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Vote: topics for my this lecture

~N O O B~ W N

. Operational and axiomatic formalisation of x86-T1S0O (3

. The lwarx and stwcx Power instructions (2)

. Fence optimisations for x86-TSO (0)

. The Java memory model (3)

. The C++11 memory model (10)

. Static and dynamic techniques for data-race detection (5)
. The Linux memory model (?!) (13)

. Compiler correctness statements (compile non-determinism?) (5)
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1. The Linux memory model (ahem, kinda)
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The Linux memory model

Facts:

- abstraction layer over hardware and compilers \\A/

- relied upon by kernel developers to write "portable kernel code”

- documented by a text file:

http://www.kernel.org/doc/Documentation/memory-barriers.txt
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The Linux memory model

Facts:

- abstraction layer over hardware and compilers “\A/

- relied upon by kernel developers to write "portable kernel code”

- documented by a text file:

http://www.kernel.org/doc/Documentation/memory-barriers.txt

More facts:

[ attempted to understand the doc, and exchanged a few email
with Paul Mc Kenney. However | don't understand much...

In the next hour, let's go over the documentation together and see
if we can make sense of it...
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The Linux memory model

Expected to account for all supported combinations of
compiler and hardware memory model...

Linux kernel

A A

compiler memory-model (gcc)

\4
Linux memory model Compiler
A

hardware memory-model

\ 4

\4
Hardware
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alpha: Weak ordering. No dependency ordering. "Time does not go backwards" gives guarantees similar to Power/ARM A-cumulativity.
Possibly B-cumulativity as well. | am not aware of formalization of this architecture's memory ordering other than Gharachorloo's PhD.

arm: You know at least as much as | do about this one.
avr32. Uniprocessor-only, kernel build failure for SMP.

blackfin: Uniprocessor-only to the best of my knowledge. There are rumored to be some experimental SMP systems that lack cache
coherence, and are thus outside of the Linux kernel's remit. See for example: https://docs.blackfin.uclinux.org/doku.php?id=Ilinux-
kernel:smp-like The system.h file flushes cache when a memory barrier is encountered, which is consistent with an attempt to run the Linux
kernel on a non-cache-coherent system...

cris. Uniprocessor-only to the best of my knowledge. Though there appears to be recent addition of some SMP support. Its system.h file is
consistent with full sequential consistency. Or extreme optimism on the part of the cris developers.

frv. Uniprocessor-only to the best of my knowledge.

h8300: Uniprocessor-only to the best of my knowledge. There is code in system.h that appears to be intended for SMP, but it looks to me like
a (harmless) copy-paste error. Either that or SMP h8300 systems are sequentially consistent.

ia64: Total order of all release operations, which include the "mf" (memory fence) instruction. Memory fences cannot restore sequential
consistency.

m32r. Uniprocessor-only to the best of my knowledge. However, there does appear to be some recent multiprocessor support. This is quite
strange -- atomic instructions flush cache, but memory barriers are no-ops. Looks quite experimental.

mé68k. Uniprocessor-only to the best of my knowledge.

microblaze: Uniprocessor-only to the best of my knowledge. At least one SMP attempt: http://microblazesmp.blogspot.com/ Its system.h file
looks uniprocessor-only.

mips: Multiprocessor. Old SGI MIPS systems were sequentially consistent. Newer systems used for network infrastructure are rumored to
have weak memory models similar to Power and ARM. And its system.h file is consistent with a weak memory model.

mn10300: Recent SMP support which | know little about. The system.h file looks uniprocessor only, and contains comments on Intel, so
copy-pasted from x86.

parisc: TSO, similar to x86.

powerpc: You know at least as much about this as | do.

s$390: TSO, but with self-snooping of store buffer prohibited.

score: Uniprocessor-only to the best of my knowledge.

sh: Recent SMP support which | know little about. Its system.h file is consistent with weak memory ordering.
sparc. TSO, similar to x86. There is documentation about weaker memory models (PSO and RMO), but in practice the hardware is TSO.
tile: Recent SMP CPU which | know little about. Seems to be weakly ordered based on its system.h file.
um: Looks like an x86 knockoff judging by the system.h file.

unicore32: Uniprocessor-only to the best of my knowledge.

Xx86: You know this one at least as well as do |.

xtensa: Uniprocessor-only -- kernel build failure otherwise.
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The Linux memory model

My intuition:

Annoying facts:
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The Linux memory model

My intuition:

kinda of lowest common denominator between all hardware
memory models of architectures Linux can be compiled to, taking
into account also some common gcc optimisations, with some
weilrdnesses.

Annoying facts:

semantics of "read barriers" really weak, unclear how to formalise it

compilation of barriers on ltanium looks broken -- hardware might
exhibit behaviours prohibited by the MM.
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...let's read the doc...
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The Linux memory model: macros

on x86:

#define mb() asm volatile("mfence":::"memory")
#define rmb() asm volatile("lfence":::"memory")
#define wmb() asm volatile("sfence" ::: "memory")

as far as we know, Ifence and sfence are noop in x86TSO

on Power:

#define mb () ___asm volatile  ("sync" : : : "memory")
#define rmb()  asm volatile  ("sync" : : : "memory")
#define wmb()  asm volatile  ("sync" : : : "memory")

#define read barrier depends() do { } while(0)
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Internship proposal on the fly...

Sort out what the

q

—AL Linux memory model is

-

Pros:
Challenging!

Can have a huge impact!

Yes. Of course, if people come up with lots of
situations where the more-complex
programming model would help significantly,
then it might be worth revisiting this.

Collaboration with Paul Mc Kenney possible!
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2. The C++11 memory model

a good example of an axiomatic memory model

Friday, 13 January 2012
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The C++11 memory model

1300 page prose specitication defined by the 1SO.

The design is a detailed compromise:
hardware/compiler implementability
useful abstractions
broad spectrum of programmers

Welcome to the official home of

JTC1/SC22/WG21 - The C++ Standards Committee

2011-09-15: standards | projects | papers | mailings | internals | meetings | contacts

News 2011-09-11: The new C++ standard - C++11 - is published!

Friday, 13 January 2012
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The syntactic divide

// for regular programmers:
atomic int x = 0;
X.store(1l);

y = X.load();

// for experts:

X.store(2, memory order);

Yy = X.load(memory order);

atomic thread fence(memory order);

where memory order Is one of the following:

mo seq cst mo release mo acquilre
mo acq rel mo consume mo relaxed

Friday, 13 January 2012
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How may a program execute?

Two layer semantics:

1) an operational semantics processes programs, identifying memory
actions, and constructs candidate executions (Eopsem);

P—— k1, ..., En

2) an axiomatic memory model judges Eopsem paired with a memory
ordering Xwitness

Ei ——Xi,...,Xim
3) searches the consistent executions for races and uncostrained reads

s there an Xj with a race?

