
Proof methods for concurrent programs

2. concurrent separation logic

Francesco Zappa Nardelli

INRIA Paris-Rocquencourt, MOSCOVA project-team

 francesco.zappa_nardelli@inria.fr

 http://moscova.inria.fr/~zappa/teaching/mpri/2010/

1Friday, 17 December 2010

mailto:francesco.zappa_nardelli@inria.fr
mailto:francesco.zappa_nardelli@inria.fr
http://moscova.inria.fr/~zappa/teaching/mpri/2009/
http://moscova.inria.fr/~zappa/teaching/mpri/2009/

Warm-up

Hoare logic:

• Commands operate on the state: C / s ⟶ C' / s';

• statements P are assertions on the state: s ⊨ P;

• a triple {P} C {Q} states that whenever C is executed in a state satisfying P and
the execution of C terminates, the state in which C’s execution terminates
satisfies Q;

• a logic system allows us to prove ⊢ {P} C {Q}. The logic system is sound.

Separation logic. All of the above plus:

• Special assertions, P * Q, E1 ⟼ E2, empty, to describe the heap part of the state.

2Friday, 17 December 2010

Warm-up

Special assertions, P * Q, E1 ⟼ E2, empty, to describe the heap part of the state.

Three axioms to reason about separation:

• write: { E ⟼ _ } [E] = E' { E ⟼ E' }

• dispose: { E ⟼ _ } dispose(E) { empty }

• alloc: { empty } x = cons(E1,…,En) { x ⟼ E1 * x+1 ⟼ E2 * … * x+(n-1) ⟼ En }

where E ⟼ _ is a shorthand for ∃ x. E ⟼ x .

Exercise: prove that { i ⟼ v } x := [i] { i ⟼ v ⋀ x = v } .

3Friday, 17 December 2010

Pure assertions

Remark: some assertions are independent of the heap, e.g. x = v.

Definition: an assertion P is pure, iff for all stores s and heaps h1 and h2, it holds

(s,h1) ⊢ P iff (s,h2) ⊢ P .

Some key properties of pure assertions:

P ⋀ Q ⇒ P * Q when P or Q is pure;

P * Q ⇒ P ⋀ Q when P and Q are pure;

(P ⋀ Q) * R ⇒ (P * R) ⋀ Q when Q is pure.

4Friday, 17 December 2010

The lseg predicate denotes list segments:

lseg [] (x,y) ≡ empty ∧ x = y

lseg v::α (x,y) ≡ ∃ j. x ⟼ v ∗ (x+1 ⟼ j) ∗ lseg α (j,y)

Exercise: prove that the triple below holds.

 { lseg a·α (i,k) } r := [i+1]; dispose i; dispose i+1; i := r { lseg α (i,k) }

Remark: it is important to be able to reason on the assertion. Prove, by
structural induction on α, that:

lseg α·β (x,y) ⇔ ∃ j. lseg α (x,j) ⋀ lseg β (j,y)

v2 vnx ...

Warm-up: list segments

v1 y

5Friday, 17 December 2010

Warm-up: a cyclic buffer

We implement a cyclic buffer using:

• an active list segment lseg α (i,j) (where α is the content of the buffer);

• an inactive list segment lseg β (j,i) (where β is arbitrary);

• an unchanged variable n records the combined length of the two lists.

When i=j the buffer is empty or full:

• a variable m records the length of the active list segment.

Inserting and deleting elements on the buffer must preserve the invariant:

∃ β. (lseg α (i,j) * lseg β (j,i)) ⋀ m = #α ⋀ n = #α + #β

(where # computes the length of a sequence).

6Friday, 17 December 2010

Adding x to the buffer can be done by the code below (under the hypothesis
that n-m > 0):

[j] := x;
j := [j+1];
m := m+1;

For reference: ∃ β. (lseg α (i,j) * lseg β (j,i)) ⋀ m = #α ⋀ n = #α + #β

Warm-up: a cyclic buffer

…

…

v1 v2 vm

i
j

7Friday, 17 December 2010

Adding x to the buffer can be done by the code below (under the hypothesis
that n-m > 0):

[j] := x;
j := [j+1];
m := m+1;

For reference: ∃ β. (lseg α (i,j) * lseg β (j,i)) ⋀ m = #α ⋀ n = #α + #β

Warm-up: a cyclic buffer

…

…

v1 v2 vm

i
j

x

8Friday, 17 December 2010

Adding x to the buffer can be done by the code below (under the hypothesis
that n-m > 0):

[j] := x;
j := [j+1];
m := m+1;

For reference: ∃ β. (lseg α (i,j) * lseg β (j,i)) ⋀ m = #α ⋀ n = #α + #β

Warm-up: a cyclic buffer

…

…

v1 v2 vm

i

j
x

9Friday, 17 December 2010

Adding x to the buffer can be done by the code below (under the hypothesis
that n-m > 0):

[j] := x;
j := [j+1];
m := m+1;

For reference: ∃ β. (lseg α (i,j) * lseg β (j,i)) ⋀ m = #α ⋀ n = #α + #β

Warm-up: a cyclic buffer

…

…

v1 v2 vm

i

j
x

10Friday, 17 December 2010

Warm-up: a cyclic buffer

Exercise: we prove that the code below inserts x in the buffer.

 { ∃ β. (lseg α (i,j) * lseg β (j,i)) ⋀ m = #α ⋀ n = #α + #β ⋀ n-m > 0 }
 { ∃ b,β. (lseg α (i,j) * lseg b·β (j,i)) ⋀ m = #α ⋀ n = #α + #b·β }
 { ∃ k,β. (lseg α (i,j) * j ⟼ _,k * lseg β (k,i)) ⋀ m = #α ⋀ n-1 = #α + #β }

[j] := x;
 { ∃ k,β. (lseg α (i,j) * j ⟼ x,k * lseg β (k,i)) ⋀ m = #α ⋀ n-1 = #α + #β }
 { ∃ k,β. j+1 ⟼ k * (lseg α (i,j) * j ⟼ x * lseg β (k,i)) ⋀ m = #α ⋀ n-1 = #α + #β }

j := [j+1];
 { ∃ l,β. l+1 ⟼ j * (lseg α (i,l) * l ⟼ x * lseg β (j,i)) ⋀ m = #α ⋀ n-1 = #α + #β }
 { ∃ l,β. (lseg α (i,l) * l ⟼ x,j * lseg β (j,i)) ⋀ m = #α ⋀ n-1 = #α + #β }
 { ∃ l,β. (lseg α·x (i,j) * lseg β (j,i)) ⋀ m+1 = #α·x ⋀ n = #α·x + #β }
 m := m+1;
 { ∃ l,β. (lseg α·x (i,j) * lseg β (j,i)) ⋀ m = #α·x ⋀ n = #α·x + #β }

11Friday, 17 December 2010

Warm-up: a cyclic buffer

Exercise: we prove that the code below inserts x in the buffer.

