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Vote: topics for my this lecture

1. Operational and axiomatic formalisation of x86-TSO    (3) 

2. The lwarx and stwcx Power instructions                      (2) 

3. Fence optimisations for x86-TSO                                 (6) 

4. The Java memory model                                              (3) 

5. The C++11 memory model                                           (10) 

6. Static and dynamic techniques for data-race detection (5) 

7. The Linux memory model (?!)                                        (13) 

8. Compiler correctness statements (compile non-determinism?) (5)
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1. The Linux memory model  (ahem, kinda)
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The Linux memory model

Facts:

- abstraction layer over hardware and compilers

- relied upon by kernel developers to write "portable kernel code"

- documented by a text file:

http://www.kernel.org/doc/Documentation/memory-barriers.txt

4Friday, 13 January 2012

http://www.kernel.org/doc/Documentation/memory-barriers.txt
http://www.kernel.org/doc/Documentation/memory-barriers.txt


The Linux memory model

Facts:

- abstraction layer over hardware and compilers

- relied upon by kernel developers to write "portable kernel code"

- documented by a text file:

http://www.kernel.org/doc/Documentation/memory-barriers.txt

More facts:

I attempted to understand the doc, and exchanged a few email 
with Paul Mc Kenney.  However I don't understand much…  

In the next hour, let's go over the documentation together and see 
if we can make sense of it...
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The Linux memory model

Expected to account for all supported combinations of
compiler and hardware memory model...

Hardware

hardware memory-model

Compiler

compiler memory-model (gcc)

Linux kernel

Linux memory model
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alpha: Weak ordering.  No dependency ordering.  "Time does not go backwards" gives guarantees similar to Power/ARM A-cumulativity.  
Possibly B-cumulativity as well.  I am not aware of formalization of this architecture's memory ordering other than Gharachorloo's PhD.
arm: You know at least as much as I do about this one.
avr32: Uniprocessor-only, kernel build failure for SMP.
blackfin: Uniprocessor-only to the best of my knowledge.  There are rumored to be some experimental SMP systems that lack cache 
coherence, and are thus outside of the Linux kernel's remit.  See for example:  https://docs.blackfin.uclinux.org/doku.php?id=linux-
kernel:smp-like   The system.h file flushes cache when a memory barrier is encountered, which is consistent with an attempt to run the Linux 
kernel on a non-cache-coherent system…
cris: Uniprocessor-only to the best of my knowledge.  Though there appears to be recent addition of some SMP support. Its system.h file is 
consistent with full sequential  consistency.  Or extreme optimism on the part of the cris developers.
frv: Uniprocessor-only to the best of my knowledge.
h8300: Uniprocessor-only to the best of my knowledge. There is code in system.h that appears to be intended for SMP, but it looks to me like 
a (harmless) copy-paste error.  Either that or SMP h8300 systems are sequentially consistent.
ia64: Total order of all release operations, which include the "mf" (memory fence) instruction.  Memory fences cannot restore sequential 
consistency.
m32r: Uniprocessor-only to the best of my knowledge. However, there does appear to be some recent multiprocessor support.  This is quite 
strange -- atomic instructions flush cache, but memory barriers are no-ops.  Looks quite experimental.
m68k: Uniprocessor-only to the best of my knowledge.
microblaze: Uniprocessor-only to the best of my knowledge. At least one SMP attempt: http://microblazesmp.blogspot.com/ Its system.h file 
looks uniprocessor-only.
mips: Multiprocessor.  Old SGI MIPS systems were sequentially consistent.  Newer systems used for network infrastructure are rumored to 
have weak memory models similar to Power and ARM.  And its system.h file is consistent with a weak memory model.
mn10300: Recent SMP support which I know little about. The system.h file looks uniprocessor only, and contains comments on Intel, so 
copy-pasted from x86.
parisc: TSO, similar to x86.
powerpc: You know at least as much about this as I do.
s390: TSO, but with self-snooping of store buffer prohibited.
score: Uniprocessor-only to the best of my knowledge.
sh: Recent SMP support which I know little about. Its system.h file is consistent with weak memory ordering.
sparc: TSO, similar to x86.  There is documentation about weaker memory models (PSO and RMO), but in practice the hardware is TSO.
tile: Recent SMP CPU which I know little about.  Seems to be weakly ordered based on its system.h file.
um: Looks like an x86 knockoff judging by the system.h file.
unicore32: Uniprocessor-only to the best of my knowledge.
x86: You know this one at least as well as do I.
xtensa: Uniprocessor-only -- kernel build failure otherwise.
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The Linux memory model

My intuition:

Annoying facts:
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The Linux memory model

My intuition:

Annoying facts:

kinda of lowest common denominator between all hardware 
memory models of architectures Linux can be compiled to, taking 
into account also some common gcc optimisations, with some 
weirdnesses.  

semantics of "read barriers" really weak, unclear how to formalise it

compilation of barriers on Itanium looks broken -- hardware might 
exhibit behaviours prohibited by the MM.
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...let's read the doc...
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The Linux memory model: macros

on x86:

#define mb() ! asm volatile("mfence":::"memory")
#define rmb()! asm volatile("lfence":::"memory")
#define wmb()! asm volatile("sfence" ::: "memory")

on Power:

#define mb()   __asm__ __volatile__ ("sync" : : : "memory")
#define rmb()  __asm__ __volatile__ ("sync" : : : "memory")
#define wmb()  __asm__ __volatile__ ("sync" : : : "memory")
#define read_barrier_depends()  do { } while(0)

as far as we know, lfence and sfence are noop in x86TSO
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Internship proposal on the fly...

Challenging!

Can have a huge impact!

Collaboration with Paul Mc Kenney possible!

Sort out what the REAL Linux memory model is

Pros:

Yes.  Of course, if people come up with lots of 
situations where the more-complex 
programming model would help significantly, 
then it might be worth revisiting this.
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2. The C++11 memory model

a good example of an axiomatic memory model
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The C++11 memory model

1300 page prose specification defined by the ISO.

The design is a detailed compromise:
hardware/compiler implementability
useful abstractions 
broad spectrum of programmers
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The syntactic divide

// for regular programmers:
atomic_int x = 0;
x.store(1);
y = x.load();

// for experts:
x.store(2, memory_order);
y = x.load(memory_order);
atomic_thread_fence(memory_order);

where memory_order  is one of the following:

  mo_seq_cst  mo_release  mo_acquire
  mo_acq_rel  mo_consume  mo_relaxed
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How may a program execute?

Two layer semantics:

1) an operational semantics processes programs, identifying memory 
actions, and constructs candidate executions (Eopsem);

                                   P            E1, … , En

2) an axiomatic memory model judges Eopsem paired with a memory 
ordering Xwitness 

                                  Ei          Xi1,...,Xim 

3) searches the consistent executions for races and uncostrained reads

                               is there an Xij with a race? 
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Relations 

An Eopsem part containing:
  sb      sequenced before, program order
  asw    additional synchronizes with, inter-thread ordering

An Xwitness part containing:
  rf        relates a write to any reads that take its value
  sc      a total order over mo_seq_cst and mutex actions
  mo     modification order, per location total order of writes

From these, compute synchronise-with (sw) and happens-before (hb).