Friday, 13 January 2012
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Relations

AN Eopsem part containing:
sb  sequenced before, program order
asw additional synchronizes with, inter-thread ordering

An Xuitness part containing:
1t relates a write to any reads that take its value
sc  atotal order over mo_seq_cst and mutex actions
mo  modification order, per location total order of writes

From these, compute synchronise-with (sw) and happens-before (hb).

We ignore consume atomics, which enables us to live in a simplified model.
Full details in Batty et al., POPL 11.

Friday, 13 January 2012
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Formally

cpp memory model opsem (p : program) =
let pre executions =
{ (Eopsem, Xwitness) . OpsSem P Eopsem A
consistent execution (Eopsem, Xwitness) }

in

if 3IX € pre executions.
(lndeterminate reads X = {}) V
(unsequenced races X = {}) V
(data races X = {})

then NoxEe
else SoME pre executions

Friday, 13 January 2012
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A single-threaded example

1. sequenced before (sb) - given by opsem a: W, x=2
sb
\/
int main() { b- —0
int x = 2; s
int y = 0; sb sb
= (x==X);
return 0; c:R,, x=2 d:R,, x=2

}
\sb /sb
A
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A single-threaded example

1. sequenced before (sb) - given by opsem
2. read-from (rf) - part of the witness W x=2

int main(Q) { o W y=0 f

int x = 2;

1nt y = 0; sh \b
y = (X==X); '\
return 0; R x=2 R x=2
¥
sb /.:b
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A single-threaded ex. with undefined behaviour

An unseqguenced race.

a:W,, x=2
sb
rf \/
int main() { D" Woy y=0
int x = 2; sb
int y = 0; sb
return 0; d:Rna X=2 C:Wha X=3
) sb —  sb
N A

Friday, 13 Januar y 2012 19



A simple concurrent program

int y, X = 2;

X = 3;

a:W,, x=2

asw w.rf

4
b:W,,x=3

We will omit asw arrows whenever
we are not interested in the initialisation.

c:R,; x=2

sb

\ J
d:W,,y=0

Friday, 13 Januar y 2012
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Locks and unlocks

int x, r;

mutex m;

m.lock(); m.lock();
X = ... r = X;
m.unlock() :

1. the operational semantics defines
the sb arrows

c:L mutex
sb ¢

d:W,, x=1
sb

f:U mutex

h:L mutex

1:R,, x=1

Friday, 13 January 2012
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Locks and unlocks

int x, r;

mutex m;

m.lock(); m.lock();
X = ... r = X,
m.unlock() :

1. the operational semantics defines
the sb arrows

2. guess an sc order on Unlock/Lock
actions (part of the witness)

c:L mutex
sb ¢

d:W,, x=1
sb

f:U mutex

h:L mutex

I:R,, x=1

Friday, 13 January 2012
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Locks and unlocks

int x, r;

mutex m;

m.lock(); m.lock();
X = ... r = X,
m.unlock() :

1. the operational semantics defines
the sb arrows

2. guess an sc order on Unlock/Lock
actions (part of the witness)

3. the sc order is included in the
syncronised-with relation

c:L mutex

.l

d:W,, x=1

iy

f:U mutex

h:L mutex

Friday, 13 January 2012
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I_OCKS and Uﬂ| O CKS simple—happens—before\ _

( sequenced—before> ) synchronizes—with>)+
int x, r;
mutex m;
m.lock(); m.lock();
X = ... r = X,
m.unlock() ;

1. the operational semantics defines c:L mutex h:L mutex

the sb arrows sb ¢ sb ¢
2. guess an sc order on Unlock/Lock R x—1

actions (part of the witness)

3. the sc order is included in the sb ¢
syncronised-with relation

d:W,, x=1
hb

f:U mutex

4. which In turn defines the
happens-before relation...
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Happens before

The happens before relation is key to the model:

1. non-atomic loads read the most recent write in happens before.
(This is unique in DRF programs)

2. the story is more complex for atomics, as we shall see.

3. data races are defined as an albsence of happens before
between conflicting actions.

c:L mutex h:L mutex

simple—happens—before\
4

synchronizes- with\

> U ») T

( sequenced-before

f:U mutex

Friday, 13 January 2012
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A data race

int y, X = 2;

x=3; |y= (x==3);
a:W,, x=2
asw w,rf

b:W,.,x=3 cR,;x=2

sb

d:W,,y=0
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A data race

int y, X = 2;

a:W,,x=2

dSW w’rf

b:W,,x=3

Here we have two conflicting accesses
not related by happens-before.

c:R,; x=2
sb
\J

d:W,, y=0

Friday, 13 January 2012
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Data race definition

let data_races actions hb =
{ (a, b) | V acactions beactions |
- (a=b) A
same_location a b A
(is_write a V is_write b) A
— (same_thread a b) A

- (is_atomic_action a A is_atomic_action b) A
- ((a, b) € hb Vv (b, a) € hb) }

Programs with a data race have undefined behaviour (DRF model).

Friday, 13 January 2012
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Simple concurrency: Dekker's example and SC

atomic_int x
atomic_int y

0;
0;

x.store(1l, seq_cst); |y.store(l, seq_cst);

y.load(seq_cst);

x.load(seq_cst);

c:W, y=1 e:W. . x=1
FORBIDDEN
sb sb
\/ \/
d:R.. x=0 f:Rsc y=0

Why is this behaviour forbidden”?

Friday, 13 J

aaaaa
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Simple concurrency, Dekker's example and SC

atomic_int x
atomic_int y

0;
0;

x.store(l, seq_cst); |y.store(l, seq_cst);

y.load(seq_cst); x.load(seq_cst);
c:W. y=1 e:W. . x=1
d:R..x=0 f:Rscy=1

The sc relation must define a total order over unlocks/locks and

seq cst accesses...

sc IS Included in hb, an r£ must respect hb.

Friday, 13 January 2012
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=Xpert concurrency: the release-acquire idiom

// sender

X = ...

y.store(l, release); 2 W, x=1
// receiver sbI

while (@ == y.load(acquire));

bZWre| =1
T \
rf

Here we have an rf arrow beetwen a pair of c:Rycq y=1
release/acquire accesses. <h I

d:R,, x=1

Friday, 13 Januar y 2012 31



=Xpert concurrency: the release-acquire idiom

// sender

X = ...

y.store(1l, release); W x=1

// receiver sbl'

while (0 == y.load(acquire)); Wge, y=1

r= X;

S

Here we have an rf arrow beetwen a pair of Racqy=1
release/acquire accesses. lsb
The rf arrow beetwen release/acquire accesses

. Rx=1
INnduces an sw arrow between those accesses.