 { ∃ β. (lseg α (i,j) * lseg β (j,i)) ⋀ m = #α ⋀ n = #α + #β ⋀ n-m > 0 }
 { ∃ b,β. (lseg α (i,j) * lseg b·β (j,i)) ⋀ m = #α ⋀ n = #α + #b·β }
 { ∃ k,β. (lseg α (i,j) * j ⟼ _,k * lseg β (k,i)) ⋀ m = #α ⋀ n-1 = #α + #β }

[j] := x;
 { ∃ k,β. (lseg α (i,j) * j ⟼ x,k * lseg β (k,i)) ⋀ m = #α ⋀ n-1 = #α + #β }
 { ∃ k,β. j+1 ⟼ k * (lseg α (i,j) * j ⟼ x * lseg β (k,i)) ⋀ m = #α ⋀ n-1 = #α + #β }

j := [j+1];
 { ∃ l,β. l+1 ⟼ j * (lseg α (i,l) * l ⟼ x * lseg β (j,i)) ⋀ m = #α ⋀ n-1 = #α + #β }
 { ∃ l,β. (lseg α (i,l) * l ⟼ x,j * lseg β (j,i)) ⋀ m = #α ⋀ n-1 = #α + #β }
 { ∃ l,β. (lseg α·x (i,j) * lseg β (j,i)) ⋀ m+1 = #α·x ⋀ n = #α·x + #β }
 m := m+1;
 { ∃ l,β. (lseg α·x (i,j) * lseg β (j,i)) ⋀ m = #α·x ⋀ n = #α·x + #β }

11Friday, 17 December 2010

Be careful

Despite the appearances...

(after all, we are reasoning about the heap!)

…mastering separation logics takes time…

12Friday, 17 December 2010

Concurrent separation logic

1. threads that mind their own bussiness

13Friday, 17 December 2010

Threads that mind their own bussiness

Imagine a program composed by two threads, one updates [x], the other [y]:

What can we prove about it?

[x] := 4 || [y] := 5

14Friday, 17 December 2010

Threads that mind their own bussiness

Imagine a program composed by two threads, one updates [x], the other [y]:

1) We can give a (sequential) specification to each thread.

{ x ⟼ _ } { y ⟼ _ }

[x] := 4 || [y] := 5

{ x ⟼ 4 } { y ⟼ 5 }

15Friday, 17 December 2010

Threads that mind their own bussiness

Imagine a program composed by two threads, one updates [x], the other [y]:

1) We can give a (sequential) specification to each thread.

2) If x and y do not point to the same location, then we can guarantee that the
final state satisfies (x ⟼ 4 * y ⟼ 5) .

{ x ⟼ _ * y ⟼ _ }{ x ⟼ _ * y ⟼ _ }{ x ⟼ _ * y ⟼ _ }

{ x ⟼ _ } { y ⟼ _ }

[x] := 4 || [y] := 5

{ x ⟼ 4 } { y ⟼ 5 }

 { x ⟼ 4 * y ⟼ 5 } { x ⟼ 4 * y ⟼ 5 } { x ⟼ 4 * y ⟼ 5 }

16Friday, 17 December 2010

Parallel composition of non-interfering threads

{ P1 } C1 { Q1} { P2 } C2 { Q2 }

{ P1 * P2 } C1 || C2 { Q1 * Q2 }

if modifies(C1) ∩ fv(P2) = modifies(C2) ∩ fv(P1) = ∅, and
 modifies(C1) ∩ fv(C2) = modifies(C2) ∩ fv(C1) = ∅.

17Friday, 17 December 2010

Parallel composition of non-interfering threads

{ P1 } C1 { Q1} { P2 } C2 { Q2 }

{ P1 * P2 } C1 || C2 { Q1 * Q2 }

if modifies(C1) ∩ fv(P2) = modifies(C2) ∩ fv(P1) = ∅, and
 modifies(C1) ∩ fv(C2) = modifies(C2) ∩ fv(C1) = ∅.

... apart from the (rare) moments of explicit
communication, processes are to be
regarded as completely independent of
each other...

17Friday, 17 December 2010

Parallel composition of non-interfering threads

Remark: the "proof figure" below

is an annotation form for

{ x ⟼ _ } [x] := 4 { x ⟼ 4 } { y ⟼ _ } [y] := 5 { y ⟼ 5 }

{ x ⟼ _ * y ⟼ _ } [x] := 4 || [y] := 5 { x ⟼ 4 * y ⟼ 5 }

{ x ⟼ _ * y ⟼ _ }{ x ⟼ _ * y ⟼ _ }{ x ⟼ _ * y ⟼ _ }

{ x ⟼ _ } { y ⟼ _ }

[x] := 4 || [y] := 5

{ x ⟼ 4 } { y ⟼ 5 }

 { x ⟼ 4 * y ⟼ 5 } { x ⟼ 4 * y ⟼ 5 } { x ⟼ 4 * y ⟼ 5 }

18Friday, 17 December 2010

Example: parallel disposal of a tree

tree p ≡ (p = nil ⋀ empty) ⋁ (∃ j, k. p ⟼ j ∗ p+1 ⟼ k ∗ tree j ∗ tree k)

 procedure DispTree(p) {
 if p != nil then {
 a := [p];
 b := [p+1];
 DispTree(a) || DispTree(b);
 dispose(p+1);
 dispose(p);
 }

Exercise: assume that { tree p } DispTree(p) { empty } holds.
 Prove that the body of DispTree satisfies { tree p } body { empty }.

This is an example of a shape predicate: it
only describes the memory layout of the
data structure, not the actual content.