We ignore consume atomics, which enables us to live in a simplified model.

Full details in Batty et al., POPL 11.
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Formally

cpp_memory_model_opsem (p : program) =
  let pre_executions = 
    {(Eopsem,Xwitness).  opsem p Eopsem ∧ 
      consistent execution (Eopsem, Xwitness)}
  in
  if ∃X ∈ pre executions.
     (indeterminate reads X = {}) ∨
     (unsequenced races X = {}) ∨
     (data races X = {})
  then NONE
  else SOME pre_executions
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A single-threaded example

int main() { 
  int x = 2; 
  int y = 0; 
  y = (x==x); 
  return 0; 
}

1. sequenced before (sb) - given by opsem
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A single-threaded example

int main() { 
  int x = 2; 
  int y = 0; 
  y = (x==x); 
  return 0; 
}

1. sequenced before (sb) - given by opsem
2. read-from (rf) - part of the witness
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int main() { 
  int x = 2; 
  int y = 0; 
  y = (x==(x=3)); 
  return 0; 
}

A single-threaded ex. with undefined behaviour

An unsequenced race.
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A simple concurrent program

We will omit asw arrows whenever 
we are not interested in the initialisation.
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Locks and unlocks

1. the operational semantics defines
    the sb arrows
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Locks and unlocks

1. the operational semantics defines
    the sb arrows

2. guess an sc order on Unlock/Lock
    actions (part of the witness)
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Locks and unlocks

1. the operational semantics defines
    the sb arrows

2. guess an sc order on Unlock/Lock
    actions (part of the witness)

3. the sc order is included in the 
     syncronised-with relation
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Locks and unlocks

1. the operational semantics defines
    the sb arrows

2. guess an sc order on Unlock/Lock
    actions (part of the witness)

3. the sc order is included in the 
     syncronised-with relation

4. which in turn defines the
     happens-before relation...
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Happens before

The happens before relation is key to the model:

1. non-atomic loads read the most recent write in happens before. 
           (This is unique in DRF programs)

2. the story is more complex for atomics, as we shall see. 

3. data races are defined as an absence of happens before
          between conflicting actions.
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A data race
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A data race

Here we have two conflicting accesses
not related by happens-before.
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Data race definition

Programs with a data race have undefined behaviour (DRF model).
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Simple concurrency: Dekker's example and SC

Why is this behaviour forbidden?
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Simple concurrency, Dekker's example and SC

The sc relation must define a total order over unlocks/locks and 
seq_cst accesses…  sc is included in hb, an rf must respect hb.
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Expert concurrency: the release-acquire idiom

// sender 
x = ... 
y.store(1, release);

// receiver 
while (0 == y.load(acquire)); 
r = x;

Here we have an rf arrow beetwen a pair of
release/acquire accesses.
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Expert concurrency: the release-acquire idiom

// sender 
x = ... 
y.store(1, release);

// receiver 
while (0 == y.load(acquire)); 
r = x;

Here we have an rf arrow beetwen a pair of
release/acquire accesses.

The rf arrow beetwen release/acquire accesses
induces an sw arrow between those accesses.
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Expert concurrency: the release-acquire idiom

// sender 
x = ... 
y.store(1, release);

// receiver 
while (0 == y.load(acquire)); 
r = x;

Here we have an rf arrow beetwen a pair of
release/acquire accesses.

The rf arrow beetwen release/acquire accesses
induces an sw arrow between those accesses.

And in turn defines an hb constraint.
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Relaxed writes

No data-races, no synchronisation cost, but weakly ordered.
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Relaxed writes, ctd.

Again, no data-races, no synchronisation cost, but weakly ordered (IRIW).

35Friday, 13 January 2012



Expert concurrency: fences avoid excess sync.
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Expert concurrency: fences avoid excess sync.

Here we have an rf arrow beetwen a 
release write and a relaxed write.
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Expert concurrency: fences avoid excess sync.

Here we have an rf arrow beetwen a 
release write and a relaxed write.

The acquire fence follows the sb/rf relations
looking for the corresponding release write, adding
a sw arrow.
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Expert concurrency: fences avoid excess sync.

Here we have an rf arrow beetwen a 
release write and a relaxed write.

The acquire fence follows the sb/rf relations
looking for the corresponding release write, adding
a sw arrow.

Happens-before follows as usual...
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Modification order

atomic_int x = 0; 
x.store(1, relaxed);    x.load(relaxed);
x.store(2, relaxed);    x.load(relaxed);

Modification order is a total order over atomic writes of any memory order.
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Coherence and atomic reads

All forbidden:

Idea: atomics cannot read from later writes in happens-before.
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Coherence and atomic reads

All forbidden:

Idea: atomics cannot read from later writes in happens-before.

A pair Eopsem , Xwitness (a pre-execution)

 defines a consistent execution when it satisfies 

the constraints we have sketched 

on hb/rf/mo and is race-free.
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The full model

a
r
−→ b = (a, b) ∈ r

a r b = (a, b) ∈ r

a $
r
−→ b = (a, b) /∈ r

r
−→ = r

a
r
−→ b

s
−→ c = a

r
−→ b ∧ b

s
−→ c

relation over s rel = domain rel ⊆ s ∧ range rel ⊆ s

rel
−→|s = rel ∩ (s × s)

rel |s = rel ∩ (s × s)

rel
−→|s = rel ∩ (s × s)

rel |s = rel ∩ (s × s)

strict preorder ord = irreflexive ord ∧ trans ord

total over s ord =
relation over s ord ∧

(∀x ∈ s. ∀y ∈ s. x
ord
−−→ y ∨ y

ord
−−→ x ∨ (x = y))

strict total order over s ord =
strict preorder ord ∧ total over s ord

x |
ord
−−→pred y =

pred x ∧ x
ord
−−→ y ∧ ¬(∃z . pred z ∧ x

ord
−−→ z

ord
−−→ y)

x |
ord
−−→ y =

x
ord
−−→ y ∧ ¬(∃z . x

ord
−−→ z

ord
−−→ y)

well founded r = wf r

type abbrev action id : string

type abbrev thread id : string

type abbrev location : string

type abbrev val : string

memory order enum =
Mo seq cst

| Mo relaxed

| Mo release

| Mo acquire

| Mo consume

| Mo acq rel

action =
Lock of action id thread id location

| Unlock of action id thread id location
| Atomic load of action id thread id memory order enum location val
| Atomic store of action id thread id memory order enum location val
| Atomic rmw of action id thread id memory order enum location val val
| Load of action id thread id location val
| Store of action id thread id location val
| Fence of action id thread id memory order enum

(action id of (Lock aid ) = aid) ∧
(action id of (Unlock aid ) = aid) ∧
(action id of (Atomic load aid ) = aid) ∧
(action id of (Atomic store aid ) = aid) ∧
(action id of (Atomic rmw aid ) = aid) ∧
(action id of (Load aid ) = aid) ∧
(action id of (Store aid ) = aid) ∧
(action id of (Fence aid ) = aid)

