Extensions of mini-ML: tuples

Idea:

$$
\left(a_{1}, a_{2}, \ldots, a_{n}\right): \tau_{1} \times \tau_{2} \ldots \times \tau_{n}
$$

Extensions to mini-ML:

Expressions:

$$
a::=\ldots\left|\left(a_{1}, \ldots, a_{n}\right)\right| \operatorname{proj}_{i}^{n} a
$$

Values:
$v::=\ldots \mid\left(v_{1}, \ldots, v_{n}\right)$
Evaluation contexts: $\quad E::=\ldots\left|\left(E, a_{2}, \ldots, a_{n}\right)\right|\left(v_{1}, E, \ldots, a_{n}\right)|\ldots|$ $\left(v_{1}, v_{2}, \ldots, v_{n-1}, E\right) \mid \operatorname{proj}_{i}^{n} E$

Reduction: $\operatorname{proj}_{i}^{n}\left(v_{1}, \ldots, v_{n}\right) \xrightarrow{\varepsilon} v_{i}$

Tuples, ctd.

Types: for all integer $n \geq 0$, a type constructor \times_{n}.
Notation: we write $\tau_{1} \times \ldots \times \tau_{n}$ for $\times_{n}\left(\tau_{1}, \ldots, \tau_{n}\right)$
Type rules:

$$
\frac{\Gamma \vdash a_{1}: \tau_{1} \quad \ldots \quad \Gamma \vdash a_{n}: \tau_{n}}{\Gamma \vdash\left(a_{1}, \ldots, a_{n}\right): \tau_{1} \times \ldots \times \tau_{n}} \quad \frac{\Gamma \vdash a: \tau_{1} \times \ldots \times \tau_{n}}{\Gamma \vdash \operatorname{proj}_{i}^{n} a: \tau_{i}}
$$

When $n=0$ the product type \times_{0} contains only one value (): this corresponds to the unit type of OCaml.

Sums

Idea:

- a value of type $\tau_{1} \times \tau_{2}$ is composed by a value of type τ_{1} and by a value of type τ_{2};
- a value of type $\tau_{1}+\tau_{2}$ is composed by a value of type τ_{1} or by a value of type $\tau_{2} ;$

Example: a value v of type int + string is

- either an integer $\operatorname{inj}_{1} 5$,
- or a string inj_{2} "foo".

To deconstruct it:

$$
\text { match } v(\text { fun } i \rightarrow \ldots) \quad(\text { fun } s \rightarrow \ldots)
$$

Sums, formally

Expressions: $\quad a::=\ldots\left|\operatorname{inj}_{i}^{n} a\right| \operatorname{match}_{n} a a_{1} \ldots a_{n}$ Values: $\quad v::=\ldots \mid \operatorname{inj}_{i}^{n} v$
Evaluation contexts: $\quad E::=\ldots\left|\operatorname{inj}_{i}^{n} E\right| \operatorname{match}_{n} E a_{1} \ldots a_{n} \mid \operatorname{match}_{n} v E \ldots a_{n}$ $|\ldots| \operatorname{match}_{n} v v_{1} \ldots E$

Reduction: $\operatorname{match}_{n}\left(\operatorname{inj}_{i}^{n} v\right) v_{1} \ldots v_{n} \xrightarrow{\varepsilon} v_{i} v$

Sums, ctd.

Types: for all integer $n \geq 0$, a type constructor $+_{n}$.
Notation: we write $\tau_{1}+\ldots+\tau_{n}$ for $+_{n}\left(\tau_{1}, \ldots, \tau_{n}\right)$
Type rules:

$$
\begin{gathered}
\frac{\Gamma \vdash a: \tau_{i}}{\Gamma \vdash \operatorname{inj}_{i}^{n} a: \tau_{1}+\ldots+\tau_{n}} \\
\frac{\Gamma \vdash a: \tau_{1}+\ldots+\tau_{n} \quad \Gamma \vdash a_{1}: \tau_{1} \rightarrow \tau \quad \ldots \quad \Gamma \vdash a_{n}: \tau_{n} \rightarrow \tau}{\Gamma \vdash \operatorname{match}_{n} a a_{1} \ldots a_{n}: \tau}
\end{gathered}
$$

Recursive types

Until here, the universe of types was finite. We can relax this constraint, and work with recursive types.

