
Extensions of mini-ML: tuples

Idea:
(a1, a2, . . . , an) : τ1 × τ2 . . .× τn

Extensions to mini-ML:

Expressions: a ::= . . . | (a1, . . . , an) | projn
i a

Values: v ::= . . . | (v1, . . . , vn)
Evaluation contexts: E ::= . . . | (E, a2, . . . , an) | (v1, E, . . . , an) | . . . |

(v1, v2, . . . , vn−1, E) | projn
i E

Reduction: projn
i (v1, . . . , vn) ε→ vi

52

Tuples, ctd.

Types: for all integer n ≥ 0, a type constructor ×n.

Notation: we write τ1 × . . .× τn for ×n(τ1, . . . , τn)

Type rules:

Γ $ a1 : τ1 . . . Γ $ an : τn

Γ $ (a1, . . . , an) : τ1 × . . .× τn

Γ $ a : τ1 × . . .× τn

Γ $ projn
i a : τi

When n = 0 the product type ×0 contains only one value (): this corresponds to
the unit type of OCaml.

53

Sums

Idea:
- a value of type τ1 × τ2 is composed by a value of type τ1 and by a value of

type τ2;

- a value of type τ1 + τ2 is composed by a value of type τ1 or by a value of type
τ2;

Example: a value v of type int + string is

- either an integer inj1 5,

- or a string inj2 "foo".

To deconstruct it:

match v (fun i → . . .) (fun s → . . .)

54

Sums, formally

Expressions: a ::= . . . | injn
i a | matchn a a1 . . . an

Values: v ::= . . . | injn
i v

Evaluation contexts: E ::= . . . | injn
i E | matchn E a1 . . . an | matchn v E . . . an

| . . . | matchn v v1 . . . E

Reduction: matchn (injn
i v) v1 . . . vn

ε→ vi v

55

Sums, ctd.

Types: for all integer n ≥ 0, a type constructor +n.

Notation: we write τ1 + . . . + τn for +n(τ1, . . . , τn)

Type rules:

Γ $ a : τi

Γ $ injn
i a : τ1 + . . . + τn

Γ $ a : τ1 + . . . + τn Γ $ a1 : τ1 → τ . . . Γ $ an : τn → τ

Γ $ matchn a a1 . . . an : τ

56

Recursive types

Until here, the universe of types was finite. We can relax this constraint, and
work with recursive types.

Add
τ ::= . . . | µα.τ

to the syntax of types and consider types up-to

µα.τ ≈ τ [α ← µα.τ]

In the type inference algorithm, the equation α
?= α → α now has a solution: the

substitution that associates the regular tree µt.t → t to α.

57

More on recursive types

$ ocaml -rectypes
Objective Caml version 3.08.1

fun x -> x x;;
- : (’a -> ’b as ’a) -> ’b = <fun>

Too many programs now pass the type checker (for instance, all the terms of the
untyped lambda-calculus).

But recursive types might be useful:

IntList = unit + int× IntList

How to reconcile the type inference philosophy and recursive types?

58

Algebraic types: examples

A concrete type to talk about integers and floats:

type num = Integer of int | Real of float

The type of points in the space:

type point = { x : float; y : float; z : float }

The type of arithmetic expressions:

type expr = Constant of int
| Variable of string
| Add of expr * expr
| Diff of expr * expr
| Prod of expr * expr
| Quotient of expr * expr

59

More examples

We can parametrize an algebraic type:

type ’a option = None of unit | Some of ’a
type ’a list = Nil of unit | Cons of ’a * ’a list
type (’a, ’b) pair = { fst : ’a; snd : ’b }

• option and list are not types, but type constructors of arity 1, pair is a
type constructor of arity 2.

• int list and (int, float) pair are types.

60

Concrete types

The general form of a concrete type declaration is

type (α1, . . . ,αp) t = C1 of τ1 | . . . | Cn of τn

If p = 0 we write type t = C1 of τ1 | . . . | Cn of τn.

We require that for all i, it holds L(τi) ⊆ {α1, . . . ,αp}.

61

Concrete type, ctd.

