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Concurrency, in theory
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Concurrency, in theory

Concurrency theory is fundamental  
Many of the concepts and techniques developed in 25 years of 
study of concurrency theory are fundamental.  

You will reuse them in your daily research.  

Just some examples:

•  labelled transition systems;

•  simulation and bisimulation;

•  contextual equivalences.
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Concurrency, in practice

excerpt from Linux spinlock.c
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Concurrency, in practice

excerpt from Linux spinlock.c

excerpt from 
www.javaconcurrencyinpractice.com

excerpt from WebKit

in practice
sequential code, interaction via shared memory, some OS calls.

Libraries may provide some abstractions (e.g. message passing).  
However, somebody must still implement these libraries.  And...

Programming is hard:
  subtle algorithms, awful corner cases.

Testing is hard: 
  some behaviours are observed rarely and difficult to reproduce.

Warm-up: let's implement a shared stack.
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Setup

A program is composed by threads that communicate by writing and reading in 
a shared memory.  No assumptions about the relative speed of the threads.

In this example we will use a mild variant of the C programming language:

• local variables: x, y, …         (allocated on the stack, local to each thread)

• global variables: Top, H, … (allocated on the heap, shared between threads)

• data structures: arrays H[i], records n = t->tl, …

• an atomic compare-and-swap operation (e.g. CMPXCHG on x86):

 bool CAS (value_t *addr, value_t exp, value_t new) {
  atomic { 
    if (*addr == exp) then { *addr = new; return true; } 
    else return false; 
  }}
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We implement a stack using a list living in the heap:

• each entry of the stack is a record of two fields: 

       typedef struct entry { value hd; entry *tl } entry

• the top of the stack is pointed by Top.

A stack	

pop () {
  t = Top;
  if (t != nil)
    Top = t->tl;
  return t;
}

push (b) {
  b->tl = Top;
  Top = b;
  return true;
}

Top
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A sequential stack: demo	

pop ( ) {
  t = Top;
  if (t != nil)
    Top = t->tl;
  return t;
}

push (b) {
  b->tl = Top;
  Top = b;
  return true;
}

Top
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A sequential stack: pop ( )	

pop ( ) {
  t = Top;
  if (t != nil)
    Top = t->tl;
  return t;
}

push (b) {
  b->tl = Top;
  Top = b;
  return true;
}

Top

t
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A sequential stack: pop ( )	

pop ( ) {
  t = Top;
  if (t != nil)
    Top = t->tl;
  return t;
}

push (b) {
  b->tl = Top;
  Top = b;
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A sequential stack: push (b)	

pop ( ) {
  t = Top;
  if (t != nil)
    Top = t->tl;
  return t;
}

push (b) {
  b->tl = Top;
  Top = b;
  return true;
}

Top

b
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A sequential stack: push (b)	

pop ( ) {
  t = Top;
  if (t != nil)
    Top = t->tl;
  return t;
}

push (b) {
  b->tl = Top;
  Top = b;
  return true;
}

Top

b
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A sequential stack: push (b)	

pop ( ) {
  t = Top;
  if (t != nil)
    Top = t->tl;
  return t;
}

push (b) {
  b->tl = Top;
  Top = b;
  return true;
}

Top

b
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A sequential stack: push (b)	

pop ( ) {
  t = Top;
  if (t != nil)
    Top = t->tl;
  return t;
}

push (b) {
  b->tl = Top;
  Top = b;
  return true;
}

Top

b

13Thursday, 9 December 2010



A sequential stack in a concurrent world	

pop ( ) {
  t = Top;
  if (t != nil)
    Top = t->tl;
  return t;
}

push (b) {
  b->tl = Top;
  Top = b;
  return true;
}

Top

Imagine that two threads invoke pop() concurrently...
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A sequential stack in a concurrent world	

pop ( ) {
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  if (t != nil)
    Top = t->tl;
  return t;
}

push (b) {
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Top

Imagine that two threads invoke pop() concurrently...

1: t

15Thursday, 9 December 2010



A sequential stack in a concurrent world	

pop ( ) {
  t = Top;
  if (t != nil)
    Top = t->tl;
  return t;
}

push (b) {
  b->tl = Top;
  Top = b;
  return true;
}

Top

Imagine that two threads invoke pop() concurrently...