Add

$$
\tau::=\ldots \mid \mu \alpha . \tau
$$

to the syntax of types and consider types up-to

$$
\mu \alpha . \tau \approx \tau[\alpha \leftarrow \mu \alpha . \tau]
$$

In the type inference algorithm, the equation $\alpha \stackrel{?}{=} \alpha \rightarrow \alpha$ now has a solution: the substitution that associates the regular tree $\mu t . t \rightarrow t$ to α.

More on recursive types

```
$ ocaml -rectypes
    Objective Caml version 3.08.1
# fun x -> x x;;
- : ('a -> 'b as 'a) -> 'b = <fun>
```

Too many programs now pass the type checker (for instance, all the terms of the untyped lambda-calculus).

But recursive types might be useful:

$$
\text { IntList }=\text { unit }+ \text { int } \times \text { IntList }
$$

How to reconcile the type inference philosophy and recursive types?

Algebraic types: examples

A concrete type to talk about integers and floats:

```
type num = Integer of int | Real of float
```

The type of points in the space:

```
type point = { x : float; y : float; z : float }
```

The type of arithmetic expressions:

```
type expr = Constant of int
    | Variable of string
    | Add of expr * expr
    | Diff of expr * expr
    | Prod of expr * expr
    | Quotient of expr * expr
```


More examples

We can parametrize an algebraic type:

```
type 'a option = None of unit | Some of 'a
type 'a list = Nil of unit | Cons of 'a * 'a list
type ('a, 'b) pair = { fst : 'a; snd : 'b }
```

- option and list are not types, but type constructors of arity 1 , pair is a type constructor of arity 2.
- int list and (int, float) pair are types.

Concrete types

The general form of a concrete type declaration is

$$
\text { type }\left(\alpha_{1}, \ldots, \alpha_{p}\right) t=C_{1} \text { of } \tau_{1}|\ldots| C_{n} \text { of } \tau_{n}
$$

If $p=0$ we write type $t=C_{1}$ of $\tau_{1}|\ldots| C_{n}$ of τ_{n}.
We require that for all i, it holds $\mathcal{L}\left(\tau_{i}\right) \subseteq\left\{\alpha_{1}, \ldots, \alpha_{p}\right\}$.

Concrete type, ctd.

Expressions: $\quad a::=\ldots\left|C_{i} a\right|$ match $a C_{1}: a_{1} \ldots C_{n}: a_{n}$ Values: $\quad v::=\ldots \mid C_{i}(v)$
Evaluation contexts: $\quad E::=\ldots\left|C_{i}(E)\right|$ match $E C_{1}: a_{1} \ldots C_{n}: a_{n}$ $\left|\operatorname{match} v C_{1}: E \ldots C_{n}: a_{n}\right| \ldots$
Types:

$$
\tau::=\ldots \mid\left(\tau_{1}, \ldots, \tau_{p}\right) t
$$

Reduction:

$$
\operatorname{match}\left(C_{i} v\right) C_{1}: v_{1} \ldots C_{n}: v_{n} \xrightarrow{\varepsilon} \quad v_{i} v
$$

Concrete types, ctd. [2]

Type rules:

$$
\frac{\Gamma \vdash a: \varphi\left(\tau_{i}\right) \quad \operatorname{dom}(\varphi)=\left\{\alpha_{1}, \ldots, \alpha_{p}\right\}}{\Gamma \vdash C_{i} a: \varphi\left(\left(\alpha_{1}, \ldots, \alpha_{p}\right) t\right)}
$$

$$
\Gamma \vdash a: \varphi\left(\left(\alpha_{1}, \ldots, \alpha_{p}\right) t\right) \quad \Gamma \vdash a_{1}: \varphi\left(\tau_{1} \rightarrow \tau\right) \quad \ldots \quad \Gamma \vdash a_{n}: \varphi\left(\tau_{n} \rightarrow \tau\right)
$$

$$
\operatorname{dom}(\varphi)=\left\{\alpha_{1}, \ldots, \alpha_{p}\right\}
$$

$$
\Gamma \vdash \operatorname{match} a C_{1}: a_{1} \ldots C_{n}: a_{n}: \varphi(\tau)
$$

where the substitution φ highlights the fact that the type rule is valid for all the instantiations of the parameters $\left(\alpha_{1}, \ldots, \alpha_{p}\right)$.