Expressions: a ::= . . . | Ci a | match a C1:a1 . . . Cn:an

Values: v ::= . . . | Ci(v)
Evaluation contexts: E ::= . . . | Ci(E) | matchE C1:a1 . . . Cn:an

| match v C1:E . . . Cn:an | . . .

Types: τ ::= . . . | (τ1, . . . , τp) t

Reduction:
match (Ci v) C1:v1 . . . Cn:vn

ε→ vi v

62

Concrete types, ctd. [2]

Type rules:

Γ $ a : ϕ(τi) dom(ϕ) = {α1, . . . ,αp}
Γ $ Ci a : ϕ((α1, . . . ,αp) t)

Γ $ a : ϕ((α1, . . . ,αp) t) Γ $ a1 : ϕ(τ1 → τ) . . . Γ $ an : ϕ(τn → τ)
dom(ϕ) = {α1, . . . ,αp}

Γ $ match a C1:a1 . . . Cn:an : ϕ(τ)

where the substitution ϕ highlights the fact that the type rule is valid for all the
instantiations of the parameters (α1, . . . ,αp).

63

Alternative approach: constructors and destructors

For the type num, we might define:

Integer : int→ num

Real : float→ num

matchnum : ∀β. num→ (int→ β) → (float→ β) → β

For the type α list, we might define:

Nil : ∀α. unit→ α list

Cons : ∀α. (α× α list) → α list

matchlist : ∀α, β. α list→ (unit→ β) → (α× α list→ β) → β

64

Records

The general form of a concrete type declaration is

type (α1, . . . ,αp) t = {e1 : τ1; . . . ; en : τn}

Expressions: a ::= . . . | {e1 = a1; . . . ; en = an} | a.ei

Values: v ::= . . . | {e1 = v1; . . . ; en = vn}
Evaluation contexts: E ::= . . . | {e1 = E; . . . ; en = an} | . . .

| {e1 = v1; . . . ; en = E} | E.e
Types: τ ::= . . . | (τ1, . . . , τp) t

Reduction:
{e1 = v1; . . . ; en = vn}.ei

ε→ vi

65

Records, ctd.

Type rules:

Γ $ a1 : ϕ(τ1) . . . Γ $ an : ϕ(τn)
dom(ϕ) = {α1, . . . ,αp}

Γ $ {e1 = a1; . . . ; en = an} : ϕ((α1, . . . ,αn) t)

Γ $ a : ϕ((α1, . . . ,αn) t)
dom(ϕ) = {α1, . . . ,αp}

Γ $ a.ei : ϕ(τi)

Again, the substitution ϕ highlights the fact that the type rule is valid for all the
instantiations of the parameters (α1, . . . ,αp).

66

Digression: generalised algebraic data types

An interpreter for a simple language of arithmetic expressions:

type term = Num of int | Inc of term | IsZ of term | If of term * term * term

type value = VInt of int | VBool of bool

let rec eval = fun a -> match a with
| Num x -> VInt x
| Inc t -> (match (eval t) with VInt n -> VInt (n+1))
| IsZ t -> (match (eval t) with VInt n -> VBool (n=0))
| If (c,t1,t2) -> (match (eval c) with

| VBool true -> eval t1
| VBool false -> eval t2)

Unsatisfactory: nonsensical terms like Inc (IfZ (Num 0)), lots of fruitless
tagging and un-tagging.

67

GADT

Remember that we can see constructors as functions:

Num : int -> term
If : term * term * term -> term (etc...)

Idea: generalise this into:

type ’a term =
Num : int -> int term
Inc : int term -> int term
IsZ : int term -> bool term
If : bool term * ’a term * ’a term -> ’a term

This rules out nonsensical terms like (Inc (IfZ (Num 0))), because
(IfZ (Num 0)) has type bool term, which is incompatible with the type of
Inc.

68

GADT, ctd.

Also, the evaluator becomes stunningly direct:
let rec eval = fun a -> match a with
| Num i -> i
| Inc t -> (eval t) + 1
| IsZ t -> (eval t) = 0
| If (c,t1,t2) -> if (eval c) then (eval t1) else (eval t2)

where eval : a term -> a .