1: t 2: t

16Thursday, 9 December 2010



A sequential stack in a concurrent world	
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  Top = b;
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A sequential stack in a concurrent world	

pop ( ) {
  t = Top;
  if (t != nil)
    Top = t->tl;
  return t;
}

push (b) {
  b->tl = Top;
  Top = b;
  return true;
}

Top

Imagine that two threads invoke pop() concurrently...

1: t 2: t

...the two threads might pop the same entry!
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Idea 1: validate the Top pointer using CAS

pop ( ) {
  while (true) {
    t = Top;
    if (t == nil) break;
    n = t->tl;
    if CAS(&Top,t,n) break;
  }
  return t;
}

push (b) {
  while (true) {
    t = Top;
    b->tl = t;
    if CAS(&Top,t,b) break;
  }
  return true;
}
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Idea 1: validate the Top pointer using CAS

pop ( ) {
  while (true) {
    t = Top;
    if (t == nil) break;
    n = t->tl;
    if CAS(&Top,t,n) break;
  }
  return t;
}

push (b) {
  while (true) {
    t = Top;
    b->tl = t;
    if CAS(&Top,t,b) break;
  }
  return true;
}

Top

Two concurrent pop() now work fine...

1: t
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Idea 1: validate the Top pointer using CAS

pop ( ) {
  while (true) {
    t = Top;
    if (t == nil) break;
    n = t->tl;
    if CAS(&Top,t,n) break;
  }
  return t;
}

push (b) {
  while (true) {
    t = Top;
    b->tl = t;
    if CAS(&Top,t,b) break;
  }
  return true;
}

Top

Two concurrent pop() now work fine...

1: t 1: n

The CAS of Th. 1 fails.
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The ABA problem

pop ( ) {
  while (true) {
    t = Top;
    if (t == nil) break;
    n = t->tl;
    if CAS(&Top,t,n) break;
  }
  return t;
}

push (b) {
  while (true) {
    t = Top;
    b->tl = t;
    if CAS(&Top,t,b) break;
  }
  return true;
}

Top

Th 1 starts popping...

1: t
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The ABA problem

pop ( ) {
  while (true) {
    t = Top;
    if (t == nil) break;
    n = t->tl;
    if CAS(&Top,t,n) break;
  }
  return t;
}

push (b) {
  while (true) {
    t = Top;
    b->tl = t;
    if CAS(&Top,t,b) break;
  }
  return true;
}

Top

Th 1 starts popping...

1: t
1: n
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The ABA problem

pop ( ) {
  while (true) {
    t = Top;
    if (t == nil) break;
    n = t->tl;
    if CAS(&Top,t,n) break;
  }
  return t;
}

push (b) {
  while (true) {
    t = Top;
    b->tl = t;
    if CAS(&Top,t,b) break;
  }
  return true;
}

Top

Th 2 pops...

1: t

2:

1: n
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The ABA problem

pop ( ) {
  while (true) {
    t = Top;
    if (t == nil) break;
    n = t->tl;
    if CAS(&Top,t,n) break;
  }
  return t;
}

push (b) {
  while (true) {
    t = Top;
    b->tl = t;
    if CAS(&Top,t,b) break;
  }
  return true;
}

Top

Th 2 pops again...

1: t

2:

1: n
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The ABA problem

pop ( ) {
  while (true) {
    t = Top;
    if (t == nil) break;
    n = t->tl;
    if CAS(&Top,t,n) break;
  }
  return t;
}

push (b) {
  while (true) {
    t = Top;
    b->tl = t;
    if CAS(&Top,t,b) break;
  }
  return true;
}

Top

Th 2 pushes a new node...

1: t

2:

1: n
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The ABA problem

pop ( ) {
  while (true) {
    t = Top;
    if (t == nil) break;
    n = t->tl;
    if CAS(&Top,t,n) break;
  }
  return t;
}

push (b) {
  while (true) {
    t = Top;
    b->tl = t;
    if CAS(&Top,t,b) break;
  }
  return true;
}

Top

Th 2 pushes the old head of the stack...