Alternative approach: constructors and destructors

For the type num, we might define:

$$
\begin{aligned}
\text { Integer } & : \text { int } \rightarrow \text { num } \\
\text { Real } & : \text { float } \rightarrow \text { num } \\
\text { match }_{\text {num }} & : \forall \beta . \text { num } \rightarrow(\text { int } \rightarrow \beta) \rightarrow(\text { float } \rightarrow \beta) \rightarrow \beta
\end{aligned}
$$

For the type α list, we might define:

$$
\begin{aligned}
\text { Nil } & : \forall \alpha . \text { unit } \rightarrow \alpha \text { list } \\
\text { Cons } & : \forall \alpha .(\alpha \times \alpha \text { list }) \rightarrow \alpha \text { list } \\
\text { match }_{\text {list }} & : \forall \alpha, \beta . \alpha \text { list } \rightarrow(\text { unit } \rightarrow \beta) \rightarrow(\alpha \times \alpha \text { list } \rightarrow \beta) \rightarrow \beta
\end{aligned}
$$

Records

The general form of a concrete type declaration is

$$
\operatorname{type}\left(\alpha_{1}, \ldots, \alpha_{p}\right) t=\left\{e_{1}: \tau_{1} ; \ldots ; e_{n}: \tau_{n}\right\}
$$

Expressions:

$$
a::=\ldots\left|\left\{e_{1}=a_{1} ; \ldots ; e_{n}=a_{n}\right\}\right| a . e_{i}
$$

Values:
$v::=\ldots \mid\left\{e_{1}=v_{1} ; \ldots ; e_{n}=v_{n}\right\}$

Evaluation contexts: $E::=\ldots\left|\left\{e_{1}=E ; \ldots ; e_{n}=a_{n}\right\}\right| \ldots$

$$
\left|\left\{e_{1}=v_{1} ; \ldots ; e_{n}=E\right\}\right| E . e
$$

Types:

$$
\tau::=\ldots \mid\left(\tau_{1}, \ldots, \tau_{p}\right) t
$$

Reduction:

$$
\left\{e_{1}=v_{1} ; \ldots ; e_{n}=v_{n}\right\} . e_{i} \xrightarrow{\varepsilon} v_{i}
$$

Records, ctd.

Type rules:

$$
\begin{array}{ccc}
\Gamma \vdash a_{1}: \varphi\left(\tau_{1}\right) & \ldots \quad \Gamma \vdash a_{n}: \varphi\left(\tau_{n}\right) \\
\operatorname{dom}(\varphi)=\left\{\alpha_{1}, \ldots, \alpha_{p}\right\}
\end{array} \quad \begin{gathered}
\Gamma \vdash a: \varphi\left(\left(\alpha_{1}, \ldots, \alpha_{n}\right) t\right) \\
\Gamma \vdash\left\{e_{1}=a_{1} ; \ldots ; e_{n}=a_{n}\right\}: \varphi\left(\left(\alpha_{1}, \ldots, \alpha_{n}\right) t\right)
\end{gathered} \quad \frac{\operatorname{dom}(\varphi)=\left\{\alpha_{1}, \ldots, \alpha_{p}\right\}}{\Gamma \vdash a . e_{i}: \varphi\left(\tau_{i}\right)}
$$

Again, the substitution φ highlights the fact that the type rule is valid for all the instantiations of the parameters $\left(\alpha_{1}, \ldots, \alpha_{p}\right)$.

Digression: generalised algebraic data types

An interpreter for a simple language of arithmetic expressions:

```
type term = Num of int | Inc of term | IsZ of term | If of term * term * term
type value = VInt of int | VBool of bool
let rec eval = fun a -> match a with
    | Num x -> VInt x
    | Inc t -> ( match (eval t) with VInt n -> VInt (n+1) )
    | IsZ t -> ( match (eval t) with VInt n -> VBool (n=0) )
    | If (c,t1,t2) -> ( match (eval c) with
        | VBool true -> eval t1
        | VBool false -> eval t2 )
```

Unsatisfactory: nonsensical terms like Inc (IfZ (Num 0)), lots of fruitless tagging and un-tagging.

GADT

Remember that we can see constructors as functions:

```
Num : int -> term
If : term * term * term -> term (etc...)
```

Idea: generalise this into:

```
type 'a term =
    Num : int -> int term
    Inc : int term -> int term
    IsZ : int term -> bool term
    If : bool term * 'a term * 'a term -> 'a term
```

This rules out nonsensical terms like (Inc (IfZ (Num 0))), because (IfZ (Num 0)) has type bool term, which is incompatible with the type of Inc.