See:

S. Peyton Jones, G. Washburn, S. Weirich, Wobbly types: type inference for
generalised algebraic data types, 2004.

V. Simonet, F. Pottier, Constraint-based type inference with guarded algebraic
data types, INRIA TR, 2003.

69

Imperative programming: references

A reference is a cell of memory whose content can be updated.

allocation : ref a creates a new memory cell, initialises it with a, and returns
its address;

access : if a is a reference, !a returns its content;

update : if a1 is a reference, a1 := a2 change its content into a2, and returns ()
of type unit.

Notation:
a1; a2 means let x = a1 in a2

70

References: reduction semantics

Expressions: a ::= . . . | % memory address
Values: v ::= . . . | % memory address

(fun x → a) v/s
ε→ a{x ← v}/s (β)

(let x = v in a)/s
ε→ a{x ← v}/s (let)

fst (v1, v2)/s
ε→ v1/s (fst)

snd (v1, v2)/s
ε→ v2/s (snd)

ref v/s
ε→ %/s{%)→ v} si % *∈ Dom(s) (δref)

!%/s
ε→ s(%)/s (δderef)

:= (%, v)/s
ε→ ()/s{%)→ v} (δassign)

a1/s1
ε→ a2/s2 (context)

E[a1]/s1 → E[a2]/s2

71

Example

let r = ref 3 in r := !r + 1; !r/∅
→ let r = % in r := !r + 1; !r/{%)→ 3}
→ % := !% + 1; !%/{%)→ 3}
→ % := 3 + 1; !%/{%)→ 3}
→ % := 4; !%/{%)→ 3}
→ (); !%/{%)→ 4}
→ !%/{%)→ 4}
→ 4

72

References: types

Types: τ ::= . . . | τ ref type of references whose content type is τ .

Operators:
ref : ∀α. α → α ref

! : ∀α. α ref→ α

:= : ∀α. α ref× α → unit

Is this enough? Is the resulting language safe?

73

The polymorphic references problem

Consider

let r = ref (fun x → x) in
r := (fun x → x+1);
(!r) true

- r receives the polymorphic type ∀α. (α → α) ref;
- the update r := (fun x → x + 1) is well-typed (use r at type (int →

int) ref);
- the application (!r) true is also well-typed (use r at type (bool→ bool) ref);
- the expression is well-typed, but...

- ...its reduction blocks on true+1.

74

Analysis of the problem

Memory addresses are like identifiers: the typing environment associates
types/type-schemas to memory addresses.

If Γ associates type-schemas σ to addresses %, we have

Γ(%) ≤ τ
(loc-inst)

Γ $ % : τ

This is not safe because if % : ∀α.τ with α free in τ , then we can write a value
of type τ [α ← int], and read at a different type τ [α ← bool] (see previous
example).

75

Analysis of the problem, ctd.
If Γ associates types τ to addresses %, we have

Γ $ % : Γ(%) (loc)

and the operations ! and := are safe again. But the well-typed expression

∅ $ let r = ref (fun x → x) in (!r) 1; (!r) true : bool

reduces to (reduce the ref (fun x → x) subterm):

let r = % in (!r) 1; (!r) true / {%)→ fun x → x}
which cannot be typed anymore! It should hold

% : (α → α) ref $ let r = % in (!r) 1; (!r) true : bool

but α is now free in the environment and cannot be generalised.

76

Conclusion

We must:

1. associate types to addresses in the environment;

2. restrict the type system so that it satisfies the property:

When we type let x = a in b, we should not generalise the variables
in the type of a that might appear in the type of a reference allocated
during the evaluation of a.

77

A solution

Generalise only non-expansive expressions:

Γ $ a1 : τ1 a1 non-expansive Γ;x : Gen(τ1,Γ) $ a2 : τ2

Γ $ let x = a1 in a2 : τ2

In the other cases:
Γ $ a1 : τ1 Γ;x : τ1 $ a2 : τ2

Γ $ let x = a1 in a2 : τ2

78

Non-expansive expressions

Idea: the syntactic structure of the non-expansive expressions ensures that their
evaluation does not create references.