Friday, 13 January 2012 32



=Xpert concurrency: the release-acquire idiom

// sender
X = ... W x=1
y.store(l, release); h
S

. hb
// receiver WreL y=1
while (@ == y.load(acquire));
r= X; SW
Here we have an r£ arrow beetwen a pair of Racqy=1
release/acquire accesses. lsb
The rf arrow beetwen release/acquire accesses R‘x:1

INduces an sw arrow between those accesses.

And In turn defines an hb constraint.  simple-happens-before

 —
, _

( sequenced-before synchronizes- with\

> U ») T
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Relaxed writes

x.load(relaxed) ;
y.store(1l, relaxed);

y.load(relaxed) ;
x.store(1l, relaxed);

c:Rrlx x=1 e:Rrlx y=1

o ]

d:Wrlx y=1 f:Wrlx x=1

No data-races, no synchronisation cost, but weakly ordered.
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Relaxed writes, ctd.

atomic_int x = 0;
atomic_int y = 0;
x.load(relaxed) ;
y.load(relaxed) ;

y.load(relaxed) ;
x.load(relaxed) ;

x.store(1l, relaxed); | y.store(2, relaxed);

c:Wrlx x=1 \d:erx yzﬂl_/—/y e:Rrlx }le )g:erx y=1
rf sb¢r t sb¢

f:Rrlx y=0 h:Rrlx x=0

Again, no data-races, no synchronisation cost, but weakly ordered (IRIW).
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—Xpert concurrency: fences avoid excess sync.

// sender // receiver
X = ... while (0 == y.load(acquire));
y.store(l, release); r = X;
// sender // receiver
X = ... while (0 == y.load(relaxed));
y.store(l, release); fence(acquire) ;

r = X;
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—Xpert concurrency: fences avoid excess sync.

// sender // receiver
X = ... while (0 == y.load(relaxed));
y.store(l, release); fence(acquire) ;
r = X;
Here we have an rf arrow beetwen a c:Wha x=1 e:Rux y=1

release write and a relaxed write.

NEEEA

d -Wrel Y= 1 f Facq
sb

g:Rna x=1

Friday, 13 Januar y 2012
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—Xpert concurrency: fences avoid excess sync.

// sender // receiver
X = ... while (0 == y.load(relaxed));
y.store(l, release); fence(acquire) ;
r = X;
C Wna X— e erx y 1

Here we have an rf arrow beetwen a
release write and a relaxed write. sb ¢ / sb ¢
d:W,e y—l — f: Facq

The acquire fence follows the sb/rf relations W
looking for the corresponding release write, adding
a sw arrow. g:Rnax=1
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—Xpert concurrency: fences avoid excess sync.

// sender // receiver

X = ... while (0 == y.load(relaxed));

y.store(l, release); fence(acquire) ;

r = X;
Here we have an rf arrow beetwen a ¢ Wha X1 £ &R y=1
release write and a relaxed write. sb ¢ b sb ¢
d:W,e y=1 f:Facq

The acquire fence follows the sb/rf relations > sh
looking for the corresponding release write, adding
a sw arrow. g:Rna x=1

Happens-before follows as usual...
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Modification order

atomic_int x = 0;
x.store(l, relaxed); X.load(relaxed);
x.store(2, relaxed); X.load(relaxed);

Wrixx=1 " Rgxx=1

rf
mo¢ sb¢

WRLX X=2 T RRLX X=2
I

Modification order is a total order over atomic writes of any memory ordet.
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Coherence and atomic reads

All forbidden:
: _ » ~Ry— _ _ : _
a.WTx 1 P c.Rr 1 b.Wx-% c:W x=1
mo hb F—hb {
b:W x=2 f > d:Rx=2 d:R x=2
r
CoRR CoWR
a:W x=1 a:Wx— > c:Rx=1
hb § mo \hw
b:W x=2 d:W x=2
CoWW CoRW

|dea: atomics cannot read from later writes in happens-before.

Friday, 13 January 2012

41



Coherence and atomic reads

All forb

2 A pair Eopsem . Xwimess (& pre-execution)
g defines a consistent execution when It satisfies
| the constraints we have sketched

on hb/rf/mo and is race-free.

b:W x=2 d:W x=2
CoWW CoRW

|dea: atomics cannot read from later writes in happens-before.

Friday, 13 January 2012
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The full model
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is_write b A same_location 2 b A is_at_atomic_location 2

. ¢ oo 4y

(W(a.b) € 5. isatomic_rmw b
L stk

(V(a.6) € 5. isseq st b
= (~isseaest aA (Y X Soac. fwwite conmmeocation be b = x T 5))

(* -Fence restrictions- *)

(*2033%)
(¥a. ¥(x, b) € =it
(ifence x A is seq_est. x i atomic_action b A
is_write 3\ same_location 3 b/
2% xny 5
iy o mostionaer,
(+20.3:4%)
(V(a,x) € ==, iy p) e 5
(iatomic_action 2 A isfence x A is seq_est x A
iswite 3\ same_location 3 b\
X %5 b s atomic_action b)
= (y=a) v g S )
(*2035%)
(Hon) € sttt
(isatomic_action a A s fence x A is seq_est x A

is_atomic_netion b A same_location a b A
P "
X% ynzhb)

thread_id_of (Lock

id) A

tid )
thread_id_of (UNLOCK _ tid _) = tid) A

thread_ic_of (LoAD _ tid
thread_id_of (STORE  tid _
threadid_of (FENCE -

well_formed_nction 2=

XTOMIC_LOAD _ _ mem_ord __ — mem_ord &
{MO_RELAXED, MO_ACQUIRE, MO_SEQ_CST, MO_CONSUME}
|| ATOMIC_STORE - - mem_ord - - — mem_ord
[0_RELAXED, Mo_Re
|| ATosiC_rw _ _ mem_ord
{Mo_RELAXED, Mo_RE
T

4

e, Mo_sEQ_csT)
— mem_ord

consistent_simple_happens_before shb =

. MO_ACQUIRE, MO_ACQ_REL, MO_SEQ_CST, MO_CONSUME)

(memory _order (ATOMIC_LOAD _ _ mem_ord
(memory _order (ATOMIC_STORE __ mem_ord _
SOME mem_ord)
(memory _order (ATOMIC_RAW _ _ mem_ord
SOME mem_ord) /1
(memory _order (FENCE _ _ mem_ord) =
SOME mem_ord)
(memory_order =
Noxe)

well_formed_threads = well_formed_thread
inj_on action_id_of (actions) \
(¥a. we
threadwise_relation_over actions sequenced-before
threadwise_relation_over actions data-dependency /
relation_over actions control-dependency /
strict_preorder sequenced-before /
strict_preorder data-dependency A
strict_preorder control-dependency
selationover actions additional-synchronized-with
(Va. thread_id_of a € threads) A
actions._respeet_Jocation_kinds A
data-dependency < sequenced-before