This is a recursive procedure: to prove its
correctness you can assume that the

specification holds for the recursive calls.
Cheating: in these lectures we won't

formalise procedure calls...This is a bad
implementation of parallel
disposal of a tree, why?

19Friday, 17 December 2010

Concurrent separation logic

2. synchronising racy threads

20Friday, 17 December 2010

Racy programs

In current practice, most programs of interest are racy, e.g.:

{ x ⟼ _ } { x ⟼ _ }

[x] := 10 || [x] := 20

{ x ⟼ 10 } { x ⟼ 20}

But we cannot send x ⟼ _ to both threads:

(x ⟼ _ * x ⟼ _) ⇔ F

21Friday, 17 December 2010

Racy programs

In current practice, most programs of interest are racy, e.g.:

{ x ⟼ _ } { x ⟼ _ }

[x] := 10 || [x] := 20

{ x ⟼ 10 } { x ⟼ 20}

But we cannot send x ⟼ _ to both threads:

(x ⟼ _ * x ⟼ _) ⇔ F

This program does not have a race-free start state… to reason about such
programs we must be explicit about the granularity of the interactions.

22Friday, 17 December 2010

Racy programs

In current practice, most programs of interest are racy, e.g.:

{ x ⟼ _ } { x ⟼ _ }

[x] := 10 || [x] := 20

{ x ⟼ 10 } { x ⟼ 20}

But we cannot send x ⟼ _ to both threads:

(x ⟼ _ * x ⟼ _) ⇔ F

This program does not have a race-free start state… to reason about such
programs we must be explicit about the granularity of the interactions.

 ...designing a program to control the
fantastic number of combinations involved
in arbitrary interleaving...

22Friday, 17 December 2010

Conditional critical regions (Hoare, 72)

A program is a collection of resources shared by concurrent threads:

 init

 resource r1 (list of variables) … resource rn (list of variables)

 C1 || … || Cm

A thread can obtain an exclusive access to a resource:

 with r when B do C

Constraints:

• if a variable belongs to a resource, it cannot appear in a parallel process
except in a critical section for that resource;

• if a variable is changed in one process, it cannot appear in another unless it
belongs to a resource.

23Friday, 17 December 2010

Examples of racy programs

• if a variable belongs to a resource, it cannot appear in a parallel process
except in a critical section for that resource;

• if a variable is changed in one process, it cannot appear in another unless it
belongs to a resource.

These programs do not respect the constraints above:

• x := 3 || x := x + 1

• x := 3 || with r when true do x := x + 1

In general, races depend on aliasing:

• [x] := 3 || [y] := 4

Concurrent separation logic
will rule out all the races!

24Friday, 17 December 2010

(Informal) semantics of CCRs

• The init command is executed first (and allocates some resources).

• A declaration

resource r (x1,…,xn)

states that the variables x1,…,xn can only be accessed while holding the
resource r.

• The command

with r when B do C

executes C while holding the resource r: no other thread can access the
variables x1,…,xn while C executes. However the execution of C is postponed
until the statement B is true.

25Friday, 17 December 2010

Programming a bounded buffer with CCRs

Remark: to simplify notations we use arrays instead of pointers.

Buffer space and pointers are encapsulated in the buffer resource:

and here the producer and consumer code:

resource buffer (
 item pool[n];
 int count, in, out;
)

with buffer when (count < n) {
 pool[in] = nextp;
 in = (in+1) % n;
 count++;
}

Producer:

with buffer when (count > 0) {
 nextc = pool[out];
 out = (out+1) % n;
 count--;
}

Consumer:

26Friday, 17 December 2010

Example: semaphores

We can program binary semaphores with CCRs:

 s := 1;

 resource s (s)

 P(s) = with s when s = 1 do s := 0

 V(s) = with s when s = 0 do s := 1

Remark: usually CCRs are implemented using semaphores, not the other way
round. However CCRs are simpler from a logical point of view.

Can we associate some property (some invariant?) to a semaphore s?

27Friday, 17 December 2010

Example: semaphores

Typical use of a semaphore s:

The location [10] is protected by / associated to / (owned by) the semaphore.

Idea:

RIs = (s = 0 ⋀ empty) ⋁ (s = 1 ⋀ 10 ⟼ _)

P(s) P(s)

[10] := 43 || [10] := 57

V(s) V(s)

When the semaphore is not held, no
thread can access the location [10].

 (because no thread can have 10 ⟼ _ in its
precondition)

when the semaphore is held, the
location [10] is owned by the
thread that holds the semaphore.

28Friday, 17 December 2010

Axioms for CCRs

{ P } init { RI1 * … RIn * P' } { P' } C1 || … || Cn { Q }

{P} init; resource r1 (…) … resource rn (…); C1 || … || Cn { RI1 * … RIn * Q }

The init code allocates the resources stored in the resource invariants; the
threads are then executed. Threads grab control of the resource invariants
when entering the CCRs:

{ (P * RIr) ⋀ S } C { Q * RIr}

{ P } with r when S do C { Q }

Idea: inside the critical region, the threads has visibility of the state associated
to (protected by) the resource.

29Friday, 17 December 2010

Example: semaphores

Exercise: suppose that

RIs = (s = 0 ⋀ empty) ⋁ (s = 1 ⋀ 10 ⟼ _)

Can we prove that the following holds?

{ empty }{ empty }{ empty }
P(s) P(s)
[10] := 43 || [10] := 57
V(s) V(s)

{ empty }{ empty }{ empty }

30Friday, 17 December 2010

Example: semaphores

Reminder: RIs = (s = 0 ⋀ empty) ⋁ (s = 1 ⋀ 10 ⟼ _)

Zoom on the proof of thread 1:

{ empty }
 P(S)
{ 10 ⟼ _ }
 [10] := 43
{ 10 ⟼ _ }
 V(s)
{ empty }

Key observation: the resource 10 ⟼ _ "flows" from the RI to the thread and back!

{ empty * s = 1 * RIs } s := 0 { s = 0 * 10 ⟼ _ * RIs }

{ empty } with s when s=1 do s := 0 { 10 ⟼ _ }

{ 10 ⟼ _ * s = 0 * RIs } s := 1 { s = 1 * RIs }

{ 10 ⟼ _ } with s when s = 0 do s := 1 { empty }

31Friday, 17 December 2010

Example: semaphores

Reminder: RIs = (s = 0 ⋀ empty) ⋁ (s = 1 ⋀ 10 ⟼ _)

Zoom on the proof of thread 1:

{ empty }
 P(S)
{ 10 ⟼ _ }
 [10] := 43
{ 10 ⟼ _ }
 V(s)
{ empty }

Key observation: the resource 10 ⟼ _ "flows" from the RI to the thread and back!