(thread id of (Lock tid ) = tid) ∧
(thread id of (Unlock tid ) = tid) ∧
(thread id of (Atomic load tid ) = tid) ∧
(thread id of (Atomic store tid ) = tid) ∧
(thread id of (Atomic rmw tid ) = tid) ∧
(thread id of (Load tid ) = tid) ∧
(thread id of (Store tid ) = tid) ∧
(thread id of (Fence tid ) = tid)

(memory order (Atomic load mem ord ) =
Some mem ord) ∧

(memory order (Atomic store mem ord ) =
Some mem ord) ∧

(memory order (Atomic rmw mem ord ) =
Some mem ord) ∧

(memory order (Fence mem ord) =
Some mem ord) ∧

(memory order =
None)

(location (Lock l) = Some l) ∧
(location (Unlock l) = Some l) ∧
(location (Atomic load l ) = Some l) ∧
(location (Atomic store l ) = Some l) ∧
(location (Atomic rmw l ) = Some l) ∧
(location (Load l ) = Some l) ∧
(location (Store l ) = Some l) ∧
(location (Fence ) = None)

(value read (Atomic load v) = Some v) ∧
(value read (Atomic rmw v ) = Some v) ∧
(value read (Load v) = Some v) ∧
(value read = None)

(value written (Atomic store v) = Some v) ∧
(value written (Atomic rmw v) = Some v) ∧
(value written (Store v) = Some v) ∧
(value written = None)

is lock a =
case a of Lock → T ‖ → F

is unlock a =
case a of Unlock → T ‖ → F

is atomic load a =
case a of Atomic load → T ‖ → F

is atomic store a =
case a of Atomic store → T ‖ → F

is atomic rmw a =
case a of Atomic rmw → T ‖ → F

is load a = case a of Load → T ‖ → F

is store a = case a of Store → T ‖ → F

is fence a = case a of Fence → T ‖ → F

is lock or unlock a = is lock a ∨ is unlock a

is atomic action a =
is atomic load a ∨ is atomic store a ∨ is atomic rmw a

is load or store a = is load a ∨ is store a

is read a =
is atomic load a ∨ is atomic rmw a ∨ is load a

is write a =
is atomic store a ∨ is atomic rmw a ∨ is store a

is acquire a =
(case memory order a of

Some mem ord →
(mem ord ∈

{Mo acquire,Mo acq rel,Mo seq cst} ∧
(is read a ∨ is fence a)) ∨
(* 29.8:5 states that consume fences are acquire fences. *)
((mem ord = Mo consume) ∧ is fence a)

‖ None → is lock a)

is consume a =
is read a ∧ (memory order a = Some Mo consume)

is release a =
(case memory order a of

Some mem ord →
mem ord ∈ {Mo release,Mo acq rel,Mo seq cst} ∧

(is write a ∨ is fence a)
‖ None → is unlock a)

is seq cst a = (memory order a = Some Mo seq cst)

location kind =
Mutex

| Non atomic

| Atomic

actions respect location kinds = actions respect location kinds =
∀a.

case location a of Some l →
(case location-kind l of

Mutex → is lock or unlock a
‖ Non atomic → is load or store a
‖ Atomic → is load or store a ∨ is atomic action a)

‖ None → T

is at location kind = is at location kind =
case location a of

Some l → (location-kind l = lk0)
‖ None → F

is at mutex location a =
is at location kind a Mutex

is at non atomic location a =
is at location kind a Non atomic

is at atomic location a =
is at location kind a Atomic

same thread a b = (thread id of a = thread id of b)

threadwise relation over s rel =
relation over s rel ∧ (∀(a, b) ∈ rel . same thread a b)

same location a b = (location a = location b)

locations of actions = {l . ∃a. (location a = Some l)}

well formed action a =
case a of

Atomic load mem ord → mem ord ∈
{Mo relaxed,Mo acquire,Mo seq cst,Mo consume}

‖ Atomic store mem ord → mem ord ∈
{Mo relaxed,Mo release,Mo seq cst}

‖ Atomic rmw mem ord → mem ord ∈
{Mo relaxed,Mo release,Mo acquire,Mo acq rel,Mo seq cst,Mo consume}

‖ → T

well formed threads = well formed threads =
inj on action id of (actions) ∧
(∀a. well formed action a) ∧
threadwise relation over actions sequenced-before ∧
threadwise relation over actions data-dependency ∧
threadwise relation over actions control-dependency ∧
strict preorder sequenced-before ∧
strict preorder data-dependency ∧
strict preorder control-dependency ∧
relation over actions additional-synchronized-with ∧
(∀a. thread id of a ∈ threads) ∧
actions respect location kinds∧
data-dependency ⊆ sequenced-before

well formed reads from mapping = well formed reads from mapping =

relation over actions (
rf
−→) ∧

(∀a. ∀a′. ∀b. a
rf
−→ b ∧ a′

rf
−→ b =⇒ (a = a′)) ∧

(∀(a, b) ∈
rf
−→.

same location a b ∧
(value read b = value written a) ∧
(a $= b) ∧
(is at mutex location a =⇒

is unlock a ∧ is lock b) ∧
(is at non atomic location a =⇒

is store a ∧ is load b) ∧
(is at atomic location a =⇒
(is atomic store a ∨ is atomic rmw a ∨ is store a)
∧ (is atomic load b ∨ is atomic rmw b ∨ is load b)))

all lock or unlock actions at lopt as =
{a ∈ as. is lock or unlock a ∧ (location a = lopt)}

consistent locks = consistent locks =
∀l ∈ locations of actions. (location-kind l = Mutex) =⇒ (

let lock unlock actions =
all lock or unlock actions at (Some l)actions in

let lock order =
sc
−→|lock unlock actions in

(* 30.4.1:5 - The implementation shall serialize those (lock and unlock) operations. *)
strict total order over lock unlock actions lock order ∧

(* 30.4.1:1 A thread owns a mutex from the time it successfully calls one of the lock functions until
it calls unlock.*)
(* 30.4.1:20 Requires: The calling thread shall own the mutex. *)
(* 30.4.1:21 Effects: Releases the calling threads ownership of the mutex.*)
(∀au ∈ lock unlock actions. is unlock au =⇒

(∃al ∈ lock unlock actions.

al |
lock order
−−−−−−→ au ∧ same thread al au ∧ is lock al)) ∧

(* 30.4.1:7 Effects: Blocks the calling thread until ownership of the mutex can be obtained for the
calling thread.*)
(* 30.4.1:8 Postcondition: The calling thread owns the mutex. *)
(∀al ∈ lock unlock actions. is lock al =⇒

(∀au ∈ lock unlock actions.