Lformed_action 2) A

modiction-order
(z=a)va™ “ 2)
1 dency = endensy,
(st
}( {ent_controLdependency = consistoi_controLdependency =
contotdependency .
| drretlexive (( )
consistent_execution actions threads location-kind sc=
well_formed_threads actions threads location-ind. A
consistent locks actions threads location-kind ditional- de seh(

let. release-sequence — release_sequence_set actions threads location-kind
let. hypothetcalrelesse sequence— hypothetica relss.sequence.se sctions thvends octionind seqercedeforeadftonlaynclonzedoith dts-ependency contro depyvdenty modification-order in
t actions threads location-kint y of in

nter-thread appons-before = consistent-interthread_liappons_before =
—

i dependency o m camics ,dep ndency_to_set actions threads location-kind fin
let. dependency-ordered-before = dependency_ordered_before set actions threads location-kind o in
let. nterthread appens-efore = nter-thiea_happensbelore actons hreads locationind h in

let happens- happens_before actions threads location-kind h d - in

o e e e ont shons vy oo in

let. vl sequences ofsde.efcts = isle-Sequence.of id.eflectsset actions thicds ocaion-kid sequencedbfore aditinal Synchronized-with data-dependency control-dependency modification-order happens-before visible-side-cffect in
consistent_inter_thread_happens_be

elformed_reads.§ = well_formed_reads.§
relation_over actions (%) A

(va. va' vb. afbnd Bb— (a=d)A
at) € a{

(value_read (ATOMIC_LOAD = SomE v) A
(e (Arosc-sony - = SomE ) A
(e (L

(alneend -~ Nowe)

abn
(value_read b = value_written 2) A
(

(is at_mutex Jocation 2 =
isunlock 2/ is-lock b) A
(is_at_non_atomic_location 3 —
isstore 2 isload b) A
(isat_atomiclocation 2 —>
(isatomic_store 2V is_atomic_rmw aV is_store 3)
A (isatomiclond bV is_atomicm bV isoad b))

(isseq_cst 3V is_lock 2V is_unlock 2)}

consistent_se-onder = consstent-se-order =

oot e st ot ot ind sc A
consistent_modification_order actions threads location-kind sc
well_formed_reads_from_mapping actions threads location-kind. d - iz
consistent_reads_from_mapping actions threads location-kind. o d de fsc modi h e
cads actions threads = cads =

{b. isread bA (2225 b)}

strit_totalorder_over allsc_actons () A

unsequenced_races = unsequencod_races = {(a
(2 # b) A same Jocation 2 b A (is_write 2V iswrite b) A
samethread 2

(o ettt | st beiae, )y

{41 < locations_of actons. case ocston kind  f

[ atoccorsumtodcactionat fope o5 —

{a € as. islockor_unlock a A (location 2 = lopt)}

data_races = data_races = {(a, b)
(2 # b) A same Jocation 2 b A (is_write 2V is_wite b) A
samethread 2 b
~(is-atomic_action 2 A is_atomic_action 5) A

(o i et

is_atomic_store a v is_atomic_rmw a)} in

isJock a=
case a of LoCK VF
is_unlock 2 =
se 2 of Uniock —__ = T|_=F

is_atomic_load 2 =

2 of ATowIC_LOAD _ F
is_atomic_store 2 =
case a of AToMICSTOR S TIoF
is_atomic_rmw 2=
2 of ATowic_miw _ ST

consistent_locks = consistent locks =

¥ & locations_of actions. (location-kind | = MUTEX) = (
let lock_unlock_actions =

alllock_or-unlockactions-at (SOME /)actions in

et lock_order = 5| e untock scions

(304,15  The implementationshll serialie those (lock and nlock) opeatons. *)

striet_totaLorder_over lock_unlock _actions fock_order 1

(*30.4.1:1 A thread owns a mutex from the time it successfully calls one of the lock functions until

it calls unlock.*)
30.4.1:20 Requires: The caling thread shall own the mutex. *)

(* 30.4.1:21 Effects: Releases the calling threads ownership of the mutex.*)

(42, € lock-unlock-actions. is-wlock 3, =
& lock_unlock_actions.

a1 £, o samethread a1 3, Ais_lock 2)) A

(* 30417 Effects: Blocks the calling thread until ownership of the mutex can be obtained for the
)

isdoad 2= case 2 of Loap ____ T |_—F

aling thread
(3 The calling thread owns the mutex. *)
(\'Jy < rm,umm,mons islock 2 —

X jons.

(va, € 1

e )

ppen;bebve e wites of s 2 subst of mo for 1)

(* Mo_seo_cst fences impose modmcauon order *)

data_races’ actions threads focation-kind o se=
let. release-sequence = release_sequence_set actions threads location-kind - d h de in
let hypothetical-release-sequence — release_sequence_set actions threads location-kind h in
let synchronizes-with — synchronizes_with_set actions threads location-Kind sequenced-before additional-synchronized-with data- devenden:y control-dependency rf modification-order sc release-sequence hypothetical-release-sequence in

is_write 2 Ais_read b A same_location 2 bA

et actions threads location-kind in
let. dependency.ordered-before — dependency-ordered_before_set actions threadl locatin-kind 4 in
let. inter-thread-happens-before = inter_thrcad_happens_before actions threads focation-kind h in
let happens-before = lappens buforo actions threats ocation-kind s d -
data_races actions threads focation-kind d b
<op.memary-model apsem (p € ‘program) =
let executions = {(actior g s
apeem p actions thres i ocason A consistent_execution actions threads location-kind o
if Hactions, threads, location- b X . r56) € executions
(indeterminate_reads actions threads location-kind d - /i1 )V

(imscquenced_races actions theads location-kind #{v
(data_races’ actions threads location-kind sequenced-before addtional- 5yn:hromzed with data-dependency control dependency f modification-ordersc # {1)

then

else_exceutions
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s C++11 hopelessly complicated”

Programmers cannot be given this model.

However, with a formal definition, we can do proofs!

- Can we compile to x867?

- Can we compile to Power?

