
Exam Questions

Proof Methods for Concurrent Programs

10 March 2011

Instructions: only printed documents are authorised. You can admit the result of one question and
move on. Leave optional questions until the end.

Our goal is to implement a concurrent queue and prove the implementation correct. Our design will
have amortised O(1) access time, and enable a push and a pop to be performed concurrently most of the
time.

Exercise 1. (Basic data structures)

Remember that the specification of the list data structure is

ls ε (f) = empty ∧ f = null

ls (a · α) (f) = ∃j. f 7→ a, j ∗ ls α j

1. Implement a add(f,a) function that adds the element a in front of the list pointed by f. Prove
that your implementation satisfies the specification:

{ ls α f } add(f, a) { ls (a · α) f }

2. Implement a remove(f) function that satisfies the specification:

{ ls (a · α) f } remove(f) { ls α f ∧ r = a }

{ ls ε f } remove(f) { false }

and prove it correct. The variable r is used to pass the return value of all the functions. Optional:
similarly, implement and prove correct the functions is_empty(f) and del(f) specified as

{ ls (a · α) f } is empty(f) { ls (a · α) f ∧ r = false }

{ ls ε f } is empty(f) { ls ε f ∧ r = true }
{ ls α f } del(f) { empty }

3. Implement a reverse(f) function that returns a pointer to a list that contains all the elements of
the list pointed by f in reversed order, according to the specification:

{ ls α f } reverse(f) { ls α f ∗ ls α r }

where ε = ε and a · α = α · a. Observe that the original list is untouched.1

Exercise 2. (A sequential queue)

We implement a queue using two lists, pointed to by (and called) front and back. The two lists are
initially empty. The semantics of push and pop (which should not leak memory) is described below:

• the push(a) function always puts the element a in front of list front.

• if the list back is non-empty, then the pop() function removes an element from the front of the list
back.

• if the list back is empty, then the pop() function performs the following actions: back is updated
to point to a list containing the elements of front in reverse order; front is updated to point
to the empty list; and the front element of the list pointed by back is removed from the list and
returned.

1Remark: a clever programmer would implement in-place list reverse here. However, for the sake of the exam questions,
we stick to this copy and reverse semantics specified above.

1



We define the predicate queue as:

queue α = ∃β.∃ γ. ls β front ∗ ls γ back ∧ α = β · γ

4. Using the functions defined in Exercise 1., implement the push(a) function and prove that it
satisfies the specification:

{ queue α } push(a) { queue (a · α) }

5. Using the functions defined in Exercise 1., implement the pop() function and prove that it satisfies
the specification:

{ queue (a · α) } pop() { queue α ∧ r = a }

{ queue ε } pop() { queue ε ∧ r = null }

Exercise 3. (A concurrent queue)

6. Show that the implementation of push and pop done in questions [4.] and [5.] is not thread safe.

7. By using two resources f and b that protect respectively the list pointed by front and back,
implement a thread-safe version of push and pop. This implementation should allow simultaneous
executions of push and pop (unless the list pointed by back is empty).

8. Which are the resource invariants Rf and Rb associated to f and b? Assuming Rf and Rb prove
that:

{empty} push(a) {empty} {empty} pop() {empty}

9. Can a system that invokes push and pop deadlock? If yes, show how; if not, explain informally
why it can not.

2