au |
lock order
−−−−−−→ al =⇒ is unlock au)))

rs element rs head a =
same thread a rs head ∨ is atomic rmw a

release sequence = arel
release-sequence
−−−−−−−−−→ b =

is at atomic location b ∧
is release arel ∧ (
(b = arel) ∨

(rs element arel b ∧ arel
modification-order
−−−−−−−−−−→ b ∧

(∀c . arel
modification-order
−−−−−−−−−−→ c

modification-order
−−−−−−−−−−→ b =⇒

rs element arel c)))

release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order =

release sequence actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order a b}

hypothetical release sequence = a
hypothetical-release-sequence
−−−−−−−−−−−−−−−−→ b =

is at atomic location b ∧ (
(b = a) ∨

(rs element a b ∧ a
modification-order
−−−−−−−−−−→ b ∧

(∀c . a
modification-order
−−−−−−−−−−→ c

modification-order
−−−−−−−−−−→ b =⇒

rs element a c)))

hypothetical release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order =

hypothetical release sequence actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order a b}

synchronizes with = a
synchronizes-with
−−−−−−−−−−→ b =

(* – additional synchronization, from thread create etc. – *)

a
additional-synchronized-with
−−−−−−−−−−−−−−−−→ b ∨

(same location a b ∧ a ∈ actions ∧ b ∈ actions ∧ (
(* – mutex synchronization – *)

(is unlock a ∧ is lock b ∧ a
sc
−→ b) ∨

(* – release/acquire synchronization – *)
(is release a ∧ is acquire b ∧ ¬ same thread a b ∧

(∃c . a
release-sequence
−−−−−−−−−→ c

rf
−→ b)) ∨

(* – fence synchronization – *)
(is fence a ∧ is release a ∧ is fence b ∧ is acquire b ∧
(∃x . ∃y . same location x y ∧

is atomic action x ∧ is atomic action y ∧ is write x ∧

a
sequenced-before
−−−−−−−−−→ x ∧ y

sequenced-before
−−−−−−−−−→ b ∧

(∃z . x
hypothetical-release-sequence
−−−−−−−−−−−−−−−−→ z

rf
−→ y))) ∨

(is fence a ∧ is release a ∧
is atomic action b ∧ is acquire b ∧
(∃x . same location x b ∧

is atomic action x ∧ is write x ∧

a
sequenced-before
−−−−−−−−−→ x ∧

(∃z . x
hypothetical-release-sequence
−−−−−−−−−−−−−−−−→ z

rf
−→ b))) ∨

(is atomic action a ∧ is release a ∧
is fence b ∧ is acquire b ∧
(∃x . same location a x ∧ is atomic action x ∧

x
sequenced-before
−−−−−−−−−→ b ∧

(∃z . a
release-sequence
−−−−−−−−−→ z

rf
−→ x)))))

synchronizes with set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc release-sequence hypothetical-release-sequence =

synchronizes with actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc release-sequence hypothetical-release-sequence a b}

carries a dependency to = a
carries-a-dependency-to
−−−−−−−−−−−−−→ b =

a ((
rf
−→∩

sequenced-before
−−−−−−−−−→) ∪

data-dependency
−−−−−−−−−→)+ b

carries a dependency to set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf =

carries a dependency to actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf a b}

dependency ordered before = a
dependency-ordered-before
−−−−−−−−−−−−−−−→ d =

a ∈ actions ∧ d ∈ actions ∧
(∃b. is release a ∧ is consume b ∧

(∃e. a
release-sequence
−−−−−−−−−→ e

rf
−→ b) ∧

(b
carries-a-dependency-to
−−−−−−−−−−−−−→ d ∨ (b = d)))

dependency ordered before set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order release-sequence carries-a-dependency-to =

dependency ordered before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order release-sequence carries-a-dependency-to a b}

simple happens before =
simple happens before
−−−−−−−−−−−−−→ =

(
sequenced-before
−−−−−−−−−→∪

synchronizes-with
−−−−−−−−−−→)+

consistent simple happens before shb =

irreflexive (
shb
−−→)

inter thread happens before =
inter-thread-happens-before
−−−−−−−−−−−−−−−→ =

let r =
synchronizes-with
−−−−−−−−−−→∪

dependency-ordered-before
−−−−−−−−−−−−−−−→∪

(
synchronizes-with
−−−−−−−−−−→ ◦

sequenced-before
−−−−−−−−−→) in

(
r
−→∪ (

sequenced-before
−−−−−−−−−→ ◦

r
−→))+

consistent inter thread happens before = consistent inter thread happens before =

irreflexive (
inter-thread-happens-before
−−−−−−−−−−−−−−−→)

happens before =
happens-before
−−−−−−−−→ =

sequenced-before
−−−−−−−−−→∪

inter-thread-happens-before
−−−−−−−−−−−−−−−→

all sc actions = all sc actions =
{a. (is seq cst a ∨ is lock a ∨ is unlock a)}

consistent sc order = consistent sc order =

let sc happens before =
happens-before
−−−−−−−−→|all sc actions in

let sc mod order =
modification-order
−−−−−−−−−−→|all sc actions in

strict total order over all sc actions (
sc
−→) ∧

sc happens before
−−−−−−−−−−−→ ⊆

sc
−→∧

sc mod order
−−−−−−−−→ ⊆

sc
−→

consistent modification order = consistent modification order =

(∀a. ∀b. a
modification-order
−−−−−−−−−−→ b =⇒ same location a b) ∧

(∀l ∈ locations of actions. case location-kind l of
Atomic → (

let actions at l = {a. (location a = Some l)} in
let writes at l = {a at l . (is store a ∨

is atomic store a ∨ is atomic rmw a)} in
strict total order over writes at l

(
modification-order
−−−−−−−−−−→|actions at l) ∧
(* happens-before at the writes of l is a subset of mo for l *)
happens-before
−−−−−−−−→|writes at l ⊆

modification-order
−−−−−−−−−−→∧

(* Mo seq cst fences impose modification order *)

(
sequenced-before
−−−−−−−−−→ ◦ (

sc
−→|is fence) ◦

sequenced-before
−−−−−−−−−→|writes at l)

⊆
modification-order
−−−−−−−−−−→)

‖ → (
let actions at l = {a. (location a = Some l)} in

(
modification-order
−−−−−−−−−−→|actions at l) = {}))

visible side effect = a
visible-side-effect
−−−−−−−−−→ b =

a
happens-before
−−−−−−−−→ b ∧

is write a ∧ is read b ∧ same location a b ∧
¬(∃c . (c $= a) ∧ (c $= b) ∧

is write c ∧ same location c b ∧

a
happens-before
−−−−−−−−→ c

happens-before
−−−−−−−−→ b)

visible side effect set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency happens-before =
{ab ∈ happens-before. let (a, b) = ab in
visible side effect actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency happens-before a b}

visible sequence of side effects tail = visible sequence of side effects tail vsse head b =

{c . vsse head
modification-order
−−−−−−−−−−→ c ∧

¬(b
happens-before
−−−−−−−−→ c) ∧

(∀a. vsse head
modification-order
−−−−−−−−−−→ a

modification-order
−−−−−−−−−−→ c

=⇒ ¬(b
happens-before
−−−−−−−−→ a))}

myimage f s = {y . ∃x ∈ s. (y = f x)}

visible sequences of side effects = visible sequences of side effects =
λ(vsse head , b).