{ empty * s = 1 * RIs } s := 0 { s = 0 * 10 ⟼ _ * RIs }

{ empty } with s when s=1 do s := 0 { 10 ⟼ _ }

{ 10 ⟼ _ * s = 0 * RIs } s := 1 { s = 1 * RIs }

{ 10 ⟼ _ } with s when s = 0 do s := 1 { empty }

Since s = 0 the RI cannot
hold any resource (empty).

The resource 10 ⟼ _ gets
into the scope of the thread.

31Friday, 17 December 2010

Example: semaphores

Reminder: RIs = (s = 0 ⋀ empty) ⋁ (s = 1 ⋀ 10 ⟼ _)

Zoom on the proof of thread 1:

{ empty }
 P(S)
{ 10 ⟼ _ }
 [10] := 43
{ 10 ⟼ _ }
 V(s)
{ empty }

Key observation: the resource 10 ⟼ _ "flows" from the RI to the thread and back!

{ empty * s = 1 * RIs } s := 0 { s = 0 * 10 ⟼ _ * RIs }

{ empty } with s when s=1 do s := 0 { 10 ⟼ _ }

{ 10 ⟼ _ * s = 0 * RIs } s := 1 { s = 1 * RIs }

{ 10 ⟼ _ } with s when s = 0 do s := 1 { empty }

31Friday, 17 December 2010

Example: semaphores

Exercise: can you prove the triple below under the stronger invariant?

RIs = (s = 0 ⋀ empty) ⋁ (s = 1 ⋀ 10 ⟼ 57)

{ empty }{ empty }{ empty }
P(s) P(s)
[10] := 43 || [10] := 57
V(s) V(s)

{ empty }{ empty }{ empty }

With the stronger invariant we
cannot prove that the invariant
holds after executing V(s)!

32Friday, 17 December 2010

Remark: a dull specification?

⊢ { empty } P(s); [10]:=43; V(s) || P(s); [10]:=57; V(s) { empty }

holds under the invariant RIs = (s = 0 ⋀ empty) ⋁ (s = 1 ⋀ 10 ⟼ _).

This guarantees that if the program is executed in a state that satisifies { empty
* RIs }, if the program terminates, it ends in a state that satisfies { empty * RIs }.

Even if the precondition and the postcondition does not look very interesting,
the triple (also) guarantees that:

• the program is race-free;
 all the accesses to the shared resource were correctly protected by locks

• the resource invariant was preserved by all the threads;

• no memory leaks occurred.

33Friday, 17 December 2010

Producer/consumer via semaphores

Two semaphores. Initially free = 1 and busy = 0.

For s being either free or busy, the semaphore invariant is:

RIs = (s = 0 ⋀ empty) ⋁ (s = 1 ⋀ 10 ⟼ _)

Exercise: prove the triple above.

{ empty }{ empty }{ empty }

P(free) P(busy)
[10] := 43 || x := [10]
V(busy) V(free)

{ empty }{ empty }{ empty }

34Friday, 17 December 2010

Producer/consumer via semaphores

Initially free = 1 and busy = 0.

RIs = (s = 0 ⋀ empty) ⋁ (s = 1 ⋀ 10 ⟼ _)

{ empty }{ empty }{ empty }

{ empty } { empty }

P(free) P(busy)

{ 10 ⟼ _ } { 10 ⟼ _ }

[10] := 43 || x := [10]

{ 10 ⟼ _ } { 10 ⟼ _ }

V(busy) V(free)

{ empty } { empty }

{ empty }{ empty }{ empty }

free busy

thread 1 thread 2

This diagram records the
current owner of the

ressource [10].

35Friday, 17 December 2010

Initially free = 1 and busy = 0.

RIs = (s = 0 ⋀ empty) ⋁ (s = 1 ⋀ 10 ⟼ _)

Producer/consumer via semaphores

free busy

thread 1 thread 2

{ empty }{ empty }{ empty }

{ empty } { empty }

P(free) P(busy)

{ 10 ⟼ _ } { 10 ⟼ _ }

[10] := 43 || x := [10]

{ 10 ⟼ _ } { 10 ⟼ _ }

V(busy) V(free)

{ empty } { empty }

{ empty }{ empty }{ empty }

36Friday, 17 December 2010

Producer/consumer via semaphores

Initially free = 1 and busy = 0.

RIs = (s = 0 ⋀ empty) ⋁ (s = 1 ⋀ 10 ⟼ _)

free busy

thread 1 thread 2

{ empty }{ empty }{ empty }

{ empty } { empty }

P(free) P(busy)

{ 10 ⟼ _ } { 10 ⟼ _ }

[10] := 43 || x := [10]

{ 10 ⟼ _ } { 10 ⟼ _ }

V(busy) V(free)

{ empty } { empty }

{ empty }{ empty }{ empty }

37Friday, 17 December 2010

Initially free = 1 and busy = 0.

RIs = (s = 0 ⋀ empty) ⋁ (s = 1 ⋀ 10 ⟼ _)

Producer/consumer via semaphores

free busy

thread 1 thread 2

{ empty }{ empty }{ empty }

{ empty } { empty }

P(free) P(busy)

{ 10 ⟼ _ } { 10 ⟼ _ }

[10] := 43 || x := [10]

{ 10 ⟼ _ } { 10 ⟼ _ }

V(busy) V(free)

{ empty } { empty }

{ empty }{ empty }{ empty }

38Friday, 17 December 2010

Initially free = 1 and busy = 0.

RIs = (s = 0 ⋀ empty) ⋁ (s = 1 ⋀ 10 ⟼ _)

Producer/consumer via semaphores

free busy

thread 1 thread 2

{ empty }{ empty }{ empty }

{ empty } { empty }

P(free) P(busy)

{ 10 ⟼ _ } { 10 ⟼ _ }

[10] := 43 || x := [10]

{ 10 ⟼ _ } { 10 ⟼ _ }

V(busy) V(free)

{ empty } { empty }

{ empty }{ empty }{ empty }

39Friday, 17 December 2010

Remarks

• Each semaphore invariant talks only about itself, not about other semaphores
or processes.