1: t
1: n
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The ABA problem

pop ( ) {
  while (true) {
    t = Top;
    if (t == nil) break;
    n = t->tl;
    if CAS(&Top,t,n) break;
  }
  return t;
}

push (b) {
  while (true) {
    t = Top;
    b->tl = t;
    if CAS(&Top,t,b) break;
  }
  return true;
}

Top

Th 1 corrupts the stack...
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The hazard pointers methodology

Michael adds to the previous algorithm a global array H of hazard pointers:

• thread i alone is allowed to write to element H[i] of the array;

• any thread can read any entry of H.

The algorithm is then modified:

• before popping a cell, a thread puts its address into its own element of H.  
This entry is cleared only if CAS succeeds or the stack is empty;

• before pushing a cell, a thread checks to see whether it is pointed to from any 
element of H.  If it is, push is delayed.
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Michael’s algorithm, simplified

pop ( ) {
  while (true) {
    atomic { t = Top;
             H[tid] = t; };
    if (t == nil) break;
    n = t->tl;
    if CAS(&Top,t,n) break;
  }
  H[tid] = nil;
  return t;
}

push (b) {
  for (n = 0; n < no_threads, n++)
    if (H[n] == b) return false;
  while (true) {
    t = Top;
    b->tl = t;
    if CAS(&Top,t,b) break;
  }
  return true;
}
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Michael’s algorithm, simplified

pop ( ) {
  while (true) {
    atomic { t = Top;
             H[tid] = t; };
    if (t == nil) break;
    n = t->tl;
    if CAS(&Top,t,n) break;
  }
  H[tid] = nil;
  return t;
}

push (b) {
  for (n = 0; n < no_threads, n++)
    if (H[n] == b) return false;
  while (true) {
    t = Top;
    b->tl = t;
    if CAS(&Top,t,b) break;
  }
  return true;
}

Top

Th 2 cannot push the old 
head, because Th 1 has an 
hazard pointer on it...

1: t

2:

1: n

H[1]
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Key properties of Michael’s simplified algorithm

• A node can be added to the hazard array only if it is reachable through the 
stack;

• a node that has been popped is not reachable through the stack;

• a node that is unreachable in the stack and that is in the hazard array cannot 
be added to the stack;

• while a node is reachable and in the hazard array, it has a constant tail.

These are a good example of the properties we might 
want to state and prove about a concurrent algorithm.
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The role of atomic

pop ( ) {
  while (true) {
    t = Top;
    H[tid] = t;
    if (t == nil) break;
    n = t->tl;
    if CAS(&Top,t,n) break;
  }
  H[tid] = nil;
  return t;
}

push (b) {
  for (n = 0; n < no_threads, n++)
    if (H[n] == b) return false;
  while (true) {
    t = Top;
    b->tl = t;
    if CAS(&Top,t,b) break;
  }
  return true;
}

Top

Th 1 copies Top...

1: t
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The role of atomic

pop ( ) {
  while (true) {
    t = Top;
    H[tid] = t;
    if (t == nil) break;
    n = t->tl;
    if CAS(&Top,t,n) break;
  }
  H[tid] = nil;
  return t;
}

push (b) {
  for (n = 0; n < no_threads, n++)
    if (H[n] == b) return false;
  while (true) {
    t = Top;
    b->tl = t;
    if CAS(&Top,t,b) break;
  }
  return true;
}

Top

Th 2 pops twice, and 
pushes a new node...

1: t
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The role of atomic

pop ( ) {
  while (true) {
    t = Top;
    H[tid] = t;
    if (t == nil) break;
    n = t->tl;
    if CAS(&Top,t,n) break;
  }
  H[tid] = nil;
  return t;
}

push (b) {
  for (n = 0; n < no_threads, n++)
    if (H[n] == b) return false;
  while (true) {
    t = Top;
    b->tl = t;
    if CAS(&Top,t,b) break;
  }
  return true;
}

Top
Th 2 starts pushing the old 
head, and is halfway in the 
for loop...