(b, if is at atomic location b then
{vsse head} ∪
visible sequence of side effects tail vsse head b

else
{})

visible sequences of side effects set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order happens-before visible-side-effect =
myimage (visible sequences of side effects actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order happens-before visible-side-effect)visible-side-effect

consistent reads from mapping = consistent reads from mapping =
(∀b. (is read b ∧ is at non atomic location b) =⇒

(if (∃avse . avse
visible-side-effect
−−−−−−−−−→ b)

then (∃avse . avse
visible-side-effect
−−−−−−−−−→ b ∧ avse

rf
−→ b)

else ¬(∃a. a
rf
−→ b))) ∧

(∀b. (is read b ∧ is at atomic location b) =⇒
(if (∃(b′, vsse) ∈ visible-sequences-of-side-effects. (b′ = b))
then (∃(b′, vsse) ∈ visible-sequences-of-side-effects.

(b′ = b) ∧ (∃c ∈ vsse. c
rf
−→ b))

else ¬(∃a. a
rf
−→ b))) ∧

(∀(x , a) ∈
rf
−→.

∀(y , b) ∈
rf
−→.

a
happens-before
−−−−−−−−→ b ∧
same location a b ∧ is at atomic location b

=⇒ (x = y) ∨ x
modification-order
−−−−−−−−−−→ y) ∧

(* new CoWR *)

(∀(a, b) ∈
happens-before
−−−−−−−−→.

∀c .

c
rf
−→ b ∧
is write a ∧ same location a b ∧ is at atomic location b

=⇒ (c = a) ∨ a
modification-order
−−−−−−−−−−→ c) ∧

(* new CoRW *)

(∀(a, b) ∈
happens-before
−−−−−−−−→.

∀c .

c
rf
−→ a ∧
is write b ∧ same location a b ∧ is at atomic location a

=⇒ c
modification-order
−−−−−−−−−−→ b) ∧

(∀(a, b) ∈
rf
−→. is atomic rmw b

=⇒ a |
modification-order
−−−−−−−−−−→ b) ∧

(∀(a, b) ∈
rf
−→. is seq cst b

=⇒ (¬ is seq cst a ∧ (∀x . x |
sc
−→λc. is write c∧same location b c b =⇒ x

modification-order
−−−−−−−−−−→ a)) ∨

a |
sc
−→λc. is write c∧same location b c b) ∧

(* -Fence restrictions- *)

(* 29.3:3 *)

(∀a. ∀(x , b) ∈
sequenced-before
−−−−−−−−−→. ∀y .

(is fence x ∧ is seq cst x ∧ is atomic action b ∧
is write a ∧ same location a b ∧

a |
sc
−→ x ∧ y

rf
−→ b)

=⇒ (y = a) ∨ a
modification-order
−−−−−−−−−−→ y) ∧

(* 29.3:4 *)

(∀(a, x) ∈
sequenced-before
−−−−−−−−−→. ∀(y , b) ∈

rf
−→.

(is atomic action a ∧ is fence x ∧ is seq cst x ∧
is write a ∧ same location a b ∧

x
sc
−→ b ∧ is atomic action b)

=⇒ (y = a) ∨ a
modification-order
−−−−−−−−−−→ y) ∧

(* 29.3:5 *)

(∀(a, x) ∈
sequenced-before
−−−−−−−−−→. ∀(y , b) ∈

sequenced-before
−−−−−−−−−→. ∀z .

(is atomic action a ∧ is fence x ∧ is seq cst x ∧
is write a ∧ is fence y ∧ is seq cst y ∧
is atomic action b ∧ same location a b ∧

x
sc
−→ y ∧ z

rf
−→ b)

=⇒ (z = a) ∨ a
modification-order
−−−−−−−−−−→ z)

all data dependency =
all data dependency
−−−−−−−−−−−−→ =

(
rf
−→∪

carries-a-dependency-to
−−−−−−−−−−−−−→)+

consistent control dependency = consistent control dependency =

irreflexive ((
control-dependency
−−−−−−−−−−−→∪

all data dependency
−−−−−−−−−−−−→)+)

consistent execution actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc =
well formed threads actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency ∧
consistent locks actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency sc ∧ (
let release-sequence = release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order in
let hypothetical-release-sequence = hypothetical release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order in
let synchronizes-with = synchronizes with set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc release-sequence hypothetical-release-sequence in
let carries-a-dependency-to = carries a dependency to set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf in
let dependency-ordered-before = dependency ordered before set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order release-sequence carries-a-dependency-to in
let inter-thread-happens-before = inter thread happens before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency synchronizes-with dependency-ordered-before in
let happens-before = happens before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency inter-thread-happens-before in
let visible-side-effect = visible side effect set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency happens-before in
let visible-sequences-of-side-effects = visible sequences of side effects set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order happens-before visible-side-effect in
consistent inter thread happens before inter-thread-happens-before ∧
consistent sc order actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order sc happens-before ∧
consistent modification order actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency sc modification-order happens-before ∧
well formed reads from mapping actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf ∧
consistent reads from mapping actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf sc modification-order happens-before visible-side-effect visible-sequences-of-side-effects)

indeterminate reads actions threads = indeterminate reads =

{b. is read b ∧ ¬(∃a. a
rf
−→ b)}

unsequenced races = unsequenced races = {(a, b).
(a $= b) ∧ same location a b ∧ (is write a ∨ is write b) ∧
same thread a b ∧

¬(a
sequenced-before
−−−−−−−−−→ b ∨ b

sequenced-before
−−−−−−−−−→ a)}

data races = data races = {(a, b).
(a $= b) ∧ same location a b ∧ (is write a ∨ is write b) ∧
¬ same thread a b ∧
¬(is atomic action a ∧ is atomic action b) ∧

¬(a
happens-before
−−−−−−−−→ b ∨ b

happens-before
−−−−−−−−→ a)}

data races′ actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc =
let release-sequence = release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order in
let hypothetical-release-sequence = release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order in
let synchronizes-with = synchronizes with set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc release-sequence hypothetical-release-sequence in
let carries-a-dependency-to = carries a dependency to set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf in
let dependency-ordered-before = dependency ordered before set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order release-sequence carries-a-dependency-to in
let inter-thread-happens-before = inter thread happens before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency synchronizes-with dependency-ordered-before in
let happens-before = happens before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency inter-thread-happens-before in
data races actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency happens-before

cpp memory model opsem (p ∈ ′program) =
let executions = {(actions, threads, location-kind, sequenced-before, additional-synchronized-with, data-dependency, control-dependency, rf,modification-order, sc).

opsem p actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency ∧ consistent execution actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc} in
if ∃(actions, threads, location-kind, sequenced-before, additional-synchronized-with, data-dependency, control-dependency, rf,modification-order, sc) ∈ executions .

(indeterminate reads actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf $= {}) ∨
(unsequenced races actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency $= {}) ∨
(data races′ actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc $= {})

then {}
else executions
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Is C++11 hopelessly complicated?

Programmers cannot be given this model.

However, with a formal definition, we can do proofs!

- Can we compile to x86?

- Can we compile to Power?
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Is C++11 hopelessly complicated?

