction:
{e1 = v1; . . . ; en = vn}.ei

ε→ vi
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Records, ctd.

Type rules:

Γ $ a1 : ϕ(τ1) . . . Γ $ an : ϕ(τn)
dom(ϕ) = {α1, . . . ,αp}

Γ $ {e1 = a1; . . . ; en = an} : ϕ((α1, . . . ,αn) t)

Γ $ a : ϕ((α1, . . . ,αn) t)
dom(ϕ) = {α1, . . . ,αp}

Γ $ a.ei : ϕ(τi)

Again, the substitution ϕ highlights the fact that the type rule is valid for all the
instantiations of the parameters (α1, . . . ,αp).
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Digression: generalised algebraic data types

An interpreter for a simple language of arithmetic expressions:

type term = Num of int | Inc of term | IsZ of term | If of term * term * term

type value = VInt of int | VBool of bool

let rec eval = fun a -> match a with
| Num x -> VInt x
| Inc t -> ( match (eval t) with VInt n -> VInt (n+1) )
| IsZ t -> ( match (eval t) with VInt n -> VBool (n=0) )
| If (c,t1,t2) -> ( match (eval c) with

| VBool true -> eval t1
| VBool false -> eval t2 )

Unsatisfactory: nonsensical terms like Inc (IfZ (Num 0)), lots of fruitless
tagging and un-tagging.
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GADT

Remember that we can see constructors as functions:

Num : int -> term
If : term * term * term -> term (etc...)

Idea: generalise this into:

type ’a term =
Num : int -> int term
Inc : int term -> int term
IsZ : int term -> bool term
If : bool term * ’a term * ’a term -> ’a term

This rules out nonsensical terms like (Inc (IfZ (Num 0))), because
(IfZ (Num 0)) has type bool term, which is incompatible with the type of
Inc.
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GADT, ctd.

Also, the evaluator becomes stunningly direct:
let rec eval = fun a -> match a with
| Num i -> i
| Inc t -> (eval t) + 1
| IsZ t -> (eval t) = 0
| If (c,t1,t2) -> if (eval c) then (eval t1) else (eval t2)

where eval : a term -> a .

See:

S. Peyton Jones, G. Washburn, S. Weirich, Wobbly types: type inference for
generalised algebraic data types, 2004.

V. Simonet, F. Pottier, Constraint-based type inference with guarded algebraic
data types, INRIA TR, 2003.
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Imperative programming: references

A reference is a cell of memory whose content can be updated.

allocation : ref a creates a new memory cell, initialises it with a, and returns
its address;

access : if a is a reference, !a returns its content;

update : if a1 is a reference, a1 := a2 change its content into a2, and returns ()
of type unit.

Notation:
a1; a2 means let x = a1 in a2
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References: reduction semantics

Expressions: a ::= . . . | % memory address
Values: v ::= . . . | % memory address

(fun x → a) v/s
ε→ a{x ← v}/s (β)

(let x = v in a)/s
ε→ a{x ← v}/s (let)

fst (v1, v2)/s
ε→ v1/s (fst)

snd (v1, v2)/s
ε→ v2/s (snd)

ref v/s
ε→ %/s{% )→ v} si % *∈ Dom(s) (δref)

!%/s
ε→ s(%)/s (δderef)

:= (%, v)/s
ε→ ( )/s{% )→ v} (δassign)

a1/s1
ε→ a2/s2 (context)

E[a1]/s1 → E[a2]/s2
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Example

let r = ref 3 in r := !r + 1; !r/∅
→ let r = % in r := !r + 1; !r/{% )→ 3}
→ % := !% + 1; !%/{% )→ 3}
→ % := 3 + 1; !%/{% )→ 3}
→ % := 4; !%/{% )→ 3}
→ ( ); !%/{% )→ 4}
→ !%/{% )→ 4}
→ 4
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References: types

Types: τ ::= . . . | τ ref type of references whose content type is τ .

Operators:
ref : ∀α. α → α ref

! : ∀α. α ref→ α

:= : ∀α. α ref× α → unit

Is this enough? Is the resulting language safe?
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The polymorphic references problem

Consider

let r = ref (fun x → x) in
r := (fun x → x+1);
(!r) true

- r receives the polymorphic type ∀α. (α → α) ref;
- the update r := (fun x → x + 1) is well-typed (use r at type (int →

int) ref);
- the application (!r) true is also well-typed (use r at type (bool→ bool) ref);
- the expression is well-typed, but...

- ...its reduction blocks on true+1.
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Analysis of the problem

Memory addresses are like identifiers: the typing environment associates
types/type-schemas to memory addresses.