GADT, ctd.

Also, the evaluator becomes stunningly direct:

```
let rec eval = fun a -> match a with
    | Num i -> i
    | Inc t -> (eval t) + 1
    | IsZ t -> (eval t) = 0
    | If (c,t1,t2) -> if (eval c) then (eval t1) else (eval t2)
```

where eval : a term -> a.

See:
S. Peyton Jones, G. Washburn, S. Weirich, Wobbly types: type inference for generalised algebraic data types, 2004.
V. Simonet, F. Pottier, Constraint-based type inference with guarded algebraic data types, INRIA TR, 2003.

Imperative programming: references

A reference is a cell of memory whose content can be updated.
allocation : ref a creates a new memory cell, initialises it with a, and returns its address;
access : if a is a reference, ! a returns its content;
update : if a_{1} is a reference, $a_{1}:=a_{2}$ change its content into a_{2}, and returns () of type unit.

Notation:

$$
a_{1} ; a_{2} \quad \text { means } \quad \text { let } x=a_{1} \text { in } a_{2}
$$

References: reduction semantics

Expressions: $a::=\ldots \mid \ell$ memory address
Values: $\quad v::=\ldots \mid \ell$ memory address

$$
\begin{align*}
& (\text { fun } x \rightarrow a) v / s \quad \stackrel{\varepsilon}{\rightarrow} a\{x \leftarrow v\} / s \\
& (\text { let } x=v \text { in } a) / s \quad \stackrel{\varepsilon}{\rightarrow} a\{x \leftarrow v\} / s \tag{let}\\
& \text { fst }\left(v_{1}, v_{2}\right) / s \xrightarrow{\varepsilon} v_{1} / s \tag{fst}\\
& \text { snd }\left(v_{1}, v_{2}\right) / s \xrightarrow{\varepsilon} v_{2} / s \\
& \text { ref } v / s \quad \xrightarrow{\varepsilon} \quad \ell / s\{\ell \mapsto v\} \quad \text { si } \ell \notin \operatorname{Dom}(s) \\
& !\ell / s \xrightarrow{\varepsilon} s(\ell) / s \\
& :=(\ell, v) / s \quad \xrightarrow{\varepsilon}() / s\{\ell \mapsto v\} \\
& \frac{a_{1} / s_{1} \xrightarrow{\varepsilon} a_{2} / s_{2}}{E\left[a_{1}\right] / s_{1} \rightarrow E\left[a_{2}\right] / s_{2}} \text { (context) } \\
& E\left[a_{1}\right] / s_{1} \rightarrow E\left[a_{2}\right] / s_{2} \\
& \text { (snd) } \\
& \text { (} \delta_{\text {ref }} \text {) } \\
& \text { (} \delta_{\text {deref }} \text {) } \\
& \text { (} \delta_{\text {assign }} \text {) }
\end{align*}
$$

Example

$$
\begin{aligned}
& \text { let } r=\text { ref } 3 \text { in } r:=!r+1 ;!r / \emptyset \\
& \rightarrow \text { let } r=\ell \text { in } r:=!r+1 ;!r /\{\ell \mapsto 3\} \\
& \rightarrow \ell:=!\ell+1 ;!\ell /\{\ell \mapsto 3\} \\
& \rightarrow \ell:=3+1 ;!\ell /\{\ell \mapsto 3\} \\
& \rightarrow \ell:=4 ;!\ell /\{\ell \mapsto 3\} \\
& \rightarrow() ;!\ell /\{\ell \mapsto 4\} \\
& \rightarrow!\ell /\{\ell \mapsto 4\} \\
& \rightarrow 4
\end{aligned}
$$

References: types

Types: $\quad \tau::=\ldots \mid \tau$ ref type of references whose content type is τ.
Operators:

$$
\begin{aligned}
\text { ref } & : \forall \alpha . \alpha \rightarrow \alpha \text { ref } \\
! & : \forall \alpha . \alpha \text { ref } \rightarrow \alpha \\
:= & : \forall \alpha . \alpha \text { ref } \times \alpha \rightarrow \text { unit }
\end{aligned}
$$

Is this enough? Is the resulting language safe?