Simplifications:

Full model: visible sequences of side effects are unneded (HOL4)

Derivative models:

- without consume, happens-before is transitive

- DRF programs using only seq_cst atomics are SC (false)

atomic_init is a non-atomic write, and in C++11 they race.
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The current state of the standard

Fixed:

- in some cases, happens-before was cyclic

- coherence

- seq_cst atomics were more broken

Not fixed:

- self satisfying conditional

- seq_cst atomics are still not SC
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3. Sketch of an operational formalisation of x86-TSO

...starting with a formalisation of SC
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Separate language and memory semantics

memory
semantics defined via an LTS

program
semantics defined via an LTS

Wt[a]v : a write of value v to address a by thread t
Rt[a]v  : a read of v from a by t by thread t
+ other events for barriers and locked instructions

Labels for interaction:
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Separate language and memory semantics

memory
semantics defined via an LTS

program
semantics defined via an LTS

Wt[a]v : a write of value v to address a by thread t
Rt[a]v  : a read of v from a by t by thread t
+ other events for barriers and locked instructions

Labels for interaction:

Separate language and state semantics 

proved to be a very good choice 

in many (unrelated) projects I worked on!
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A tiny language
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What can a thread do in isolation?

Observe that we can read an 
arbitrary value from the memory.
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Lifting to processes

Actions are labelled by the 
thread that performed the 
action. 

Free interleaving.
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A sequentially consistent memory

Take M to be a function from addresses to integers.
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SC semantics: whole system transitions

Synchronising between the 
processes and the memory.
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SC semantics, example

All threads read and write the shared memory.  Threads execute 
asynchronously,the semantics allows any interleaving of the thread transitions.

Each interleaving has a linear order of reads and writes to memory.
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...now we just have to define a TSO memory...
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x86-TSO abstract machine

Wt[a]v Rt[a]v 

Text

Events visible by each thread (aka. interface 
between each thread and the memory system):

Wt[a]v : a write of value v to address a by thread t
Rt[a]v  : a read of v from a by t by thread t
+ other events for barriers and locked instructions
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x86-tso: a formalisation using an LTS

The machine state s can be represented by a tuple (M,B,L):

 M : address -> value option        
 B : tid -> (address * value) list
 L : tid option

where:

  M is the shared memory, mapping addresses to values

  B gives the store buffer for each thread

  L is the global machine lock indicating when a thread has exclusive 
access to memory (omitted in these slides)
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x86-tso abstract machine: selected transition rules

t is not blocked in machine state s = (M,B,L) if [… or] the lock is not held.

In buffer B(t) there are no pending writes for address x if there are no 
(x,v) elements in B(t). 
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x86-tso abstract machine: selected transition rules
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x86-tso abstract machine: selected transition rules
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4. Veryfing fence elimination optimisations

aka reasoning on the x86TSO operational memory model
and compiler correctness
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CompCertTSO

[POPL 2011]

ClightTSO

C#minor

Cstacked

Cminor

CminorSel

LTL

LTL

LTLin

Linear

Machabstr

Machconc

const prop.

CSE

RTL

RTL

RTL

simplify

reload/spill

linearize

act.records

x86

branch tunnelling

register
allocation

local vars

simplify

instruction  selection

CFG generation
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CompCertTSO + fence optimisations

ClightTSO

C#minor

Cstacked

Cminor

CminorSel

LTL

LTL

LTLin

Linear

Machabstr

Machconc

const prop.

CSE

FE1

PRE

FE2

RTL

RTL

RTL

RTL

RTL

RTL

simplify

reload/spill

linearize

act.records

x86

branch tunnelling

register
allocation

local vars

simplify

instruction  selection

CFG generation

[SAS 2011]
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Compilers are ideal for verification

Compilers are: 

— Basic computing infrastructure

— Generally reliable, but nevertheless contain many bugs
         e.g., Yang et al. [PLDI 2011] found 79 gcc & 202 llvm bugs

— “Specifiable”: compiler correctness = preservation of behaviours

— Interesting: naturally higher-order, involve clever algorithms

— Big, but modular

source program (e.g., C) target program (e.g., x86)
Compiler
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Language semantics

The semantics of all the CompCertTSO languages is defined by:

– a type of programs,

– a type of states,

– a set of initial states for each program,

– a transition relation,

The visible behaviour of a program is defined by the external function 
calls (call) and returns (return), errors (fail), and running out of 
memory (oom).

call, return, fail, oom, τ
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Traces

– Finite sequences of call & return events ending with:
     end:    successful termination,
     inftau:  infinite execution that stops performing visible events
     oom:   execution runs out of memory

– Infinite sequences of call & return events;

NB: Erroneous computations become undefined after the first error.
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Compiler correctness

          traces(source_program) ⊇ traces(target_program)

       print “a” || print “b”                      print “ab”

       print “ab”                                    print “a” || print “b”

       fail                                              print “ab”

       print “ab”                                    fail

source program (e.g., C) target program (e.g., x86)
Compiler
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Store buffering

EAX : 32 EBX : 47

MOV [x] ← 1

MOV EAX ← [y]

MOV [y] ← 1

MOV EBX ← [x]

x : 0   y : 0

x : 0   y : 0

...

Shared Memory

Thread

Write 
Buffer

Thread

Write 
Buffer
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...

Shared Memory

Thread

Write 
Buffer

Thread

Write 
Buffer

Store buffering

EAX : 32 EBX : 47

MOV [x] ← 1

MOV EAX ← [y]

MOV [y] ← 1

MOV EBX ← [x]

x:1

x : 0   y : 0
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...

Shared Memory

Thread

Write 
Buffer

Thread

Write 
Buffer

x:1

Store buffering

EAX : 32 EBX : 47

MOV [x] ← 1

MOV EAX ← [y]

MOV [y] ← 1

MOV EBX ← [x]

x : 0   y : 0

y:1
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...

Shared Memory

Thread

Write 
Buffer

Thread

Write 
Buffer

x:1

Store buffering

EAX : 0 EBX : 47

MOV [x] ← 1

MOV EAX ← [y]

MOV [y] ← 1

MOV EBX ← [x]

y:1

x : 0   y : 0
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...

Shared Memory

Thread

Write 
Buffer

Thread

Write 
Buffer

x:1

Store buffering

EAX : 0 EBX : 0

MOV [x] ← 1

MOV EAX ← [y]

MOV [y] ← 1

MOV EBX ← [x]

y:1

x : 0   y : 0
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...

Shared Memory

Thread

Write 
Buffer

Thread

Write 
Buffer

Store buffering

EAX : 0 EBX : 0

MOV [x] ← 1

MOV EAX ← [y]

MOV [y] ← 1

MOV EBX ← [x]

y:1

x : 1   y : 0
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Store buffering

EAX : 0 EBX : 0

MOV [x] ← 1

MOV EAX ← [y]

MOV [y] ← 1

MOV EBX ← [x]

x : 1   y : 1

...

Shared Memory

Thread

Write 
Buffer

Thread

Write 
Buffer
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Store buffering + fences

EAX : 32 EBX : 47

MOV [x] ← 1
MFENCE
MOV EAX ← [y]

MOV [y] ← 1
MFENCE
MOV EBX ← [x]

x : 0   y : 0

...

Shared Memory

Thread

Write 
Buffer

Thread

Write 
Buffer
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...