• Each assertion within a process talks about only its own state, not the state of
the other process or even the semaphores.

• We do not maintain 0 ≤ free + busy ≤ 1 as a global invariant.

• Semaphores are “logically attached” to resources. P and V are ownership
transformers.

40Friday, 17 December 2010

Example: a single-place buffer

 Initially full := false.

 resource buf(c, full)

Filling the buffer:

Emptying the buffer:

Invariant: RI = (empty ⋀ ¬full) ⋁ (c ⟼ _ ⋀ full)

put (m) = with buf when ¬full do {
 c := m;
 full := true;
 }

get (n) = with buf when full do {
 n := c;
 full := false;
 }

passing a pointer,
not the value.

41Friday, 17 December 2010

Example: a single-place buffer

{ empty }{ empty }{ empty }
full := false;full := false;full := false;

{ empty ⋀ ¬full }{ empty ⋀ ¬full }{ empty ⋀ ¬full }
resource buf (c, full)resource buf (c, full)resource buf (c, full)

{ empty * empty * RI }{ empty * empty * RI }{ empty * empty * RI }

{ empty } { empty }
x := cons(3); with buf when full do

{ x ⟼ 3 } { empty * ((c ⟼ _) ⋀ full) }
with buf when ¬full do || y := c; full := false;

{ (x ⟼ 3)*(empty ⋀ ¬full) } { (y ⟼ _) * (empty ⋀ ¬full) }
 c := x; full := true; dispose (y);

{ c ⟼ 3 * (empty ⋀ full) } { empty }

{ empty * RI }

{ empty * empty * RI }{ empty * empty * RI }{ empty * empty * RI }

{ RI }{ RI }{ RI }

get(y)

put(x)

 RI = (empty ⋀ ¬full) ⋁ (c ⟼ _ ⋀ full)

42Friday, 17 December 2010

Ownership is in the eye of the asserter

Transfer of ownership is not determined operationally:

whatever we transfer depends on what we want to prove.

In the last example ownership of the location allocated by thread 1 had to be
transferred to thread 2, so that thread 2 could safely dispose it:

Reminder: RI = (emp ⋀ ¬full) ⋁ (c ⟼ _ ⋀ full)

x:=cons(3); get(y);

put(x); || use(y);

dispose(y)

43Friday, 17 December 2010

Ownership is in the eye of the asserter

Transfer of ownership is not determined operationally:

whatever we transfer depends on what we want to prove.

The code below is silly, but should be provable:

Exercise: prove the code above, using the invariant

RI = (emp ⋀ ¬full) ⋁ (emp ⋀ full)

x:=cons(3); get(y);

put(x); ||

dispose(x);

44Friday, 17 December 2010

Ownership is in the eye of the asserter

Transfer of ownership is not determined operationally:

whatever we transfer depends on what we want to prove.

However you won't be able to prove:

because ownership cannot flow both to thread 1 and thread 2.

This is fortunate: this program attempts to dispose the same pointer twice.

x:=cons(3); get(y);

put(x); || dispose(y);

dispose(x);

45Friday, 17 December 2010

Simple exercises

• Is the triple below derivable?

• And this?

{ empty }
 x := cons(3);
 z := cons(3);
 [x] := 4 || [z] := 5;
{ x ⟼ 4 * z ⟼ 5 }

{ empty }
 x := cons(3);
 [x] := 4 || [x] := 5;
{ x ⟼ _ }

• And this?

 { empty }
 x := 4 || x := 5;
 { empty }

• And this?

 { y = x+1 }
 x := 4 || y := y+1;
 { y = x+2 }

46Friday, 17 December 2010

Simple exercises

• Is the triple below derivable?

• And this?

{ empty }
 x := cons(3);
 z := cons(3);
 [x] := 4 || [z] := 5;
{ x ⟼ 4 * z ⟼ 5 }

{ empty }
 x := cons(3);
 [x] := 4 || [x] := 5;
{ x ⟼ _ }

• And this?

 { empty }
 x := 4 || x := 5;
 { empty }

• And this?

 { y = x+1 }
 x := 4 || y := y+1;
 { y = x+2 }

This is a stack race!

Here the race is betwen x := 4
and the proof of

{ y = x+1 } y := y+1 { y = x+2 }

46Friday, 17 December 2010

Simple exercises

• Is the triple below derivable?

• And this?

{ empty }
 x := cons(3);
 z := cons(3);
 [x] := 4 || [z] := 5;
{ x ⟼ 4 * z ⟼ 5 }

{ empty }
 x := cons(3);
 [x] := 4 || [x] := 5;
{ x ⟼ _ }

• And this?

 { empty }
 x := 4 || x := 5;
 { empty }

• And this?

 { y = x+1 }
 x := 4 || y := y+1;
 { y = x+2 }

This is a stack race!

Here the race is betwen x := 4
and the proof of

{ y = x+1 } y := y+1 { y = x+2 }

The logic forbids all kinds of races.

46Friday, 17 December 2010

Exercise: parallel mergesort

Let ls(p) = (empty ∧ p = nil) ⋁ ∃ j. p ⟼ _ ∗ (p+1 ⟼ j) ∗ ls(j).

Suppose that the functions split and merge obey to the specifications

 { ls(p) } split(r,p) { ls(r) }

 { ls(p) * ls(q) } merge(r,p,q) { ls(r) }

Prove that:

 { ls(p) }
 mergesort(r,p) {
 if p = Nil then r := p;
 else {
 split(q,p);
 mergesort(q1,q) || mergesort(p1,p);
 merge(r,p1,q1)
 { ls(r) }

47Friday, 17 December 2010

Exercise: parallel mergesort

Let ls(p) = (empty ∧ p = nil) ⋁ ∃ j. p ⟼ _ ∗ (p+1 ⟼ j) ∗ ls(j).

Suppose that the functions split and merge obey to the specifications

 { ls(p) } split(r,p) { ls(r) }

 { ls(p) * ls(q) } merge(r,p,q) { ls(r) }

Prove that:

 { ls(p) }
 mergesort(r,p) {
 if p = Nil then r := p;
 else {
 split(q,p);
 mergesort(q1,q) || mergesort(p1,p);
 merge(r,p1,q1)
 { ls(r) }

This is another example of a shape predicate: it
only describes the memory layout of the data

structure, not the actual content.