If Γ associates type-schemas σ to addresses %, we have

Γ(%) ≤ τ
(loc-inst)

Γ $ % : τ

This is not safe because if % : ∀α.τ with α free in τ , then we can write a value
of type τ [α ← int], and read at a different type τ [α ← bool] (see previous
example).
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Analysis of the problem, ctd.
If Γ associates types τ to addresses %, we have

Γ $ % : Γ(%) (loc)

and the operations ! and := are safe again. But the well-typed expression

∅ $ let r = ref (fun x → x) in (!r) 1; (!r) true : bool

reduces to (reduce the ref (fun x → x) subterm):

let r = % in (!r) 1; (!r) true / {% )→ fun x → x}
which cannot be typed anymore! It should hold

% : (α → α) ref $ let r = % in (!r) 1; (!r) true : bool

but α is now free in the environment and cannot be generalised.
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Conclusion

We must:

1. associate types to addresses in the environment;

2. restrict the type system so that it satisfies the property:

When we type let x = a in b, we should not generalise the variables
in the type of a that might appear in the type of a reference allocated
during the evaluation of a.
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A solution

Generalise only non-expansive expressions:

Γ $ a1 : τ1 a1 non-expansive Γ;x : Gen(τ1,Γ) $ a2 : τ2

Γ $ let x = a1 in a2 : τ2

In the other cases:
Γ $ a1 : τ1 Γ;x : τ1 $ a2 : τ2

Γ $ let x = a1 in a2 : τ2
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Non-expansive expressions

Idea: the syntactic structure of the non-expansive expressions ensures that their
evaluation does not create references.

Non-expansive expressions:
ane ::= x identifiers

| c constants
| op operators
| fun x → a functions
| (a′ne, a

′′
ne) pairs of non-expansive expressions

| fst ane projections of non-expansive expressions
| snd ane

| op(ane) if op *= ref
| let x = a′ne in a′′ne let binding
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Examples
Not well-typed anymore:

let r = ref (fun x → x) in
r := (fun x → x+1);
(!r) true

• ref (fun x → x) is expansive,

• r receives a type (τ → τ) ref,
• the second line requires τ = int,

• the third τ = bool.

Well-typed terms:

let id = fun x → x in (id 1, id true)
let id = fst((fun x → x), 1) in (id 1, id true)
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Examples, ctd.

Surprise! Not well-typed:

let k = fun x → fun y → x in
let f = k 1 in
(f 2, f true)

because k 1 is expansive, and f receives a type τ → int.

But η-expansion saves us. This expression is now well-typed:

let k = fun x → fun y → x in
let f = fun x -> k 1 x in
(f 2, f true)
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Why isn’t application non-expansive?

Reference creation can be hidden inside function application:

let f x = ref(x) in
let r = f(fun x → x) in ...

Wait, the type of r is (α → α)ref and it mentions explicitely ref: maybe we
can use this information...
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A more subtle example

let functional_ref =
fun x →

let r = ref x in ((fun newx → r := newx), (fun ( ) → !r)) in
let p = functional_ref(fun x → x) in
let write = fst p in
let read = snd p in
write(fun x → x+1);
(read()) true

Observe that the type of functional_ref is ∀α. α → (α → unit)×(unit→ α),
and does not mention ref, but the result of functional_ref is functionally
equivalent to a value of type α ref.
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Safety with references, begin

Remark: all the previous results about the typing relation Γ $ a : τ still hold
(including the Substitution Lemma).

Definition: a memory state s is well-typed in Γ, denoted Γ $ s, iff Dom(s) =
Dom(Γ) and for all adress % ∈ Dom(s), there exists τ such that Γ(%) = τ ref
and Γ $ s(%) : τ .

Definition: we say that an environment Γ extends Γ1 if Γ extends Γ1 when
considered as partial functions.
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The less-typable-than relation revisited

Definition: a1/s1 is less typable than a2/s2, denoted a1/s1 . a2/s2, if for all
environment Γ and type τ ,

• if a1 is non-expansive: a2 is non-expansive, and Γ $ a1 : τ and Γ $ s1 imply
Γ $ a2 : τ and Γ $ s2.

• if a1 is expansive: Γ $ a1 : τ and Γ $ s1 imply that there exists Γ′ extending
Γ such that Γ′ $ a2 : τ and Γ′ $ s2.
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Reduction preserves typing

Proposition 12. If a1/s1
ε→ a2/s2, then a1/s1 . a2/s2.

Proof: Case analysis on the reduction rule applied. !

Proposition 13. [Monotonicity of .] For all evaluation context E, a1/s1 .
a2/s2 implies E[a1]/s1 . E[a2]/s2.

Proof: See next slide. !

Proposition 14. [Reduction preserves typing] If a1/s1 → a2/s2, then
a1/s1 . a2/s2.