Shared Memory

Thread

Write 
Buffer

Thread

Write 
Buffer

MOV [x] ← 1
MFENCE
MOV EAX ← [y]

MOV [y] ← 1
MFENCE
MOV EBX ← [x]

Store buffering + fences

EAX : 32 EBX : 47

x:1

x : 0   y : 0
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...

Shared Memory

Thread

Write 
Buffer

Thread

Write 
Buffer

MOV [x] ← 1
MFENCE
MOV EAX ← [y]

MOV [y] ← 1
MFENCE
MOV EBX ← [x]

x:1

Store buffering + fences

EAX : 32 EBX : 47

y:1

x : 0   y : 0
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MOV [x] ← 1
MFENCE
MOV EAX ← [y]

MOV [y] ← 1
MFENCE
MOV EBX ← [x]

...

Shared Memory

Thread

Write 
Buffer

Thread

Write 
Buffer

Store buffering + fences

EAX : 32 EBX : 47

y:1

x : 1   y : 0

MFENCE blocks until the
thread buffer is empty
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Who inserts fences?

1. The programmer, explicitly.  Example: Fraser's lockfree-lib:

/*
 * II. Memory barriers. 
 *  MB():  All preceding memory accesses must commit before any later accesses.
 * 
 *  If the compiler does not observe these barriers (but any sane compiler
 *  will!), then VOLATILE should be defined as 'volatile'.
 */
#define MB()  __asm__ __volatile__ ("lock; addl $0,0(%%esp)" : : : "memory")

2. The compiler, to implement a high-level memory model,
    e.g. SEQ_CST C++0x low-level atomics on x86:

Load SEQ_CST:    MFENCE; MOV

Store SEQ_CST:    MOV; MFENCE
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Fence instructions

1. Fences are necessary

     to implement locks & not fully-commutative linearizable objects
     (e.g., stacks, queues, sets, maps).

2. Fences can be expensive

[Attiya et al., POPL 2011]
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Redundant fences (1)                          

If we have two consecutive fence instructions, we can remove the latter: 

The buffer is already empty when the second fence is executed.

MFENCE
MFENCE

MFENCE
NOP

Generalisation: 

MFENCE
NON-WRITE INSTR
…
NON-WRITE INSTR
MFENCE

MFENCE
NON-WRITE INSTR
…
NON-WRITE INSTR
NOP
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FE1

A forward data-flow problem over
the boolean domain            .

Associate to each program point:

⊥ : along all execution paths there
     is an atomic instruction before the
     current program point, with 
     no intervening writes;

⊤ : otherwise.

A fence is redundant if it always follows a previous
 fence or locked instruction in program order, 

and no memory store instructions are in between.
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FE1

A forward data-flow problem over
the boolean domain            .

Associate to each program point:

⊥ : along all execution paths there
     is an atomic instruction before the
     current program point, with 
     no intervening writes;

⊤ : otherwise.

A fence is redundant if it always follows a previous
 fence or locked instruction in program order, 

and no memory store instructions are in between.

Implementation:

1. Use CompCert implementation of Kildall algorithm
    to solve the data-flow equations. 

2. Replace MFENCEs for which the analysis returns ⊥
    with NOP instructions.
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Redundant fences (2)

If we have two consecutive fence instructions, we can remove the former: 

Intuition: the visible effects initially published by the former fence, are now 
published by the latter, and nobody can tell the difference.

MFENCE
MFENCE

NOP
MFENCE

Generalisation: 

MFENCE
INSTRUCTION 1
…
INSTRUCTION n
MFENCE

NOP
INSTRUCTION 1
…
INSTRUCTION n
MFENCE

???
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Redundant fences (2)

If there are reads in between the fences…

but

EAX = EBX = 0
forbidden

Thread 0 Thread 1

MOV [x] ← 1
MFENCE
MOV EAX ← [y]
MFENCE

MOV [y] ← 1
MFENCE
MOV EBX ← [x]

[x]=[y]=0

EAX = EBX = 0
allowed

Thread 0 Thread 1

MOV [x] ← 1
NOP
MOV EAX ← [y]
MFENCE

MOV [y] ← 1
MFENCE
MOV EBX ← [x]

[x]=[y]=0
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Redundant fences (2)

If there are reads in between the fences…

but

EAX = EBX = 0
forbidden

Thread 0 Thread 1

MOV [x] ← 1
MFENCE
MOV EAX ← [y]
MFENCE

MOV [y] ← 1
MFENCE
MOV EBX ← [x]

[x]=[y]=0

EAX = EBX = 0
allowed

Thread 0 Thread 1

MOV [x] ← 1
NOP
MOV EAX ← [y]
MFENCE

MOV [y] ← 1
MFENCE
MOV EBX ← [x]

[x]=[y]=0

If there are reads in between, the 
optimisation is unsound.
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Redundant fences (2)

Swapping a STORE and a MFENCE is sound:

1. transformed program’s behaviours ⊆ source program’s behaviours
                                 (source program might leave pending write in its buffer)

2. There is the new intermediate state if the buffer was initially non-empty, 
but this intermediate state is not observable.
                                          (a local read is needed to access the local buffer)

Intuition: Iterate this swapping...

STORE; MFENCEMFENCE; STORE
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FE2

A backward data-flow problem over
the boolean domain            .

Associate to each program point:

⊥ : along all execution paths there
     is an atomic instruction after the
     current program point, with 
     no intervening reads;

⊤ : otherwise.

A fence is redundant if it always precedes a 
later fence or locked instruction in program order,
and no memory read instructions are in between.
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FE1 and FE2 are both useful

Removed by FE1 but not FE2:

Removed by FE2 but not FE1:

MFENCE
MOV EAX <- [y]
MFENCE
MOV EBX <- [y]

MOV [x] <- 1
MFENCE
MOV [x] <- 2
MFENCE
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Informal correctness argument

Intuition: FE2 can be thought as iterating

and then applying

This argument works for finite traces, but not for infinite traces as the later 
fence might never be executed:

STORE; MFENCEMFENCE; STORE

MFENCE;
STORE;
WHILE(1);
MFENCE

NOP;
STORE;
WHILE(1);
MFENCE

NOP; MFENCEMFENCE; MFENCE

non-mem; MFENCEMFENCE; non-mem
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Basic simulations

A pair of relations

is a basic simulation for                                          if:

Exhibiting a basic simulation implies:
          traces(compile(p)) \ {t·inftau | t trace} ⊆ traces(p)
                       “simulation can stutter forever”
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Usual approach: measured simulations
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Simulation for FE2

s ≡i t    iff thread i of s and t have identical pc, local states and buffers

s ↝i s' iff thread i of s can execute zero or more NOP, OP, STORE and
           MFENCE instructions and end in the state s'

s ~ t    iff
  – t’s CFG is the optimised version of s’s CFG; and
  – s and t have identical memories; and
  – ∀ thread i, either s ≡i t or
                      the analysis for i’s pc returned ⊥ and ∃s', s ↝i s' and s' ≡i t
                                 “s is some instructions behind and can catch up” 

Stutter condition:
   t > t'  iff   t → t' by a thread executing a NOP, OP, STORE or MFENCE
         (and t’s buffer being non-empty)
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Simulation for FE2

s ≡i t    iff thread i of s and t have identical pc, local states and buffers

s ↝i s' iff thread i of s can execute zero or more NOP, OP, STORE and
           MFENCE instructions and end in the state s'

s ~ t    iff
  – t’s CFG is the optimised version of s’s CFG; and
  – s and t have identical memories; and
  – ∀ thread i, either s ≡i t or
                      the analysis for i’s pc returned ⊥ and ∃s', s ↝i s' and s' ≡i t
                                 “s is some instructions behind and can catch up” 

Stutter condition:
   t > t'  iff   t → t' by a thread executing a NOP, OP, STORE or MFENCE
         (and t’s buffer being non-empty)

But if (1) all threads have non-empty buffers, and 
         (2) are stuck executing infinite loops, and 
         (3) no writes are ever propagated to memory,
then we can stutter forever.