Concurrent separation logic is decidable for
shape predicates.

 (well, you still have to supply the loop invariants).

Check out the SmallFoot tool.

47Friday, 17 December 2010

Exercise: parallel mergesort

Let ls(p) = (empty ∧ p = nil) ⋁ ∃ j. p ⟼ _ ∗ (p+1 ⟼ j) ∗ ls(j).

Suppose that the functions split and merge obey to the specifications

 { ls(p) } split(r,p) { ls(r) }

 { ls(p) * ls(q) } merge(r,p,q) { ls(r) }

Prove that:

 { ls(p) }
 mergesort(r,p) {
 if p = Nil then r := p;
 else {
 split(q,p);
 mergesort(q1,q) || mergesort(p1,p);
 merge(r,p1,q1)
 { ls(r) }

47Friday, 17 December 2010

Dynamic partitioning idioms

• Memory Managers, Thread Pools, Connection Pools;

• efficient Message Passing (copy avoiding);

• double-buffered I/O;

• many semaphore programs.

These idioms underlie much fundamental code: Microkernel OS designs, web
servers, network packet processing, etc...

Old program design ideas, reflected in concurrent separation logic.

Question: are we done?

48Friday, 17 December 2010

No: Reynolds counterexample

This logic is inconsistent! We can derive:

 { x ⟼ _ } with r when true do skip { F }

where the resource r() has invariant RI = T.

The triple states that the program diverges, while obviously it does not.

Exercise: can you find such derivation?

49Friday, 17 December 2010

No: Reynolds counterexample

This logic is inconsistent! We can derive:

 { x ⟼ _ } with r when true do skip { F }

where the resource r () has invariant RI = T.

Let one be a shorthand for x ⟼ _. From:

{ T } skip { T }

{ (emp ⋁ one) * True } skip { emp * True }

{ emp ⋁ one } with r when true do skip { emp }

we can derive:

 { emp ⋁ one } with … { emp }
 { emp } with … { emp }

{ emp * one } with … { emp * one } { emp ⋁ one } with … { emp }
{ one } with … { one } { one } with … { emp}

{ one ⋀ one } with r when true do skip { emp ⋀ one }
{ one } with r when true do skip { false }

50Friday, 17 December 2010

What the Reynolds counterexample implies

Trouble if you have all of:

{ P } C { Q }

{ P * R } C { Q * R }

The semantics of P * Q is nondeterministic:

∃ h1, h2. dom(h1) ∩ dom(h2) = ∅ ⋀ h1 ⊕ h2 = h ⋀ (s,h1) ⊨ P ⋀ (s,h2) ⊨ Q

The resource invariant T does not precisely nail down the storage owned by the
resource; it is ambiguous. And the connective * can be satisfied with different
splittings.

{ P1 } C { Q1 } { P2 } C { Q2 }

{ P1 ⋀ P2 } C { Q1 ⋀ Q2 }

{ (P * RIr) ⋀ S } C { Q * RIr }

{ P } with r when S do C { Q }

51Friday, 17 December 2010

What the Reynolds counterexample implies

Trouble if you have all of:

{ P } C { Q }

{ P * R } C { Q * R }

The semantics of P * Q is nondeterministic:

∃ h1, h2. dom(h1) ∩ dom(h2) = ∅ ⋀ h1 ⊕ h2 = h ⋀ (s,h1) ⊨ P ⋀ (s,h2) ⊨ Q

The resource invariant T does not precisely nail down the storage owned by the
resource; it is ambiguous. And the connective * can be satisfied with different
splittings.

{ P1 } C { Q1 } { P2 } C { Q2 }

{ P1 ⋀ P2 } C { Q1 ⋀ Q2 }

{ (P * RIr) ⋀ S } C { Q * RIr }

{ P } with r when S do C { Q }

If we can nail down the storage owned more
precisely, perhaps we can get around this
problem...

51Friday, 17 December 2010

Precise predicates

A predicate P is precise if for every state, there is at most one substate
satisfying it. Formally:

P is precise if for all s, h, there exists at most one h′ ⊑ h where s,h′ ⊨ P .

 Examples of imprecise predicates:

T 10 ⟼ _ ⋁ 11 ⟼ _

ls(x,y) = (x = y ∧ empty) ∨ (∃x' .x ⟼ x' ∗ ls(x',y))

Examples of precise predicates:

empty 10 ⟼ _ (empty ∧ ¬full) ∨ (c ⟼ _ ∧ full)

ls(x,y) = if (x = y) then empty else ∃x' .x ⟼ x' ∗ ls(x',y)

52Friday, 17 December 2010

A sound separation logic

Consider concurrent separation logic with the restriction that

Notation: let Γ define all the resources, and let inv(Γ) *-conjunction of all the
resource invariants.

Theorem:

 If { P } C { Q } is provable, every finite computation from a state satisfying P * inv Γ,

• is error free; and

• ends in a state satisfying Q * inv Γ.

all the resource invariants are precise.

53Friday, 17 December 2010

A sound separation logic

Consider concurrent separation logic with the restriction that

Notation: let Γ define all the resources, and let inv(Γ) *-conjunction of all the
resource invariants.

Theorem:

 If { P } C { Q } is provable, every finite computation from a state satisfying P * inv Γ,

• is error free; and

• ends in a state satisfying Q * inv Γ.

all the resource invariants are precise.

We are not done: we must define what is a computation of C.

53Friday, 17 December 2010

Soundness of concurrent separation logic

Brookes proof

Alternative proofs:

• Vafeiadis, Concurrent separation logic and operational semantics

• Hayman, Winskel, Independence and concurrent separation logic (LICS 06)

?
54Friday, 17 December 2010

Disclaimer

The purpose of the following section is only to give an overview of the proof of
soundness of concurrent separation logic, to characterise what error-free
means operationally, and discover which is the role of precise predicates.