The polymorphic references problem

Consider

```
let r = ref (fun x }->\textrm{x}\mathrm{ ) in
r := (fun x }->\textrm{x}+1)\mathrm{ ;
(!r) true
```

- r receives the polymorphic type $\forall \alpha .(\alpha \rightarrow \alpha)$ ref;
- the update $\mathrm{r}:=($ fun $\mathrm{x} \rightarrow \mathrm{x}+1$) is well-typed (use r at type (int \rightarrow int) ref);
- the application (!r) true is also well-typed (use r at type (bool \rightarrow bool) ref);
- the expression is well-typed, but...
- ...its reduction blocks on true+1.

Analysis of the problem

Memory addresses are like identifiers: the typing environment associates types/type-schemas to memory addresses.

If Γ associates type-schemas σ to addresses ℓ, we have

$$
\frac{\Gamma(\ell) \leq \tau}{\Gamma \vdash \ell: \tau}(\text { loc-inst })
$$

This is not safe because if $\ell: \forall \alpha . \tau$ with α free in τ, then we can write a value of type $\tau[\alpha \leftarrow$ int $]$, and read at a different type $\tau[\alpha \leftarrow$ bool] (see previous example).

Analysis of the problem, ctd.

If Γ associates types τ to addresses ℓ, we have

$$
\Gamma \vdash \ell: \Gamma(\ell)(\mathrm{loc})
$$

and the operations ! and $:=$ are safe again. But the well-typed expression

$$
\emptyset \vdash \text { let } r=\operatorname{ref}(\text { fun } x \rightarrow x) \text { in }(!r) 1 ;(!r) \text { true }: \text { bool }
$$

reduces to (reduce the ref (fun $x \rightarrow x$) subterm):

$$
\text { let } r=\ell \text { in }(!r) 1 ;(!r) \text { true } /\{\ell \mapsto \text { fun } x \rightarrow x\}
$$

which cannot be typed anymore! It should hold

$$
\ell:(\alpha \rightarrow \alpha) \text { ref } \vdash \text { let } r=\ell \text { in }(!r) 1 ;(!r) \text { true }: \text { bool }
$$

but α is now free in the environment and cannot be generalised.

Conclusion

We must:

1. associate types to addresses in the environment;
2. restrict the type system so that it satisfies the property:

When we type let $x=a$ in b, we should not generalise the variables in the type of a that might appear in the type of a reference allocated during the evaluation of a.

A solution

Generalise only non-expansive expressions:

$$
\frac{\Gamma \vdash a_{1}: \tau_{1} \quad a_{1} \text { non-expansive } \quad \Gamma ; x: G e n\left(\tau_{1}, \Gamma\right) \vdash a_{2}: \tau_{2}}{\Gamma \vdash \operatorname{let} x=a_{1} \text { in } a_{2}: \tau_{2}}
$$

In the other cases:

$$
\frac{\Gamma \vdash a_{1}: \tau_{1} \quad \Gamma ; x: \tau_{1} \vdash a_{2}: \tau_{2}}{\Gamma \vdash \operatorname{let} x=a_{1} \text { in } a_{2}: \tau_{2}}
$$

Non-expansive expressions

Idea: the syntactic structure of the non-expansive expressions ensures that their evaluation does not create references.

Non-expansive expressions:

$a_{n e}::$	$=x$		identifiers
	$\mid c$		constants
	\mid op		operators
	\mid fun $x \rightarrow a$		functions
	$\mid\left(a_{n e}^{\prime}, a_{n e}^{\prime \prime}\right)$		pairs of non-expansive expressions
	\mid fst $a_{n e}$	projections of non-expansive expressions	
	snd $a_{n e}$		
	\mid op $\left(a_{n e}\right)$	if $o p \neq$ ref	
	\mid let $x=a_{n e}^{\prime}$ in $a_{n e}^{\prime \prime}$	let binding	

Examples

Not well-typed anymore:

$$
\begin{aligned}
& \text { let } r=r e f(f u n x \rightarrow x) \text { in } \\
& r:=(\text { fun } x \rightarrow x+1) ; \\
& (!r) \text { true }
\end{aligned}
$$

- ref (fun $x \rightarrow x$) is expansive,
- r receives a type $(\tau \rightarrow \tau)$ ref,
- the second line requires $\tau=$ int,
- the third $\tau=$ bool.