1: t
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The role of atomic

pop ( ) {
  while (true) {
    t = Top;
    H[tid] = t;
    if (t == nil) break;
    n = t->tl;
    if CAS(&Top,t,n) break;
  }
  H[tid] = nil;
  return t;
}

push (b) {
  for (n = 0; n < no_threads, n++)
    if (H[n] == b) return false;
  while (true) {
    t = Top;
    b->tl = t;
    if CAS(&Top,t,b) break;
  }
  return true;
}

TopTh 1 sets its hazard 
pointer…  but Th 2 might 
not see the hazard pointer 
of Th 1!

1: t

H[1]

1: n
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Michael shared stack 

pop ( ) {
  while (true) {
    t = Top;
    if (t == nil) break;
    H[tid] = t;
    if (t != Top) break;
    n = t->tl;
    if CAS(&Top,t,n) break;
  }
  H[tid] = nil;
  return t;
}

push (b) {
  for (n = 0; n < no_threads, n++)
    if (H[n] == b) return false;
  while (true) {
    t = Top;
    b->tl = t;
    if CAS(&Top,t,b) break;
  }
  return true;
}

Trust me: if we validate t against the 
Top pointer before reading t->tl, we 
get a correct algorithm.
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Michael shared stack 

pop ( ) {
  while (true) {
    t = Top;
    if (t == nil) break;
    H[tid] = t;
    if (t != Top) break;
    n = t->tl;
    if CAS(&Top,t,n) break;
  }
  H[tid] = nil;
  return t;
}

push (b) {
  for (n = 0; n < no_threads, n++)
    if (H[n] == b) return false;
  while (true) {
    t = Top;
    b->tl = t;
    if CAS(&Top,t,b) break;
  }
  return true;
}

HOW CAN WE BE SURE?
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Michael shared stack 

That algorithm is insane…  I will never 
use it in my everyday programming.
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Michael shared stack 

That algorithm is insane…  I will never 
use it in my everyday programming.

Yes, you will!  Michael algorithms 
are part of java.util.concurrent.
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Background: Hoare logic
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In 1969, a seminal paper by Hoare introduced the following notation to specify 
what a program does:

{ P } C { Q }

• C is a program;

• P (the precondition) and Q (the postcondition) are statements on the program 
variables used in C.

We say that

{ P } C { Q } is true

if whenever C is executed in a state satisfying P and if the execution of C 
terminates, then the state in which C’s execution terminates satisfies Q.

What does it mean for a program to be correct?
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Floyd-Hoare logic?

Note: the original ideas were seeded 
by the work of Robert Floyd, who in 
1969 had published a similar system 
for flowcharts.
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An imperative programming language

The symbol S stands for arbitrary statements: these are conditions like 
x + 1 < y which are either true or false.

The symbol E stands for arbitrary expressions: these are things like x + 1 which 
denote values. 

The symbol C stands for arbitrary commands, where a command is:

• do nothing: skip

• an assignment: x := E

• the sequential composition of two commands: C1; C2 

• a conditional: if S then C1 else C2 

• a loop: while S do C
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The computation state is represented with an environment called stack:

             stack : var ⟶ value        (denoted s)

Evaluation of expressions and statements:

  3 / s ⟶ 3    x / s ⟶ s(x)         

Evaluation of commands:

  

Operational semantics

e1 + e2 / s ⟶ v1 + v2
e1 / s ⟶ v1   e2 / s ⟶ v2

etc...

x := E / s ⟶ skip / s[x:=v]  
E / s ⟶ v

if S then C1 else C2 / s ⟶ C1 / s  

S / s ⟶ True

if S then C1 else C2 / s ⟶ C2 / s  

S / s ⟶ False    

while S do C / s ⟶ C' / s'  
S / s ⟶ True   C ; while S do C / s ⟶ C' / s'

while S do C / s ⟶ skip / s  
S / s ⟶ False   

 skip ; C / s ⟶ C / s   C1 ; C2 / s ⟶ C' ; C2 / s'  
C1 / s ⟶ C' / s'
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Statements

Statements are assertions on the state.  For instance, consider:

A state s satisfies an assertion P (or P holds in s), denoted  s ⊨ P, if 

s ⊨ T  always

s ⊨ ¬P iff s ⊨ P is false

s ⊨ P ⋀ Q iff s ⊨ P and s ⊨ Q

s ⊨ P ⋁ Q iff s ⊨ P or s ⊨ Q

s ⊨ P ⇒ Q iff s ⊨ P implies s ⊨ Q

P, Q ::= T true
| ¬ P negation
| P ⋀ Q conjuction
| P ⋁ Q disjunction
| P ⇒ Q implication
| S language statements

s ⊨ S   iff   S / s ⟶ true

relates assertions to program state

46Thursday, 9 December 2010



Examples

• { x = 1 } x := x + 1 { x = 2 }

• { x = 1 } y := x { x = 1 ⋀ y = 1 }

• { x = 1 } y := x { y = 2 }                                              (this is clearly false)

• { x = n ⋀ y = m } r := x; x := y; y := r { x = m ⋀ y = n }

The variables n and m which do not occur in the command and are used to 
name the initial values of program variables x and y, are called auxiliary 
variables (or ghost variables).

• { x = n ⋀ y = m } x := y; y := x { x = m ⋀ y = n }                           (false)

• { P } C { T }                                                                             (always true)

• { T } C { Q }                          (states that whenever C terminates, Q holds)
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Partial vs. total correctness	

An expression { P } C { Q } is called a partial correctness specification: { P } C 
{ Q } can be true even if C does not terminate in a state satisfying P.

Total correctness specification: [ P ] C [ Q ] is true if and only if 

(1) whenever C is executed in a state satisfying P, then the execution of C 
terminates;

(ii) after termination Q holds. 

Informally:      Total correctness = Termination + Partial correctness. 

In all these lectures we will focus on partial correctness.
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Floyd-Hoare logic: the assignment axiom

⊢ { P [ E / x ] }  x := E  { P }

Examples: 

  ⊢ { y = 2 }  x := 2  { y = x }

  ⊢ { x + 1 = n + 1 }  x := x + 1  { x = n + 1 }

  ⊢ { E = E }  x := E  { x = E }                             (if x does not occur in E)

Remark: the axiom as a backward flavour.  Two common erroneus intuitions are 
that it should be as follows:

(a) ⊢ { P }  x := E  { P [ x / E ] }

(b) ⊢ { P }  x := E  { P [ E / x ] }

Exercise: the axioms (a) and (b) are unsound.  Why?

Notation: 
P where all occurrences of x 
have been substituted with E.

(a)  ⊢ {X=0} X:=1 {X=0}, since the (X=0)[X/1] 
is equal to (X=0) as 1 doesn’t occur in (X=0).

(b) ⊢ {X=0} X:=1 {1=0} which follows by
taking P to be X=0, V to be X and E to be 1.
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Floyd-Hoare logic: weakening and strenghtening

⊢ P ⇒ P'    ⊢ { P' } C { Q' }     ⊢ Q' ⇒ Q

⊢ { P } C { Q } 

Exercise: deduce the following facts:

  ⊢ { x = n }  x := x + 1  { x = n + 1 }

  ⊢ { T }  x := E  { x = E }

  ⊢ { x = r }  q := 0  { x = r + (y * q) } 

Remember: ⊢ { P [ E / x ] }  x := E  { P }
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Floyd-Hoare logic: statement manipulation

⊢ P ⇒ P'    ⊢ { P' } C { Q' }     ⊢ Q' ⇒ Q

⊢ { P } C { Q } 

Reminscent of sequent calculus...

⊢ { P } C { Q1 }     ⊢ { P } C { Q2 }

⊢ { P } C { Q1 ⋀ Q2 }

⊢ { P1 } C { Q }     ⊢ { P2 } C { Q }

⊢ { P1 ⋁ P2 } C { Q }
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Floyd-Hoare logic: commands

⊢ { P ⋀ S } C { P }

⊢ { P } while S do C { P ⋀ ¬S } 

Exercise: prove that

  ⊢ { T }  

      r := x; q := 0; while y ≤ r do ( r := r-y; q := q+1 )  

      { r < y ⋀ x = r+(y*q) } 

⊢ { P } C1 { Q }   ⊢ { Q } C2 { R }

⊢ { P } C1 ; C2 { R }

⊢ { P ⋀ S } C1 { Q }   ⊢ { P ⋀ ¬S } C2 { Q }

⊢ { P } if S then C1 else C2 { Q }

Remember: ⊢ { P [ E / x ] }  x := E  { P }

P is called loop invariant
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Exercise