A simpler and more elegant proof (which unfortunately does not prove that
programs verified using CSL do not have data-races) can be found here:

 Vafeiadis, Concurrent separation logic and operational semantics.

http://www.mpi-sws.org/~viktor/cslsound/

55Friday, 17 December 2010

http://www.mpi-sws.org/~viktor/cslsound/
http://www.mpi-sws.org/~viktor/cslsound/

Brookes's semantic analysis: the big picture

1. The denotation of a command is a set of traces:

• traces captures all the interactions of the command with an arbitrary state;
• the trace abort captures a race.

2. An LTS defines the action of a trace on a state:

• the LTS goes to the state abort if the trace performs an access outside of the
domain of the state, or if the trace is abort.

3. Command C is race-free from state s, if for all traces α ∈ [[C]], ¬ s ⇒ abort .

4. Intuition (but we'll need one more idea):

α

if {P} C {Q}, then every finite computation of C from a state satisfying
P * inv Γ, is race-free, and ends in a state satisfying Q * inv Γ.

56Friday, 17 December 2010

1. denotation of commands

1. The denotation of a command is a set of traces

 - traces captures all the interactions of a command with an arbitrary state:

e.g. [[x := i+1]] = { i=v . x:=v+1 | v ∈ Value } .

 - the trace abort captures a race:

e.g. [[x := 1 || x := 2]] = { x:=1 . x:=2 , x:=2 . x:=1, abort }

 Special care required to define the denotation of || .

57Friday, 17 December 2010

1. actions and traces

A command denotes a set of traces. A trace is a sequence of actions:

λ ranges over actions. A trace can be finite or infinite. α, β range over traces.

Concatenation of traces is defined modulo:

α.δ.β = α.β α.abort.β = α.abort

δ idle

i=v, i:=v read, write

[v]=v', [v]:=v' lookup, update

alloc(v, L), disp(v) allocate, dispose

try(r), acq(r), rel(r) try, acquire, release

abort race detected

58Friday, 17 December 2010

1. clauses (1)

sequential constructs

pointer operations

}
}

59Friday, 17 December 2010

1. clauses (2)

where

synchronisation

parallel composition

Key ideas:
 1) processes start with no resources;
 2) resources are mutually exclusive;
 3) races produce abort.

60Friday, 17 December 2010

We rely on an auxiliary operator on traces:

• it builds all the traces obtained by interleaving the actions of the two threads

• in doing so, it keeps track of the resources allocated by each thread, and
looks for data races.

Key ideas:

 1) processes start with no resources;
 2) resources are mutually exclusive;
 3) races produce abort.

1. clauses (3)

61Friday, 17 December 2010

1. (3) resource enabling

Let A1 and A2 be sets of resources.

What a process can do depends on its resources and those of its environment.
For that, we define the resource enabling relation:

Intuition: a process holding the resources A1 can do λ in an environment that
holds the resources A2.

62Friday, 17 December 2010

1. (3) interference and interleaving

Two actions interfere if one write to a variable or a cell used by the other:

We can then define (fair, resource sensitive, race-detecting) interleaving:

iff or

63Friday, 17 December 2010

[[x := 1 || y := 1]] = { x:=1 y:=1, y:=1 x:=1 }

[[x := 1 || x := 1]] = { x:=1 x:=1, abort }

[[with r do x := 1]] = (try r)* acq r x:=1 rel r ∪ (try r)ω

[[with r do x := 1 || with r do x := 2]] =

 (try r)* acq r x:=1 rel r ∪ (try r)ω { } || { } (try r)* acq r x:=2 rel r ∪ (try r)ω =

 (try r)* acq r (try r)* x:=1 (try r)* rel r (try r)* acq r x:=2 rel r

 ∪ (try r)* acq r (try r)* x:=2 (try r)* rel r (try r)* acq r x:=1 rel r

 ∪ (try r)* acq r (try r)* x:=1 (try r)* rel r (try r)ω

 ∪ (try r)* acq r (try r)* x:=2 (try r)* rel r (try r)ω

 ∪ (try r)ω

1. Examples

64Friday, 17 December 2010

[[x := 1 || y := 1]] = { x:=1 y:=1, y:=1 x:=1 }

[[x := 1 || x := 1]] = { x:=1 x:=1, abort }

[[with r do x := 1]] = (try r)* acq r x:=1 rel r ∪ (try r)ω

[[with r do x := 1 || with r do x := 2]] =

 (try r)* acq r x:=1 rel r ∪ (try r)ω { } || { } (try r)* acq r x:=2 rel r ∪ (try r)ω =

 (try r)* acq r (try r)* x:=1 (try r)* rel r (try r)* acq r x:=2 rel r

 ∪ (try r)* acq r (try r)* x:=2 (try r)* rel r (try r)* acq r x:=1 rel r

 ∪ (try r)* acq r (try r)* x:=1 (try r)* rel r (try r)ω

 ∪ (try r)* acq r (try r)* x:=2 (try r)* rel r (try r)ω

 ∪ (try r)ω

1. Examples

here acq r by
thread 2 is not
enabled

64Friday, 17 December 2010

[[x := 1 || y := 1]] = { x:=1 y:=1, y:=1 x:=1 }

[[x := 1 || x := 1]] = { x:=1 x:=1, abort }

[[with r do x := 1]] = (try r)* acq r x:=1 rel r ∪ (try r)ω

[[with r do x := 1 || with r do x := 2]] =

 (try r)* acq r x:=1 rel r ∪ (try r)ω { } || { } (try r)* acq r x:=2 rel r ∪ (try r)ω =

 (try r)* acq r (try r)* x:=1 (try r)* rel r (try r)* acq r x:=2 rel r

 ∪ (try r)* acq r (try r)* x:=2 (try r)* rel r (try r)* acq r x:=1 rel r

 ∪ (try r)* acq r (try r)* x:=1 (try r)* rel r (try r)ω

 ∪ (try r)* acq r (try r)* x:=2 (try r)* rel r (try r)ω

 ∪ (try r)ω

1. Examples

now, acr r by
thread 2 is
enabled

here acq r by
thread 2 is not
enabled

64Friday, 17 December 2010

2. The action of a trace on a state

The state is store + heap + resource:

• global store: s : var ⇀ value ;

• global heap: h : loc ⇀ value ;

• resources A held by the process.

Actions cause state change, and either end in a new state, or abort.