Non-expansive expressions:
ane ::= x identifiers

| c constants
| op operators
| fun x → a functions
| (a′ne, a

′′
ne) pairs of non-expansive expressions

| fst ane projections of non-expansive expressions
| snd ane

| op(ane) if op *= ref
| let x = a′ne in a′′ne let binding

79

Examples
Not well-typed anymore:

let r = ref (fun x → x) in
r := (fun x → x+1);
(!r) true

• ref (fun x → x) is expansive,

• r receives a type (τ → τ) ref,
• the second line requires τ = int,

• the third τ = bool.

Well-typed terms:

let id = fun x → x in (id 1, id true)
let id = fst((fun x → x), 1) in (id 1, id true)

80

Examples, ctd.

Surprise! Not well-typed:

let k = fun x → fun y → x in
let f = k 1 in
(f 2, f true)

because k 1 is expansive, and f receives a type τ → int.

But η-expansion saves us. This expression is now well-typed:

let k = fun x → fun y → x in
let f = fun x -> k 1 x in
(f 2, f true)

81

Why isn’t application non-expansive?

Reference creation can be hidden inside function application:

let f x = ref(x) in
let r = f(fun x → x) in ...

Wait, the type of r is (α → α)ref and it mentions explicitely ref: maybe we
can use this information...

82

A more subtle example

let functional_ref =
fun x →

let r = ref x in ((fun newx → r := newx), (fun () → !r)) in
let p = functional_ref(fun x → x) in
let write = fst p in
let read = snd p in
write(fun x → x+1);
(read()) true

Observe that the type of functional_ref is ∀α. α → (α → unit)×(unit→ α),
and does not mention ref, but the result of functional_ref is functionally
equivalent to a value of type α ref.

83

Safety with references, begin

Remark: all the previous results about the typing relation Γ $ a : τ still hold
(including the Substitution Lemma).

Definition: a memory state s is well-typed in Γ, denoted Γ $ s, iff Dom(s) =
Dom(Γ) and for all adress % ∈ Dom(s), there exists τ such that Γ(%) = τ ref
and Γ $ s(%) : τ .

Definition: we say that an environment Γ extends Γ1 if Γ extends Γ1 when
considered as partial functions.

84

The less-typable-than relation revisited

Definition: a1/s1 is less typable than a2/s2, denoted a1/s1 . a2/s2, if for all
environment Γ and type τ ,

• if a1 is non-expansive: a2 is non-expansive, and Γ $ a1 : τ and Γ $ s1 imply
Γ $ a2 : τ and Γ $ s2.

• if a1 is expansive: Γ $ a1 : τ and Γ $ s1 imply that there exists Γ′ extending
Γ such that Γ′ $ a2 : τ and Γ′ $ s2.

85

Reduction preserves typing

Proposition 12. If a1/s1
ε→ a2/s2, then a1/s1 . a2/s2.

Proof: Case analysis on the reduction rule applied. !

Proposition 13. [Monotonicity of .] For all evaluation context E, a1/s1 .
a2/s2 implies E[a1]/s1 . E[a2]/s2.

Proof: See next slide. !

Proposition 14. [Reduction preserves typing] If a1/s1 → a2/s2, then
a1/s1 . a2/s2.

Proof: Consequence of Lemmas 12 and 13. !

86

Proof of monotonicity of .
Proof: Induction on the structure of the evaluation contexts. The interesting case is when the
context is let x = E in a. (We could not prove this case without the restriction of generalisation
to non-expansive expressions). Let Γ and τ such that Γ $ let x = E[a1] in a : τ and
Γ $ s1. The typing derivation is of the form below:

Γ $ E[a1] : τ1 E[a1] non-expansive Γ; x : Gen(τ1, Γ) $ a : τ

Γ $ let x = E[a1] in a : τ

Applying the induction hypothesis to E[a1], we obtain E[a1]/s1 % E[a2]/s2. Then, since
E[a1] is non-expansive, we obtain Γ $ E[a2] : τ1 and Γ $ s2 and E[a2] is non-expansive.
Thus, we can build the derivation below:

Γ $ E[a2] : τ1 E[a2] non-expansive Γ; x : Gen(τ1, Γ) $ a : τ

Γ $ let x = E[a2] in a : τ

and the expected result follows. !