The Zune’s real-time clock stores the time in terms of days and seconds since 
January 1st, 1980.  At the end of the boot sequence, it converts the clock value 
into date and time.  This is the code that, given the number of days since 
January 1st, 1980, computes the year.  

while (days > 365) {
    if (IsLeapYear(year)) {
        if (days > 366) {
            days -= 366;
            year += 1;
        }
    }
    else {
        days -= 365;
        year += 1;
    }
}

Is this code correct?  Does it hold that

{ days > 0 ⋀ year = 0 } 
  code 
{ days <= 365 ⋀ year >= 0 }
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Exercise

The Zune’s real-time clock stores the time in terms of days and seconds since 
January 1st, 1980.  At the end of the boot sequence, it converts the clock value 
into date and time.  This is the code that, given the number of days since 
January 1st, 1980, computes the year.  

while (days > 365) {
    if (IsLeapYear(year)) {
        if (days > 366) {
            days -= 366;
            year += 1;
        }
    }
    else {
        days -= 365;
        year += 1;
    }
}

Is this code correct?  Does it hold that

{ days > 0 ⋀ year = 0 } 
  code 
{ days <= 365 ⋀ year >= 0 }

Plenty of  Zunes hang up on December 
31st, 2008.  They worked perfectly the day 
after.  

How is it possible?  
We just proved the code correct!
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Exercise

The Zune’s real-time clock stores the time in terms of days and seconds since 
January 1st, 1980.  At the end of the boot sequence, it converts the clock value 
into date and time.  This is the code that, given the number of days since 
January 1st, 1980, computes the year.  

while (days > 365) {
    if (IsLeapYear(year)) {
        if (days > 366) {
            days -= 366;
            year += 1;
        }
    }
    else {
        days -= 365;
        year += 1;
    }
}

Is this code correct?  Does it hold that

{ days > 0 ⋀ year = 0 } 
  code 
{ days <= 365 ⋀ year >= 0 }

Plenty of  Zunes hang up on December 
31st, 2008.  They worked perfectly the day 
after.  

How is it possible?  
We just proved the code correct!

We proved only partial correctness!
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Relating the initial and final state

Forget leap years for now, and consider a simplified version of the Zune code:

  while (days > 365) {
      days -= 365;
      year += 1;
  }

How can we specify that, after executing the code,  the expression

     days + year * 365

is equal to the value of days before executing the code?
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Relating the initial and final state

Forget leap years, and consider a simplified version of the Zune code:

   olddays = days;
  while (days > 365) {
      days -= 365;
      year += 1;
  }

We need to introduce an auxiliary variable, olddays, to record some informations 
about a particular state of the program,

  { days > 0 ⋀ year = 0 } code { days + year * 365 = olddays }

Remark: the extra assignments must not change the semantics of the program.
A set X is auxiliary for C if each free occurrence in C of an identifier from X is in 
an assignment whose target is in X: no effect on control flow, no effect on other 
variables.
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Soundness of Floyd-Hoare logic

Imagine you can derive { P } C { Q } for some command C and statements P and 
Q.  What does this assert on the execution of C in some state s?

Soundness: Let ⊢ { P } C { Q } a provable triple.  

For all states s, s ⊨ P and C / s ⟶ skip / s' imply s' ⊨ Q .

Exercise: what about completeness?  Is it true that if for all states s, s ⊨ P and 
C / s ⟶ skip / s' imply s' ⊨ Q, then ⊢ { P } C { Q } is provable?

Hint: what does the triple { P } C { ¬T } state?
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Separation logic
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Adding the heap

We extend our programming language with

• memory writes, [E1] := E2

• memory reads, x := [E]

• memory allocation, x := cons(E1,…,En)  

• memory deallocation, dispose E

The state is now represented by a pair (stack, heap), denoted (s,h), where

stack : var -> value

heap : loc -> value

where loc ⊆ value.
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x := cons(E1,…,En) / (s,h) ⟶ skip / (s[x:=v], h ⊕ [v:=v1 … v+(n-1):=vn])  

E1 / s ⟶ v1   ...    En / s ⟶ vn            v … v+(n-1) ∉ dom(h)

Operational semantics

x := E / (s,h) ⟶ skip / (s[x:=v],h)  
E / s ⟶ v

x := [E] / (s,h) ⟶ skip / (s[x:=h(v)], h)  
E / s ⟶ v    

[E1] := E2 / (s,h) ⟶ skip / (s, h[v1:=v2])  
E1 / s ⟶ v1       E2 / s ⟶ v2 

Remark: h[v:=v'] and h\v are defined only if v ∈ dom(h).