Operation x86 Implementation
load(non-seq_cst) mov
load(seq_cst) lock xadd(0)
store(non-seq_cst) mov
store(seq-_cst) lock xchg
fence(non-seq_cst) no-op
C++40x Operation | POWER Implementation
Non-atomic Load | 1d
_oad Relaxed 1d
L oad Consume 1d (and preserve dependency)
_oad Acquire 1d; cmp; bc; isync
Load Seq Cst sync; 1ld; cmp; bc; isync

Non-atomic Store
Store Relaxed
Store Release
Store Seq Cst

st

st

lwsync; st
sync,; st
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s C++11 hopelessly complicated”

Simplifications:

Full model: visible sequences of side effects are unneded (HOL4)
Derivative models:

- without consume, happens-before is transitive

- DRF programs using only seq cst atomics are SC (false)

atomic_int x = 0;

atomic_int y = O;

if (1 == x.load(seq_cst)) |if (1 == y.load(seq_cst))
atomic_init(&y, 1); atomic_init(&x, 1);

atomic init is a non-atomic write, and in C++11 they race.
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The current state of the standard

Fixed:

- In some cases, happens-before was cyclic

- coherence

- seqg cst atomics were more broken

Not fixed:

- self satisfying conditional

rl = x.load (mo_relaxed);
if (r1 == 42)
y.store(rl, mo_relaxed);

r2 = y.load(mo_relaxed);
if (r2 == 42)
x.store(42, mo_relaxed);

- seq_cst atomics are still not SC

c:Rrlx x=1

d:Wrlx y=1

e:Rrlx y=1

o e

f:Wrlx x=1
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3. Sketch of an operational formalisation of x86-TSO

...starting with a formalisation of SC
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Separate language and memory semantics

class ArrayWrapper

public:
ArrayWrapper ( n)
: p vals( new 1t n ] )
, Size( n )

{}

ArrayWrapper (const ArrayWrapper& other)
: p vals( new int[ other. size ] )
, Size( other. size )

{
for ( int i 0; 1 < size; ++i )
{

p vals[ 1 ] = other. p vals[ 1 );

}
}
~ArrayWrapper ()

{

delete [] p vals;
}
private:
int * p vals;
int size;
program

semantics defined via an LTS

layng aylip
18)ng 8l

Lock Shared Memory

memory
semantics defined via an LTS

Wi[a]v : a write of value v to address a by thread t
[abels for interaction: Rialv : aread of v from a by t by thread t

+ other events for barriers and locked instructions
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Separate language and memory semantics

class Arr

publi
A

Separate language and state semantics
proved to be a very good choice
) iNn many (unrelated) projects | worked on!

semantics defined via an LTS semantics defined via an LTS

Wi[a]v : a write of value v to address a by thread t
[abels for interaction: Rialv : aread of v from a by t by thread t
+ other events for barriers and locked instructions
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A tiny language

location, z, m address (or pointer value)

integer, n
thread_id, t
k, 7

erpression, e

process, p

integer
thread id
= expression
n integer literal
* T read from pointer
T = € write to pointer
e; e sequential composition
e+ e plus
process

t:e thread

p|p’ parallel composition

Friday, 13 January 2012
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What can a thread do in isolation?

l
! / / €1 — 6'
e — e e does [ to become e 1 1
L PLUS_CONTEXT_1
€1 + €2 — €] + €3
READ
Rz=n
XL —— N Loy
62 —) 62
—— WRITE R i> — PLUS_CONTEXT_2
XL = N —n 1 2 1 2
e Ly of n = ny + ng
WRITE_CONTEXT PLUS

-
! n +ne —n

Observe that we can read an

e1 — e} arbitrary value from the memory.
l SEQ_CONTEXT

. /.
€1, €2 — €1, €2
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Lifting to processes

D P p does [; to become p’

e Ly o Actions are labelled by the
: THREAD thread that performed the
t:e — t:e action.
le
P1 — Pq

PAR_CONTEXT_LEFT

[
p1|p2 — pilp2 . .
Free interleaving.
L

py — -
2 PAR_CONTEXT_RIGHT

I ,
p1lp2 — p1|pg
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A sequentially consistent memory

Take M to be a function from addresses to integers.

MY M| M does [ to become M’

M(z)=n
g MREAD
M — M
vVp— MWRITE
M— M®(z—n)
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SC semantics: whole system transitions

s — 8 s does [; to become s’
Rez=n_
p > P
M BRI
—— SREAD
(p, M) —— (p', M)
Wt =T /
p > D
AN V'
VY- SWRITE
<pa M> — ’<p,> Ml)
p - p/
STAU

(p, My = (p', M)

Synchronising between the
processes and the memory.
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SC semantics, example

All threads read and write the shared memory. Threads execute

asynchronously,the semantics allows any interleaving of the thread transitions.

(t1:xx = 1|to:xx = 2, {x — 0})

(t1:1|te:xz = 2, {x > 1}) (ti:xx = 1|t2:2, {z — 2})
Wt2 (EZZl lwtl =1
(t1:1|t2:2, {z — 2}) (t1:1|t2:2, {z — 1})

Each interleaving has a linear order of reads and writes to memory.
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...Nnow we just have to define a TSO memory...
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x86-1S0O abstract machine

A U U U U U U I | P (A ——— S

Thread eee Thread

(W N A

- ees e e e e e e e e e e e e e e e e e e e e e e e s G s ) > E e e e e s s e e e - b - e - e - - - - - -

vy

Lock

Jayng ajIM

Events visible by each thread (aka. interface
between each thread and the memory system):

Wi[a]v : a write of value v to address a by thread t
Ri[a]v : aread of v from a by t by thread t
+ other events for barriers and locked instructions
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X80-1s0: a formalisation using an LTS

The machine state s can be represented by a tuple (M, B, L):

M : address -> value option

B : tid -> (address * value) list
L : tid option

where:
M is the shared memory, mapping addresses to values
B gives the store bufter for each thread

L is the global machine lock indicating when a thread has exclusive
access to memory (omitted in these slides)
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X80-1ts0 abstract machine; selected transition rules

t is not blocked in machine state s = (M,B,L) if [... or] the lock is not held.

In buffer B(t) there are no pending writes for address X if there are no
(X,V) elements in B(t).

RM: Read from memory
not_blocked(s, t)

s.M(z)=wv
no_pending(s.B(t), x)

R, z=v

S S

Thread ¢ can read v from memory at address z if ¢ IS
not blocked, the memory does contain v at z, and
there are no writes to z in t’s store buffer.
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X80-1ts0 abstract machine; selected transition rules

RB: Read from write buffer
not_blocked(s, t)

b7 bs. S.B(t) = b -I-—f—[(.’]? ’U)] ++ by
no_pending(b, )

R, z=v

S S

Thread ¢ can read v from its store buffer for address z
If £ 1S not blocked and has v as the newest write to z
In its buffer:
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X80-1ts0 abstract machine; selected transition rules

WB: Write to write buffer

s W, =Y s® (B:=s.B® (t— ([(z,v)] ++s.B(t))))

Thread t can write v to its store buffer for address z

at any time;
WM: Write from write buffer to memory

not_blocked(s, t)
s.B(t) = b++[(z, v)]

Tt x=v
S = =

sO(M:=s.M D (z— v))®(B:=5.BD(t— b))

If ¢ is not blocked, it can silently dequeue the oldest
write from its store buffer and place the value in
memory at the given address, without coordinating
with any hardware thread
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4., Veryting fence elimination optimisations

aka reasoning on the x86TSO operational memory model
and compiler correctness
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CompCert1SO

ClightTSO

simplify l

C#minor

local vars l

Cstacked

simplify l«

Cminor

instructionlselection

CminorSel

CFG generation

RTL

l const prop.