Proof: Consequence of Lemmas 12 and 13. !
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Proof of monotonicity of .
Proof: Induction on the structure of the evaluation contexts. The interesting case is when the
context is let x = E in a. (We could not prove this case without the restriction of generalisation
to non-expansive expressions). Let Γ and τ such that Γ $ let x = E[a1] in a : τ and
Γ $ s1. The typing derivation is of the form below:

Γ $ E[a1] : τ1 E[a1] non-expansive Γ; x : Gen(τ1, Γ) $ a : τ

Γ $ let x = E[a1] in a : τ

Applying the induction hypothesis to E[a1], we obtain E[a1]/s1 % E[a2]/s2. Then, since
E[a1] is non-expansive, we obtain Γ $ E[a2] : τ1 and Γ $ s2 and E[a2] is non-expansive.
Thus, we can build the derivation below:

Γ $ E[a2] : τ1 E[a2] non-expansive Γ; x : Gen(τ1, Γ) $ a : τ

Γ $ let x = E[a2] in a : τ

and the expected result follows. !
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Shape of values

Proposition 15. [Shape of values acccording to their type] Let Γ be an
environment that binds only adresses %. Let Γ $ v : τ and Γ $ s.

1. If τ = τ1 → τ2, then either v is of the form fun x → a, or v is an operator op;

2. if τ = τ1 × τ2, then v is a pair (v1, v2);
3. if τ is a base type T , then v is a constant c.

4. if τ = τ1 ref, then v is a memory address % ∈ Dom(s).

Proof: by inspection of the typing rules. !
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Safety, end

Proposition 16. [Progression Lemma] Let Γ be an environment that binds
only addresses %. Suppose Γ $ a : τ and Γ $ s. Then, either a is a value, or there
exists a′ and s′ such that a/s → a′/s′.

Proof: analogous to that of the Progression Lemma for mini-ML. !

Theorem 5. [Safety] If ∅ $ a : τ and a/∅ →# a′/s′ and a′/s′ is a normal form
with respect to →, then a′ is a value.
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The approach of SML’90

Idea: distinguish applicative type variables from imperative type variables, and
generalise only the first ones.

Types: τ ::= αa | αi | T | τ1 → τ2 | τ1 × τ2 | τ1 ref
Imperative types: τ̄ ::= αi | T | τ̄1 → τ̄2 | τ̄1 × τ̄2 | τ̄1 ref

Substitutions: [αa ← τ,αi ← τ̄ ].

Operators:

! : ∀αa. αa ref→ αa

:= : ∀αa. αa ref× αa → unit

ref : ∀αi. αi → αi ref
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SML’90, ctd.

Γ $ a1 : τ1 Γ;x : GenAppl(τ1,Γ) $ a2 : τ2

Γ $ let x = a1 in a2 : τ2

GenAppl(τ,Γ) = ∀αa,1 . . .αa,n. τ

where {αa,1, . . . ,αa,n} = La(τ)\La(Γ) are the applicative variables free in τ but
not in Γ.

Γ $ a1 : τ1 a1 non expansive Γ;x : Gen(τ1,Γ) $ a2 : τ2

Γ $ let x = a1 in a2 : τ2
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Examples

let id = fun x → x in id : ∀αa. αa → αa

let f = id id in f : ∀αa. αa → αa

(f 1, f true) ok

let r = ref(fun x → x) in r : (αi → αi) ref
r := fun x → x+1; αi is now int
(!r) true error

let f = fun x → ref(x) in f : ∀αi. αi → αi

let r = f(fun x → x) in r : (αi → αi) ref
r := fun x → x+1; αi is now int
(!r) true error
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Effects and regions

The type and effect discipline, Jean-Pierre Talpin and Pierre Jouvelot,
Information and Computation 111(2), 1994.

Typed Memory Management in a Calculus of Capabilities, Karl Crary, David
Walker, Greg Morrisett, Conference Record of POPL’99, San Antonio,
Texas.
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Exceptions

Idea: have a mechanism to signal an error. The signal propagates across the
calling functions, unless it is catched and treated.

Example:

try 1 + (raise "Hello") with x → x

reduces to

"Hello"
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Exceptions, formally

Expressions: a ::= . . . | try a1 with x → a2

Operators: op ::= . . . | raise
try v with x → a

ε→ v

try raise v with x → a
ε→ a[x ← v]

∆[raise v] → raise v if ∆ is not [ ]

Evaluation contexts:
E ::= . . . | try E with x → a

Exception contexts:
∆ ::= [ ] | ∆ a | v ∆ | let x = ∆ in a | (∆, a) | (v,∆) | fst ∆ | snd ∆

Answers:
r ::= v | raise v

95



The type of exceptions:
τ ::= . . . | exn

Type rules:
raise : ∀α. exn→ α

Γ $ a1 : τ Γ;x : exn $ a2 : τ

Γ $ try a1 with x → a2 : τ

96