87

Shape of values

Proposition 15. [Shape of values acccording to their type] Let Γ be an
environment that binds only adresses %. Let Γ $ v : τ and Γ $ s.

1. If τ = τ1 → τ2, then either v is of the form fun x → a, or v is an operator op;

2. if τ = τ1 × τ2, then v is a pair (v1, v2);
3. if τ is a base type T , then v is a constant c.

4. if τ = τ1 ref, then v is a memory address % ∈ Dom(s).

Proof: by inspection of the typing rules. !

88

Safety, end

Proposition 16. [Progression Lemma] Let Γ be an environment that binds
only addresses %. Suppose Γ $ a : τ and Γ $ s. Then, either a is a value, or there
exists a′ and s′ such that a/s → a′/s′.

Proof: analogous to that of the Progression Lemma for mini-ML. !

Theorem 5. [Safety] If ∅ $ a : τ and a/∅ →# a′/s′ and a′/s′ is a normal form
with respect to →, then a′ is a value.

89

The approach of SML’90

Idea: distinguish applicative type variables from imperative type variables, and
generalise only the first ones.

Types: τ ::= αa | αi | T | τ1 → τ2 | τ1 × τ2 | τ1 ref
Imperative types: τ̄ ::= αi | T | τ̄1 → τ̄2 | τ̄1 × τ̄2 | τ̄1 ref

Substitutions: [αa ← τ,αi ← τ̄].

Operators:

! : ∀αa. αa ref→ αa

:= : ∀αa. αa ref× αa → unit

ref : ∀αi. αi → αi ref

90

SML’90, ctd.

Γ $ a1 : τ1 Γ;x : GenAppl(τ1,Γ) $ a2 : τ2

Γ $ let x = a1 in a2 : τ2

GenAppl(τ,Γ) = ∀αa,1 . . .αa,n. τ

where {αa,1, . . . ,αa,n} = La(τ)\La(Γ) are the applicative variables free in τ but
not in Γ.

Γ $ a1 : τ1 a1 non expansive Γ;x : Gen(τ1,Γ) $ a2 : τ2

Γ $ let x = a1 in a2 : τ2

91

Examples

let id = fun x → x in id : ∀αa. αa → αa

let f = id id in f : ∀αa. αa → αa

(f 1, f true) ok

let r = ref(fun x → x) in r : (αi → αi) ref
r := fun x → x+1; αi is now int
(!r) true error

let f = fun x → ref(x) in f : ∀αi. αi → αi

let r = f(fun x → x) in r : (αi → αi) ref
r := fun x → x+1; αi is now int
(!r) true error

92

Effects and regions

The type and effect discipline, Jean-Pierre Talpin and Pierre Jouvelot,
Information and Computation 111(2), 1994.

Typed Memory Management in a Calculus of Capabilities, Karl Crary, David
Walker, Greg Morrisett, Conference Record of POPL’99, San Antonio,
Texas.

93

Exceptions

Idea: have a mechanism to signal an error. The signal propagates across the
calling functions, unless it is catched and treated.

Example:

try 1 + (raise "Hello") with x → x

reduces to

"Hello"

94

Exceptions, formally

Expressions: a ::= . . . | try a1 with x → a2

Operators: op ::= . . . | raise
try v with x → a

ε→ v

try raise v with x → a
ε→ a[x ← v]

∆[raise v] → raise v if ∆ is not []

Evaluation contexts:
E ::= . . . | try E with x → a

Exception contexts:
∆ ::= [] | ∆ a | v ∆ | let x = ∆ in a | (∆, a) | (v,∆) | fst ∆ | snd ∆

Answers:
r ::= v | raise v

95

The type of exceptions:
τ ::= . . . | exn

Type rules:
raise : ∀α. exn→ α

Γ $ a1 : τ Γ;x : exn $ a2 : τ

Γ $ try a1 with x → a2 : τ

96