65Friday, 17 December 2010

2. the LTS that relates states and actions (1)

66Friday, 17 December 2010

2. the LTS that relates states and actions (2)

A global computation is an executable sequence of actions:

67Friday, 17 December 2010

3. Error freedom

Definition: a command C is error-free if from (s,h) iff

forall α ∈ [[C]]. ¬ ((s,h,{}) ⇒ abort) .

Example:

 dispose x || dispose y

is error-free from all the states s such that ¬(s(x) = s(y)) ⋀ s(x), s(y) ∈ dom(h).

α

68Friday, 17 December 2010

3. Error freedom

Definition: a command C is error-free if from (s,h) iff

forall α ∈ [[C]]. ¬ ((s,h,{}) ⇒ abort) .

Example:

 dispose x || dispose y

is error-free from all the states s such that ¬(s(x) = s(y)) ⋀ s(x), s(y) ∈ dom(h).

α

No dangling
pointers!

race freeprograms!

68Friday, 17 December 2010

4. A theorem?

It would be natural to define validity of { P } C { Q } as:

Theorem:

{ P } C { Q } if every finite computation of C from a state satisfying P * inv Γ,

1) is error free,

2) ends in a state satisfying Q * inv Γ.

Proof: It is natural to proceed by induction on the derivation of {P} C {Q}. But…
can you prove the case where C is C1 || C2 and the last rule is the rule for parallel
composition?

69Friday, 17 December 2010

4. A theorem?

It would be natural to define validity of { P } C { Q } as:

Theorem:

{ P } C { Q } if every finite computation of C from a state satisfying P * inv Γ,

1) is error free,

2) ends in a state satisfying Q * inv Γ.

Proof: It is natural to proceed by induction on the derivation of {P} C {Q}. But…
can you prove the case where C is C1 || C2 and the last rule is the rule for parallel
composition?

NO! This definition is not compositional: finite computations
of C look at C in its entirety, and do not give enough
informations about the computations performed by C1 and C2.

Not yet!

69Friday, 17 December 2010

Compositionality

• C1 behaviour defines the evolution of the blue part of the heap;

• but all the red part is not constrained at all by C1, and might change under
the influence of C2;

• if the semantics of C1 is defined in terms of the whole heap, it is tricky to
derive it from the behaviour of C1 || C2…

Idea: define the semantics of the thread only in terms of the heap it owns!

C1 || C2

imagine C1 owns the blue part of the heap...

heap

70Friday, 17 December 2010

Local computations

Idea: keep track of the local state of each thread. The local state is defined by:

subject the condition

dom(s) ∩ owned(Γ) = owned(Γ|A).

Local store only contains protected variables for which the process has
resources.

A process starts with only non-critical data in its local state:

• local state grows when resource is acquired;

• local state shrinks when resource is released;

• error if program breaks design rules.

We can define another LTS, that captures the local effects.

71Friday, 17 December 2010

Local effects: acquire and release

The rule for acq r imports into the local state the part of the stack and of the
heap protected by r.

 Similarly for rel r.

The heap h' is uniquely
determined because the
invariant R is precise.

72Friday, 17 December 2010

Local effects: other transitions

All the other transitions are inherited from the global semantics. E.g. (excerpt):

(in the last rule, the extra condition ensures that the variable being updated is
does not belong to a resource).

73Friday, 17 December 2010

Local effects: abort transitions

Two new abort rules (plus all the cases as in the global semantics):

- cannot update a variable
protected by a resource not
owned.

- when releasing a resource,
the associated invariant must
hold.

74Friday, 17 December 2010

Local computations

Local computation captures what a thread sees of a computation.

Assumes that the environment:

• respects the resource rules;

• interferes only on synchronisation.

75Friday, 17 December 2010

A local computation of put || (get ; dispose y)

This can be decomposed into local computations of put and of get; dispose y...

76Friday, 17 December 2010

The local computations of put and get || dispose y

put

get || dispose y

77Friday, 17 December 2010

Validity

Theorem: all provable formulas are valid.

Proof: uses local states and local effects, shows that each rule preserves
validity, for parallel uses the parallel lemma:

• a local computation of C1 || C2 decomposes into local computations of C1 and C2;

• A local error of C1 || C2 is caused by a local error of C1 or C2 (not by interference);

• A successful local computation of C1 || C2 is consistent with all successful local
computations of C1 and C2.

{ P } C { Q } is valid if every finite local computation of C from
a state satisfying P * inv Γ, is 1) error free and 2) ends in a
state satisfying Q * inv Γ.

78Friday, 17 December 2010

Local vs. global

1. Soundness shows that provable formulas are valid;

2. Validity referes to local computations.

Theorem: Suppose . .

1.If then

2.If then where

Need to connect local computations with conventional
notions: global state, traditional partial correctness.

and

79Friday, 17 December 2010

Corollary: validity implies error freedom

{ P } C { Q } if every finite computation of C from a state satisfying P * inv Γ,

1) is error free,

2) ends in a state satisfying Q * inv Γ.

80Friday, 17 December 2010

Many concurrent separation logics?

The logic presented here is not entirely realistic, and is not as expressive as one
might hope/desire/expect.

Several variants have been proposed, including:

• Gotsman, Berdine, Cook, Rinetzky and Sagiv (APLAS 07)

• … plenty of other logics…

• Hobor, Appel and me (ESOP 08)

81Friday, 17 December 2010

Exercise: associate each picture with its owner...

Thanks to:

 Stephen Brookes

 John Reynolds

 Tony Hoare

 Edgser Dijkstra

 Peter O'Hearn

 Per Brinch Hansen

82Friday, 17 December 2010

Exercise: associate each picture with its owner...

Thanks to:

 Stephen Brookes

 John Reynolds

 Tony Hoare

 Edgser Dijkstra

 Peter O'Hearn

 Per Brinch Hansen

82Friday, 17 December 2010

References:

 Peter O'Hearn, Resources, concurrency and local reasoning;

 Stephen Brookes, A semantics for concurrent separation logic;

 Viktor Vafeiadis, Concurrent separation logic and operational semantics

 all available from http://moscova.inria.fr/~zappa/teaching/mpri/2010/ .

Next lecture:
 can we reason about racy programs?

83Friday, 17 December 2010

http://moscova.inria.fr/~zappa/teaching/mpri/2009/
http://moscova.inria.fr/~zappa/teaching/mpri/2009/