RTL

[ o

RTL

register
allocation

LTL

l branch tunnelling

LTL

l linearize

LTLin

l reload/spill

Linear

l act.records

Machabstr

|

Machconc |—) x86

[POPL 2011]
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CompCert

ClightTSO

simplify l

C#minor

local vars l

Cstacked

simplify l,

Cminor

instruction\l:selection

CminorSel

CFG generation

RTL

»l« const prop.

RTL

register
allocation

LTL

l branch tunnelling

LTL

l linearize

LTLin

l reload/spill

Linear

l act.records

Machabstr

|

Machconc |—)

x86

[SAS 2011]
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Compilers are ideal for verification

Compiler
[SOUFCG program (e.g., C) J —é [ target program (e.g., x86) J

Compilers are:
— Basic computing infrastructure

— Generally reliable, but nevertheless contain many bugs
e.g., Yang et al. [PLDI 2011] found 79 gcc & 202 11vm bugs

— “Specifiable”: compiler correctness = preservation of behaviours
— Interesting: naturally higher-order, involve clever algorithms

— Big, but modular
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Language semantics

The semantics of all the CompCertTSO languages is defined by:
— a type of programs, pryg

— a type of states, states

— a set of initial states for each program, init € prg — P(states)

- a transition relation, ~ — € P(states x(event)x states)

call, return, fail, oom, T

The visible behaviour of a program is defined by the external function
calls (call) and returns (return), errors (fail), and running out of
mMemory (oom).
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raCes

— Finite sequences of call & return events ending with:
end: successful termination,
inftau: infinite execution that stops performing visible events
oom: execution runs out of memory

— Infinite sequences of call & return events;

traces(p) e {¢-end | ds € init(p). ds’. s PN A}
U{Z-tr|3ds € init(p). Is'. s i} s’}
U {£ - inftau | ds € init(p). ds’. s 5 8 A inftau(s’)}
U {¢-oom | ds € init(p). Is'. s 5 s’}
U {tr | ds € init(p). s can do the infinite trace ¢r}

NB: Erroneous computations become undefined after the first error.
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Compiler correctness

Compiler
[ source program (e.g., C) J ﬂ ( target program (e.g., x86) J

traces(source_program) 2 traces(target_program)

1Pl

print “a” || print “b”  =——————)p orint “ab”

*} orint “a” || print “b”

fail ey DIt “E0”

print “ab”

print “alb”
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Store buffering

EAX

32

MOV [x] « 1
MOV EAX « [V]

MOV [y] « 1

MOV EBX « [X]

Thread Thread
Write Write
Buffer Buffer

!

Shared Memory

X : 0 y ¢ 0

EBX

47
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Store buffering

—

MOV EAX « [V]

EAX

32

Thread

MOV [y] « 1

MOV EBX « [X]

Thread

!

Write
Buffer

!

Shared Memory

0 y ¢ 0

EBX

47
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Store buffering

—

MOV EAX « [Vy] MOV EBX ¢ [X]
Thread . Thread
EAX : 32 i i EBX
Write Write
Buffer Buffer
x:1

Shared Memory

X : 0 y ¢ 0
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Store buffering

EAX

MOV [x] « 1

_y [mov Eax 1y ]

Thread

!

Write
Buffer

—

MOV [y] « 1

Thread

!

Write
Buffer

y:1l

!

Shared Memory

0

MOV EBX « [X]

EBX

47
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Store buffering

EAX

—

MOV [x] « 1

MOV EAX « [V]

Thread

!

Write
Buffer

MOV [y] « 1

Thread

!

Write
Buffer

y:1l

!

Shared Memory

x: 0] y:o0

MOV EBX « [X]

EBX
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Store buffering

EAX

MOV [x] « 1
MOV EAX « [V]

MOV [y] « 1

MOV EBX « [X]

Thread Thread
Write Write
Buffer Buffer

y:1l

!

Shared Memory

x 1] y:0

EBX
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Store buffering

MOV [x] « 1 MOV [y] « 1
MOV EAX « [Vy] MOV EBX ¢ [X]
Thread . Thread
EAX : O i i EBX
Write Write
Buffer Buffer

! !

Shared Memory

x 1
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Store buffering + fences

EAX

-

32

MOV [x] « 1

MOV [y] « 1

EBX :

MFENCE MFENCE
MOV EAX + [vy] MOV EBX ¢ [x]
Thread Thread
Write Write
Buffer Buffer

!

Shared Memory

X : 0 y ¢ 0

47
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Store buffering + fences

EAX

32

MFENCE

MOV EAX « [V]

Thread

MOV [y] « 1
MFENCE

MOV EBX « [X]

Thread

!

Write
Buffer

!

Shared Memory

0 y ¢ 0

EBX

47
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Store buffering + fences

—» MOV [x] < 1

MFENCE MFENCE
MOV EAX + [vy] MOV EBX ¢ [x]
Thread . Thread
EAX : 32 i i EBX : 47
Write Write
Buffer Buffer
xsl

Shared Memory

X : 0 y ¢ 0
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Store buffering + fences

MOV [x] <« 1
MFENCE

MOV EAX « [V]

Thread

EAX : 32

!

Write
Buffer

MFENCE blocks until the
thread buffer is empty

MOV [y] « 1
MFENCE
MOV EBX « [X]

Thread

!

EBX : 47

Write
Buffer

y:1l

!

Shared Memory

x 1] y:0
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Who inserts fences”?

1. The programmer, explicitly. Example: Fraser's lockfree-lib:

/ *
* IT. Memory barriers.
* MB(): All preceding memory accesses must commit before any later accesses.
*
* If the compiler does not observe these barriers (but any sane compiler
* will!), then VOLATILE should be defined as 'volatile'.
*/
#define MB()  asm  volatile  ("lock; addl $0,0(%%esp)" : : : "memory")

2. The compiler, to implement a high-level memory model,
e.g. SEQ CST C++0x low-level atomics on x86:

Load SEQ CST: MFENCE; MOV
Store SEQ_CST: MOV; MFENCE
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-ence Instructions

1. Fences are necessary

to iImplement locks & not fully-commutative linearizable objects
(e.g., stacks, queues, sets, maps).