Well-typed terms:

```
let id = fun x }->\textrm{x}\mathrm{ in (id 1, id true)
let id = fst((fun x }->\textrm{x}\mathrm{ ), 1) in (id 1, id true)
```


Examples, ctd.

Surprise! Not well-typed:

```
let k = fun x }->\mathrm{ fun y }->\textrm{x}\mathrm{ in
let f = k 1 in
(f 2, f true)
```

because k 1 is expansive, and f receives a type $\tau \rightarrow$ int.
But η-expansion saves us. This expression is now well-typed:

$$
\begin{aligned}
& \text { let } k=\text { fun } x \rightarrow \text { fun } y \rightarrow x \text { in } \\
& \text { let } f=\text { fun } x \rightarrow k 1 \mathrm{x} \text { in } \\
& \text { (f } 2, f \text { true) }
\end{aligned}
$$

Why isn't application non-expansive?

Reference creation can be hidden inside function application:

```
let f x = ref(x) in
let r = f(fun x }->\textrm{x}\mathrm{ ) in ...
```

Wait, the type of r is $(\alpha \rightarrow \alpha)$ ref and it mentions explicitely ref: maybe we can use this information...

A more subtle example

```
let functional_ref =
    fun x }
        let r = ref x in ((fun newx }->\textrm{r}:= newx), (fun () -> !r)) i
let p = functional_ref(fun x }->\textrm{x}\mathrm{ ) in
let write = fst p in
let read = snd p in
write(fun x }->\textrm{x}+1)\mathrm{ ;
(read()) true
```

Observe that the type of functional_ref is $\forall \alpha . \alpha \rightarrow(\alpha \rightarrow$ unit $) \times($ unit $\rightarrow \alpha)$, and does not mention ref, but the result of functional_ref is functionally equivalent to a value of type α ref.

Safety with references, begin

Remark: all the previous results about the typing relation $\Gamma \vdash a: \tau$ still hold (including the Substitution Lemma).

Definition: a memory state s is well-typed in Γ, denoted $\Gamma \vdash s$, iff $\operatorname{Dom}(s)=$ $\operatorname{Dom}(\Gamma)$ and for all adress $\ell \in \operatorname{Dom}(s)$, there exists τ such that $\Gamma(\ell)=\tau$ ref and $\Gamma \vdash s(\ell): \tau$.

Definition: we say that an environment Γ extends Γ_{1} if Γ extends Γ_{1} when considered as partial functions.

The less-typable-than relation revisited

Definition: a_{1} / s_{1} is less typable than a_{2} / s_{2}, denoted $a_{1} / s_{1} \sqsubseteq a_{2} / s_{2}$, if for all environment Γ and type τ,

- if a_{1} is non-expansive: a_{2} is non-expansive, and $\Gamma \vdash a_{1}: \tau$ and $\Gamma \vdash s_{1}$ imply $\Gamma \vdash a_{2}: \tau$ and $\Gamma \vdash s_{2}$.
- if a_{1} is expansive: $\Gamma \vdash a_{1}: \tau$ and $\Gamma \vdash s_{1}$ imply that there exists Γ^{\prime} extending Γ such that $\Gamma^{\prime} \vdash a_{2}: \tau$ and $\Gamma^{\prime} \vdash s_{2}$.

Reduction preserves typing

Proposition 12. If $a_{1} / s_{1} \xrightarrow{\varepsilon} a_{2} / s_{2}$, then $a_{1} / s_{1} \sqsubseteq a_{2} / s_{2}$.
Proof: Case analysis on the reduction rule applied.
Proposition 13. [Monotonicity of \sqsubseteq] For all evaluation context E, $a_{1} / s_{1} \sqsubseteq$ a_{2} / s_{2} implies $E\left[a_{1}\right] / s_{1} \sqsubseteq E\left[a_{2}\right] / s_{2}$.

Proof: See next slide.
Proposition 14. [Reduction preserves typing] If $a_{1} / s_{1} \rightarrow a_{2} / s_{2}$, then $a_{1} / s_{1} \sqsubseteq a_{2} / s_{2}$.

Proof: Consequence of Lemmas 12 and 13.