Remark: the operational semantics is stuck if accesses outside the domain of s 
and h are performed.

dispose E / (s,h) ⟶ skip / (s,h\v)  
E / s ⟶ v

The other rules are straightforward.
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Example program

 x = cons(3,3); y = cons(4,4); [x+1] = y; [y+1] = x 

stack heap
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Example program

 x = cons(3,3); y = cons(4,4); [x+1] = y; [y+1] = x 

x 43 43 3

44 3

stack heap

x

3 3

graphically
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Example program

 x = cons(3,3); y = cons(4,4); [x+1] = y; [y+1] = x 

x 43

y 57

43 3

44 3

57 4

58 4

stack heap graphically

x

3 3

y

4 4
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Example program

 x = cons(3,3); y = cons(4,4); [x+1] = y; [y+1] = x 

43 3

44 57

57 4

58 4

stack heap graphically

x

3

y

4 4

x 43

y 57
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 x = cons(3,3); y = cons(4,4); [x+1] = y; [y+1] = x 

Example program

43 3

44 57

57 4

58 43

stack heap graphically

3 4

x 43

y 57 x y
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Why separation logic?

Can you suggest a precondition such that this triple holds?

⊢ { ??? }

      [y] := 4;
      [z] := 5;

   { [y] != [z] }
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Why separation logic?

Can you suggest a precondition such that this triple holds?

We need to assume that the locations pointed by y and z are different (aliasing).

⊢ { y != z }

      [y] := 4;
      [z] := 5;

   { [y] != [z] }
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Why separation logic?

And now?

⊢ { ??? }

      [y] := 4;
      [z] := 5;

   { [y] != [z] ⋀ [x] = 3 }
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Why separation logic?

And now?

• we need to assume that the locations pointed by y and z are different (aliasing).

• we need to know when things stay the same.

⊢ { y != z ⋀ x != y ⋀ x != z ⋀ [x] = 3}

      [y] := 4;
      [z] := 5;

   { [y] != [z] ⋀ [x] = 3 }
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Framing

We want a general concept of things not being affected.

{ P } C { Q }

{ [x] = 3 ⋀ P } C { Q ⋀ [x] = 3 }

What are the conditions on C and [x] = 3?  

These are very hard to define if reasoning about a heap and aliasing.

This is where separation logic comes in:

{ P } C { Q }

{ R * P } C { Q * R }

The new connective * is used to separate the heap.
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In the beginning: classical logic
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In the beginning: classical logic
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A substructural logic: bunched implications

Idea: ⋀ admits weakening and contraction, but * does not.

We have:

But we do not have: 

The logic of bunched implications (BI) mixes substructural logic with classical/
intuitionistic logic.  BI is the logic behing separation logic.

If this does not make sense, don't panic.
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  (s,h) ⊨ empty  iff  dom(h) = ∅

  (s,h) ⊨ E1 ⟼ E2  iff  E1 / s ⟶ v1 ⋀ E2 / s ⟶ v2 ⋀ dom(h) = v1 ⋀ h(v1) = v2

  (s,h) ⊨ P * Q  iff  
        ∃ h1, h2. dom(h1) ∩ dom(h2) = ∅ ⋀ h1 ⊕ h2 = h ⋀ (s,h1) ⊨ P ⋀ (s,h2) ⊨ Q

Statements of separation logic

P, Q ::= T true
| ¬ P negation
| P ⋀ Q conjuction
| P ⋁ Q disjunction
| P ⇒ Q implication
| S language statements
| P * Q separating conjunction
| E1 ⟼ E2 points to
| empty empty heap
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Our previous heap

satisfies the statement: (x ⟼ 3) * (x+1 ⟼ y) * (y ⟼ 4) * (y+1 ⟼ x) ,

but not the statement: x ⟼ 3 .