[Attiya et al., POPL 2011]

2. Fences can be expensive
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Redundant fences (1)

If we have two consecutive fence instructions, we can remove the /atter:

MFENCE ) MFENCE

MFENCE NOP

The buffer is already empty when the second fence is executed.

(Generalisation:
MFENCE MFENCE
NON-WRITE INSTR NON-WRITE INSTR
NON-WRITE INSTR NON-WRITE INSTR

MFENCE NOP
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A fence is redundant If it always follows a previous
mm fence or locked instruction in program order,
— and N0 memory store instructions are in between.

A forward data-flow problem over

, T1(nop, &) =&
the boolean domain {1 T} T; (op(op, 7, 7), E) =
. , T:(load(k, addr, 7, 1), E) =
Associate to each program point: T1(store(k, addr, 7, src),E) =
. T:(call(sig, ros, args,res),E) =T
1 :along all execution paths there T (cond(cond, args), £) _£
IS an atomic instruction before the T1 (return(optaryg), £) =T
current program point, with T:(threadcreate(optarg),E) =T
no intervening writes; Ty (atomic(aop, 7,7), &) =1
T1 (fence, &) =1
T : otherwise.
T if predecessors(n) = ()

.7:81(72,) = <

L l—'pépredecessors(n) 11 (’l:'n,StT‘(p), F& (p)) otherwise
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A fence is redundant If it always follows a previous
mm fence or locked instruction in program order,
— and N0 memory store instructions are in between.

A forward data-flow problem over T\ (nop, £) _ £
the bo[™ — = _ £
=&

ASSOC =T
. ) =T

1 alo Implementation: _ £
sd 1. Use CompCert implementation of Kildall algorithm =T
Cur to solve the data-flow equations. ol

no ~ i

2. Replace MFENCES for which the analysis returns L
T : oth with NOP instructions.

I—'pépredecessors(n) T (instr(p), F€1(p)) otherwise

Friday, 13 January 2012 81



Redundant fences (2)

If we have two consecutive fence instructions, we can remove the former:

MFENCE ) NOP

MFENCE MFENCE

Intuition: the visible effects initially published by the former fence, are now
published by the latter, and nobody can tell the difference.

(Generalisation:
MFENCE nNHo NOP
INSTRUCTION 1 ff ¢ INSTRUCTION 1
INSTRUCTION n INSTRUCTION n

MFENCE MFENCE
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Redundant fences (2)

If there are reads In between the fences...

[x]=[y]=0

but

[x]=[y]=0

Thread O

Thread 1

MOV [x] « 1
MFENCE

MOV EAX +« [V]
MFENCE

MOV [y] « 1
MFENCE
MOV EBX + [X]

Thread O

Thread 1

MOV [x] « 1
NOP

MOV EAX « [V]
MFENCE

MOV [y] « 1
MFENCE
MOV EBX ¢+ [X]

EAX

forbidden

EAX

= EBX

= EBX
allowed

0

0
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Redundant fences (2)

If there are reads In between the fences...

[x]=[y]=0

but

[x]=[y]=0

Thread O

Thread 1

MOV [x] « 1
MFENCE
MO\ _EAX & [~x7]

MOV [y] « 1
MFENCE

MF

If there are reads in between, the
optimisation is unsound.

MOV [x] « 1
NOP

MOV EAX « [V]
MFENCE

MOV [y] « 1
MFENCE
MOV EBX ¢+ [X]

EAX

forbidden

EAX

= EBX

= EBX
allowed

0

0
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Redundant fences (2)

Swapping a STORE and a MFENCE is sound:

MFENCE; STORE q STORE; MFENCE

1. transformed program’s behaviours & source program’s behaviours
(source program might leave pending write in its buffer)

2. There is the new intermediate state if the buffer was initially non-empty,
but this intermediate state is not observable.
(a local read is needed to access the local buffer)

Intuition: Iterate this swapping...
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A fence is redundant if it always precedes a
later fence or locked instruction in program order,

= and Nno memory read instructions are in between.
A backward data-flow problem over T (nop, &) =&
the boolean domain {1 T} T>(op(op, 7,7), E) =&
T>(load(k, addr,7,1), &) =T
Associate to each program point: T>(store(k, addr, 7, src),E) =€&
T>(call(sig,ros, args,res),E) = T
1 : along all execution paths there T>(cond(cond, args), &) =&
s an atomic instruction after the T (return(optary), £) =T
current program point, with Ty (threadcreate(optary),£) =T
. P 9 P ’ T>(atomic(aop, 7, 1),£) = |
no intervening reads; T, (fence, &) -1

T : otherwise.
T if successors(n) = ()

ng(n) = <

T5(instr(s), FE2(s)) otherwise

| LdsEsuccessors(n)
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-E1 and FE2 are both useful

Removed by FE1 but not FE2:

Removed by FE2 but not FE1:

MFENCE
MOV EAX <- [Vv]
MFENCE
MOV EBX <- [Vv]

MOV [x] <- 1
MFENCE
MOV [x] <- 2
MFENCE
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Informal correctness argument

Inturtion: FE2 can be thought as iterating

MFENCE; STORE —> STORE; MFENCE
MFENCE; non-mem —) non-mem; MFENCE
and then applying

MFENCE: MFENCE ===l  NOP; MFENCE

This argument works for finite traces, but not for infinite traces as the later
fence might never be executed:

MFENCE; NOP;
STORE ; =—=3)  STORE;
WHILE (1) ; WHILE (1) ;

MFENCE MFENCE
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Basic simulations

A pair of relations
~¢€ P(src.states xtgt.states) >¢c P(tgt.states x tgt.states)

IS a basic simulation for  compile : src.prg — tgt.prglif:
init(p’). ds € init(p). s ~ ¢

sim_init : Vpp'. compile(p) = p' = Vt &

sim-end : Vst. s~tAt A SR
er

sim_step : Vstt' ev. s~t At — t' A ev # oom =

¢ ST & - B b

(s = —— ) s reaches a failure
— / T 4o €D , 1 .
V(3s'. s *—s'As ~ ) s does matching step sequence
Y I M - ! A ! ) ] & = !l )
Vler =T AL ST N8 k). s stutters (only allowed if t > 1")

Exhibiting a basic simulation implies:
traces(compile(p)) \ {t-inftau | t trace} C traces(p)
“simulation can stutter forever”
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Usual approach: measured simulations

Definition 2 (Measured sim.). A measured simulation is any basic simula-

tion (~,>) such that > is well-founded.
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Simulation for FE2

s =it Iffthread/ of s and t have identical pc, local states and buffers

S ~; S'iff thread / of s can execute zero or more Nop, OP, STORE and
MFENCE Instructions and end in the state s’

S~t1t |ff
— t’s CFG is the optimised version of s’s CFG; and
— S and t have identical memories; and
— Vv thread J, either s =t or

the analysis for /’s pc returned L and 3s', S ~js'and s' = t
“s Is some instructions behind and can catch up”

Stutter condition:
t>t" iff t—t' byathread executing a NOP, OP, STORE Of MFENCE
(and t’s buffer being non-empty)
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Simulation for FE2

S E/t |ff thr / f AN 0 hV Iﬂ | | (J | | AES adNg O ﬁrS

S ~; S iffth But if (1) all threads have non-empty buffers, and
(2) are stuck executing infinite loops, and

(3) no writes are ever propagated to memory,
S ~t |ff then we can stutter forever.