Proof of monotonicity of \sqsubseteq

Proof: Induction on the structure of the evaluation contexts. The interesting case is when the context is let $x=E$ in a. (We could not prove this case without the restriction of generalisation to non-expansive expressions). Let Γ and τ such that $\Gamma \vdash$ let $x=E\left[a_{1}\right]$ in $a: \tau$ and $\Gamma \vdash s_{1}$. The typing derivation is of the form below:

$$
\frac{\Gamma \vdash E\left[a_{1}\right]: \tau_{1} \quad E\left[a_{1}\right] \text { non-expansive } \quad \Gamma ; x: \operatorname{Gen}\left(\tau_{1}, \Gamma\right) \vdash a: \tau}{\Gamma \vdash \operatorname{let} x=E\left[a_{1}\right] \text { in } a: \tau}
$$

Applying the induction hypothesis to $E\left[a_{1}\right]$, we obtain $E\left[a_{1}\right] / s_{1} \sqsubseteq E\left[a_{2}\right] / s_{2}$. Then, since $E\left[a_{1}\right]$ is non-expansive, we obtain $\Gamma \vdash E\left[a_{2}\right]: \tau_{1}$ and $\Gamma \vdash s_{2}$ and $E\left[a_{2}\right]$ is non-expansive. Thus, we can build the derivation below:

$$
\begin{gathered}
\Gamma \vdash E\left[a_{2}\right]: \tau_{1} \quad E\left[a_{2}\right] \text { non-expansive } \quad \Gamma ; x: \operatorname{Gen}\left(\tau_{1}, \Gamma\right) \vdash a: \tau \\
\Gamma \vdash \operatorname{let} x=E\left[a_{2}\right] \text { in } a: \tau
\end{gathered}
$$

and the expected result follows.

Shape of values

Proposition 15. [Shape of values acccording to their type] Let Γ be an environment that binds only adresses ℓ. Let $\Gamma \vdash v: \tau$ and $\Gamma \vdash s$.

1. If $\tau=\tau_{1} \rightarrow \tau_{2}$, then either v is of the form $\mathrm{fun} x \rightarrow a$, or v is an operator op;
2. if $\tau=\tau_{1} \times \tau_{2}$, then v is a pair $\left(v_{1}, v_{2}\right)$;
3. if τ is a base type T, then v is a constant c.
4. if $\tau=\tau_{1}$ ref, then v is a memory address $\ell \in \operatorname{Dom}(s)$.

Proof: by inspection of the typing rules.

Safety, end

Proposition 16. [Progression Lemma] Let Γ be an environment that binds only addresses ℓ. Suppose $\Gamma \vdash a: \tau$ and $\Gamma \vdash s$. Then, either a is a value, or there exists a^{\prime} and s^{\prime} such that $a / s \rightarrow a^{\prime} / s^{\prime}$.

Proof: analogous to that of the Progression Lemma for mini-ML.
Theorem 5. [Safety] If $\emptyset \vdash a: \tau$ and $a / \emptyset \rightarrow^{\star} a^{\prime} / s^{\prime}$ and a^{\prime} / s^{\prime} is a normal form with respect to \rightarrow, then a^{\prime} is a value.

The approach of SML'90

Idea: distinguish applicative type variables from imperative type variables, and generalise only the first ones.

Types:

$$
\tau::=\alpha_{a}\left|\alpha_{i}\right| T\left|\tau_{1} \rightarrow \tau_{2}\right| \tau_{1} \times \tau_{2} \mid \tau_{1} \text { ref }
$$

Imperative types: $\bar{\tau}::=\alpha_{i}|T| \bar{\tau}_{1} \rightarrow \bar{\tau}_{2}\left|\bar{\tau}_{1} \times \bar{\tau}_{2}\right| \bar{\tau}_{1}$ ref
Substitutions: $\left[\alpha_{a} \leftarrow \tau, \alpha_{i} \leftarrow \bar{\tau}\right]$.
Operators:

$$
\begin{aligned}
! & : \forall \alpha_{a} \cdot \alpha_{a} \text { ref } \rightarrow \alpha_{a} \\
:= & : \forall \alpha_{a} \cdot \alpha_{a} \text { ref } \times \alpha_{a} \rightarrow \text { unit } \\
\text { ref } & : \forall \alpha_{i} \cdot \alpha_{i} \rightarrow \alpha_{i} \text { ref }
\end{aligned}
$$

SML'90, ctd.