Exercise: does the heap above satisfy 

(x ⟼ 3 * x+1 ⟼ y) ⋀  (y ⟼ 4 * y+1 ⟼ x) ?  

Example

x

3

y

4
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A non-cyclic list

can be defined by the following recursive statement:

list [] x ≡ empty ∧ x = nil 

list v1::α x ≡ ∃ j. x ⟼ v1 ∗ (x+1 ⟼ j ) ∗ list α j 

Example: list v1::…::vn x is satisfied by an heap where x points to a list whose 
content is v1::…::vn.

Remark: we have (implicitely) added sequences (ranged over by α) to the logic.

v2 vnx
...

Data types: list

v1
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Often it is useful to be able to denote list segments:

lseg [] (x,y) ≡ empty ∧ x = y 

lseg v::α (x,y) ≡ ∃ j. x ⟼ v ∗ (x+1 ⟼ j ) ∗ lseg α (j,y)

Exercise: prove, by structural induction on α, that:

lseg α·β (x,y) ⇔ ∃ j. lseg α (x,j) * lseg β (j,y)

where · denotes concatenation of sequences.

v2 vnx
...

Data types: list segment

v1 y
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Exercise: can you write a statement that encodes doubly-linked lists?

Exercise: which data structure is defined by the guess predicate below?

guess a i ≡ i = a ∧ empty 

guess (τ , τ′) i ≡ ∃ j, k. i ⟼ j ∗ (i+1 ⟼ k) ∗ guess τ j ∗ guess τ′ k 

Exercises

dlsegε(i,iʼ,jʼ,j) = empty ∧ i=jʼ ∧ iʼ=j

dlseg(a·α)(i,iʼ,jʼ,j) = ∃k.i→a,k,iʼ ∗ dlsegα(k,i,jʼ,j)

 and consider the definition of doubly-linked lists 
below:
dlsα(f,b) = dlsegα(f,null,null,b)
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Here are three of the axioms:

• write:       { E ⟼ _ }  [E] = E'  { E ⟼ E' }

• dispose:  { E ⟼ _ } dispose(E)  { empty }

• alloc:       { empty }  x = cons(E1,…,En)  { x ⟼ E1 * x+1 ⟼ E2 * … * x+(n-1) ⟼ En }

where E ⟼ _ is a shorthand for ∃ x. E ⟼ x .

(Local) axioms
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The most important rule, called the frame rule:

{ P }  C  { Q }

{ P * R }  C  { Q * R }

provided that  fv(R) ∩ modifies(C) = ∅ 

Note: modifies(C) denotes the set of stack variables assigned by a given 
command, C, e.g. modifies(x=3) = {x}. However assignment through a stack 
variable to the heap is not counted: modifies([x]=3) = ∅. See the references for 
full definition.

Exercice: show that { P } C { Q } ⇒ { P⋀ R } C { Q ⋀ R } is not sound.

The frame rule
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Prove that:

  { lseg α (i,j) } k := cons(a,i); i := k { lseg a·α (i,j) }

  { lseg α (i,j) * j ⟼ a,k } l := cons(b,k); [j+1] := l { lseg α·a·b (i,k) }

  { lseg a·α (i,k) } j := [i+1]; dispose i; dispose i+1; i := j { lseg α (i,k) }

Remember:

  lseg [] (x,y) ≡ empty ∧ x = y 

  lseg v::α (x,y) ≡ ∃ j. x ⟼ v ∗ (x+1 ⟼ j ) ∗ lseg α (j,y)

Notation: j ⟼ a,k stands for j ⟼ a * j+1 ⟼ k.

Exercises
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Exercise: associate each picture with its owner….

Thanks to:

    Mike Gordon

    John Reynolds

    Tony Hoare

    Maged Michael

    Peter O'Hearn

    Robert Floyd

    Doug Lea

    Robin Milner
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Next lecture: and concurrency?

References:

  Mike Gordon, Specification and Verification I, chapters 1 and 2.

  John Reynolds, Introduction to Separation Logic, parts 1-4.

both available from http://moscova.inria.fr/~zappa/teaching/mpri/2010/ .
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