MFE]

—t's CFG
—sandtl| (i.e., >is not well-founded.)
— Vv threag
e anany Ol pC retarnea L ano S arsanad s =it
‘s Is some Iinstructions behind and can catch up”
Stutter condition:

t>t" iff t—t' byathread executing a NOP, OP, STORE Of MFENCE
(and t’s buffer being non-empty)
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Simulation for FE2

S E/t |ff thr / f AN 0 hV Iﬂ | | (J | | AES adNg O ﬁrS

S ~i S iff th But if (1) all threads have non-empty buffers, and

MFE]

(2) are stuck executing infinite loops, and
(3) no writes are ever propagated to memory,

s~t Iff then we can stutter forever.

— t's CFG

—sandtl| (.
— VY threag

1

Stutter conditia
t>t' iff t -
(an(

Solution 1: Assume this case never arises (fairness)

Solution 2: Do a case split. j T

— |If this case does not arise, we are done.

— If it does, use a different (weaker) simulation to
construct an infinite trace for the source
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Weaktau simulation

Definition 3 (Weaktau sim.). A weaktau simulation consists of a basic sim-
ulation (~,>) with and an additional relation between source and target states,

~¢ P(src.states X tgt.states) satisfying the following properties:

sim_weaken : Vs, t. s~t — s>~t
sim_wstep :Vstt'. s~tAt St At>t =
T 4 fail :
(s — > ) — s reaches a failure

4 (4

V(3s'.s * 5 s’ ANs' ~t') — s does a matching step sequence.

Theorem 2. If there exists a weaktau-simulation (~, >, ~) for the compilation
function compile, then for all programs p, traces(compile(p)) C traces(p).

Remarks:
— Once the simulation game moves from ~ to =, stuttering is forbidden;

— Can view difference between ~ and = as a boolean prophecy variable.
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Weaktau simulation for FEZ2

S~t, t>t as before.

S =tiff
— t's CFG is the optimised version of s’s CFG; and
—V/, 38" sit. S ~;s' =t
(i.e., same as s ~ t except that the memories memories are unrelated.)
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A closer look at the RTL

FENCE

Patterns like that on the left are common.

nop

f \ FE1 and FE2 do not optimise these patterns.

if

ifm . It would be nice to hoist those fences out of the loop.

nop nop

l

return

FENCE
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A closer ook at the RTL

FENCE

nop

[\

if

l&o ifnot

nop nop

FENCE

Patterns like that on the left are common.

FE1 and FE2 do not optimise these patterns.

It would be nice—— )
Do you perform PRE?

Qut of the loop.

il *
E1E Lo

" '||' o, v
v" 'l X i e .
T NS oA

(Oh nlll l'a . ]

/ e b
am i
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A closer ook at the RTL

FENCE

Patterns like that on the left are common.

nop

f \ FE1 and FE2 do not optimise these patterns.
if
lfso ifnot It would be nice*— .

Do you perform PRE?

Qut of the loop.

nop nop

l

return

BTl

...adding a fence is always safe...
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Partial redundancy elimination

FENCE FENCE nop

PRE FE? o

AR s

if if if

lfso ifnot

nop

lfso ifnot
nop

FENCE

l

return

return

nop

nop

FENCE

return
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Partial redundancy elimination

- AT A: a backward analysis returning T if along
FENCE
B:?

some path after the current program point
there is an atomic instruction with no
intervening reads;

B: a forward analysis returning L if along all

paths to the current program point there is
a fence with no later reads or atomic
instructions.

Replace NOP with FENCE after conditionals If:
= - Breturns L

- A returns L
- A returns T on the other branch

return
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B returns 1:

| a previous fence will be eliminated if we insert a fence
Partial redu  at both branches of conditional nodes.

|A returns L:
the previous fence won't be removed by FE2.

g:_T A returns T on the other branch:

the other branch already makes the previous fence

/‘ S‘B:L partially redundant.

Ta orward analysis retarning L it along a

paths to the current program point there is
a fence with no later reads or atomic

iInstructions.
— Replace NOP with FENCE after conditionals If:
= - B returns L
- Areturns L

- A returns T on the other branch
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—valuation of the optimisations

— Insert MFENCES before every read (br), or after every write (aw).

— Count the MFENCE instructions in the generated code.

br br+FE1 aw aw+FE2 | aw+PRE+FE2
Dekker 3 2 5 4 4
Bakery 10 2 4 3 3
Treiber 5 2 3 1 1
Fraser 32 18 19 12 11
TL2 166 95 101 68 68
Genome 133 79 62 41 41
Labyrinth 231 98 63 42 42
SSCA 1264 490 420 367 367
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—valuation of the optimisations

— Insert MFENCES before every read (br), or after every write (aw).

— Cour

Important remark for your future work:

This is not a decent evaluation... we know nothing
about real code, and the number of fences is not a
good measure. But unclear how to do better.

http://evaluate.inf.usi.ch/

Labyrinth 231 98 63 42

Evaluation should be taken seriously by CS scientists!

42

SSCA 1264 490 420 367

367
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Conclusion
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Syllabus r
| o %

In these lectures we have covered the hardware models of
two modern computer architectures (x86 and Power/ARM - at least for
a large subset of their instruction set).

We have seen how compiler optimisations can also break concurrent
programs and the importance of defining the memory model of high-
level programming languages (and we have seen in detail the C++11
memory model).

We have also introduced some proof methods to reason about
concurrency.

After these lectures, you might have the feeling that multicore
programming is a mess and things can't just work.
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The memory models of modern
hardware are better understood.

Programming languages attempt
to specity and implement
reasonable memory models.

Researchers and programmers
are now Iinterested in these
problems.
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The memory models of modern
hardware are better understood.

g problems.
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The memory models of modern
hardware are better understood.

problems.
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All these lectures are based
on work done with/by my
colleagues. Thank you!
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And thank you all for
attending these lectures!

Please, fill the course evaluation form.
It is vital feedback to make a better course next year.
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