$$
\begin{gathered}
\Gamma \vdash a_{1}: \tau_{1} \quad \Gamma ; x: G e n A p p l\left(\tau_{1}, \Gamma\right) \vdash a_{2}: \tau_{2} \\
\Gamma \vdash \operatorname{let} x=a_{1} \text { in } a_{2}: \tau_{2} \\
\operatorname{GenAppl}(\tau, \Gamma)=\forall \alpha_{a, 1} \ldots \alpha_{a, n} . \tau
\end{gathered}
$$

where $\left\{\alpha_{a, 1}, \ldots, \alpha_{a, n}\right\}=\mathcal{L}_{a}(\tau) \backslash \mathcal{L}_{a}(\Gamma)$ are the applicative variables free in τ but not in Γ.

$$
\frac{\Gamma \vdash a_{1}: \tau_{1} \quad a_{1} \text { non expansive } \quad \Gamma ; x: \operatorname{Gen}\left(\tau_{1}, \Gamma\right) \vdash a_{2}: \tau_{2}}{\Gamma \vdash \operatorname{let} x=a_{1} \text { in } a_{2}: \tau_{2}}
$$

Examples

```
let id = fun x }->\textrm{x}\mathrm{ in id : }\forall\mp@subsup{\alpha}{a}{}.\mp@subsup{\alpha}{a}{}->\mp@subsup{\alpha}{a}{
let f = id id in
(f 1, f true)
f : }\forall\mp@subsup{\alpha}{a}{}.\mp@subsup{\alpha}{a}{}->\mp@subsup{\alpha}{a}{
ok
let r = ref(fun x }->\textrm{x}\mathrm{ ) in
r : ( }\mp@subsup{\alpha}{i}{}->\mp@subsup{\alpha}{i}{\prime})re
r := fun x }->\textrm{x}+1\mathrm{ ;
\alpha
(!r) true
error
let f = fun x }->\mathrm{ ref(x) in
f : }\forall\mp@subsup{\alpha}{i}{}.,\mp@subsup{\alpha}{i}{}->\mp@subsup{\alpha}{i}{
let r = f(fun x m x) in
r : ( }\mp@subsup{\alpha}{i}{}->\mp@subsup{\alpha}{i}{})re
r := fun x }->\textrm{x}+1;\quad\quad\mp@subsup{\alpha}{i}{}\mathrm{ is now int
(!r) true
error
```


Effects and regions

The type and effect discipline, Jean-Pierre Talpin and Pierre Jouvelot, Information and Computation 111(2), 1994.

Typed Memory Management in a Calculus of Capabilities, Karl Crary, David Walker, Greg Morrisett, Conference Record of POPL'99, San Antonio, Texas.

Exceptions

Idea: have a mechanism to signal an error. The signal propagates across the calling functions, unless it is catched and treated.

Example:
try $1+($ raise "Hello") with $\mathrm{x} \rightarrow \mathrm{x}$
reduces to
"Hello"

Exceptions, formally

Expressions: $\quad a::=\ldots \mid$ try a_{1} with $x \rightarrow a_{2}$
Operators: $o p::=\ldots \mid$ raise

$$
\begin{array}{rlll}
\operatorname{try} v \text { with } x \rightarrow a & \stackrel{\varepsilon}{\rightarrow} v \\
\text { try raise } v \text { with } x \rightarrow a & \stackrel{\varepsilon}{\rightarrow} a[x \leftarrow v] & \\
\Delta[\text { raise } v] & \rightarrow & \text { raise } v & \text { if } \Delta \text { is not [] }
\end{array}
$$

Evaluation contexts:

$$
E::=\ldots \mid \operatorname{try} E \text { with } x \rightarrow a
$$

Exception contexts:

$$
\Delta::=[]|\Delta a| v \Delta \mid \text { let } x=\Delta \text { in } a|(\Delta, a)|(v, \Delta) \mid \text { fst } \Delta \mid \text { snd } \Delta
$$

Answers:

$$
r::=v \mid \text { raise } v
$$

The type of exceptions:

$$
\tau::=\ldots \mid \text { exn }
$$

Type rules:

$$
\text { raise : } \forall \alpha . \text { exn } \rightarrow \alpha
$$

$$
\frac{\Gamma \vdash a_{1}: \tau \quad \Gamma ; x: \operatorname{exn} \vdash a_{2}: \tau}{\Gamma \vdash \operatorname{try} a_{1} \text { with } x \rightarrow a_{2}: \tau}
$$