(i.e., > is not well-founded.)
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Simulation for FE2

s ≡i t    iff thread i of s and t have identical pc, local states and buffers

s ↝i s' iff thread i of s can execute zero or more NOP, OP, STORE and
           MFENCE instructions and end in the state s'

s ~ t    iff
  – t’s CFG is the optimised version of s’s CFG; and
  – s and t have identical memories; and
  – ∀ thread i, either s ≡i t or
                      the analysis for i’s pc returned ⊥ and ∃s', s ↝i s' and s' ≡i t
                                 “s is some instructions behind and can catch up” 

Stutter condition:
   t > t'  iff   t → t' by a thread executing a NOP, OP, STORE or MFENCE
         (and t’s buffer being non-empty)

But if (1) all threads have non-empty buffers, and 
         (2) are stuck executing infinite loops, and 
         (3) no writes are ever propagated to memory,
then we can stutter forever.

(i.e., > is not well-founded.)Solution 1: Assume this case never arises (fairness) 

Solution 2: Do a case split. 
— If this case does not arise, we are done.
— If it does, use a different (weaker) simulation to
    construct an infinite trace for the source
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Weaktau simulation

Remarks:
— Once the simulation game moves from ~ to ≃, stuttering is forbidden;

— Can view difference between ~ and ≃ as a boolean prophecy variable.
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Weaktau simulation for FE2

s ~ t ,  t > t'  as before.

s ≃ t iff

  – t’s CFG is the optimised version of s’s CFG; and
  – ∀i, ∃s'  s.t.  s ↝i s' ≡i t.
  (i.e., same as s ~ t except that the memories memories are unrelated.)
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A closer look at the RTL

Patterns like that on the left are common.

FE1 and FE2 do not optimise these patterns.

It would be nice to hoist those fences out of the loop. 
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A closer look at the RTL

Patterns like that on the left are common.

FE1 and FE2 do not optimise these patterns.

It would be nice to hoist those fences out of the loop. 
Do you perform PRE?
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A closer look at the RTL

Patterns like that on the left are common.

FE1 and FE2 do not optimise these patterns.

It would be nice to hoist those fences out of the loop. 
Do you perform PRE?

...adding a fence is always safe...
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Partial redundancy elimination

PRE FE2
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Partial redundancy elimination

A: a backward analysis returning ⊤ if along
    some path after the current program point
    there is an atomic instruction with no 
    intervening reads;

B:⊥

A:⊥

A:⊥

A:⊤

A:⊤

A:⊤

A:⊤

A:⊤

A:⊤

B: a forward analysis returning ⊥ if along all
    paths to the current program point there is
    a fence with no later reads or atomic
    instructions.

B:⊥

B:⊥

B:?

B:⊥

B:⊥

B:⊥

B:⊥
Replace NOP with FENCE after conditionals if:
- B returns ⊥
- A returns ⊥
- A returns ⊤ on the other branch

FENCE
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Partial redundancy elimination

A: a backward analysis returning ⊤ if along
    some path after the current program point
    there is an atomic instruction with no 
    intervening reads;

B:⊥

A:⊥

A:⊥

A:⊤

A:⊤

A:⊤

A:⊤

A:⊤

A:⊤

B: a forward analysis returning ⊥ if along all
    paths to the current program point there is
    a fence with no later reads or atomic
    instructions.

B:⊥

B:⊥

B:?

B:⊥

B:⊥

B:⊥

B:⊥
Replace NOP with FENCE after conditionals if:
- B returns ⊥
- A returns ⊥
- A returns ⊤ on the other branch

FENCE

 B returns ⊥: 
    a previous fence will be eliminated if we insert a fence
    at both branches of conditional nodes.
 A returns ⊥:
    the previous fence won't be removed by FE2.

 A returns ⊤ on the other branch:

    the other branch already makes the previous fence

    partially redundant.
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– Insert MFENCEs before every read (br), or after every write (aw).

– Count the MFENCE instructions in the generated code.

Evaluation of the optimisations

br br+FE1 aw aw+FE2 aw+PRE+FE2

Dekker 3 2 5 4 4

Bakery 10 2 4 3 3

Treiber 5 2 3 1 1

Fraser 32 18 19 12 11

TL2 166 95 101 68 68

Genome 133 79 62 41 41

Labyrinth 231 98 63 42 42

SSCA 1264 490 420 367 367
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– Insert MFENCEs before every read (br), or after every write (aw).

– Count the MFENCE instructions in the generated code.

Evaluation of the optimisations

br br+FE1 aw aw+FE2 aw+PRE+FE2

Dekker 3 2 5 4 4

Bakery 10 2 4 3 3

Treiber 5 2 3 1 1

Fraser 32 18 19 12 11

TL2 166 95 101 68 68

Genome 133 79 62 41 41

Labyrinth 231 98 63 42 42

SSCA 1264 490 420 367 367

Important remark for your future work:

This is not a decent evaluation…  we know nothing 
about real code, and the number of fences is not a 
good measure.  But unclear how to do better.

Evaluation should be taken seriously by CS scientists!

http://evaluate.inf.usi.ch/
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Conclusion

97Friday, 13 January 2012



Syllabus

In these lectures we have covered the hardware models of
two modern computer architectures (x86 and Power/ARM - at least for 
a large subset of their instruction set).  

We have seen how compiler optimisations can also break concurrent 
programs and the importance of defining the memory model of high-
level programming languages (and we have seen in detail the C++11 
memory model).  

We have also introduced some proof methods to reason about 
concurrency.

After these lectures, you might have the feeling that multicore 
programming is a mess and things can't just work.  
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The memory models of modern 
hardware are better understood.

Programming languages attempt 
to specify and implement 
reasonable memory models.

Researchers and programmers 
are now interested in these 
problems.
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The memory models of modern 
hardware are better understood.

Programming languages attempt 
to specify and implement 
reasonable memory models.

Researchers and programmers 
are now interested in these 
problems.

Still, many open problems...

99Friday, 13 January 2012



The memory models of modern 
hardware are better understood.

Programming languages attempt 
to specify and implement 
reasonable memory models.

Researchers and programmers 
are now interested in these 
problems.

Still, many research opportunities!
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All these lectures are based 
on work done with/by my 
colleagues.  Thank you!
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And thank you all for 
attending these lectures!

Please, fill the course evaluation form. 
It is vital feedback to make a better course next year.
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