
Exercises, 14 January 2010

Separation logic

1. The following axiom schemata are not sound: for each, give an instance which is not valid along
with a description of a state in which the instance is false.

p0 ∗ p1 ⇒ p0 ∧ p1 (p0 ∗ p1)∨ q ⇒ (p0 ∨ q) ∗ (p1 ∨ q) (p0 ∗ q)∧ (p1 ∗ q) ⇒ (p0 ∧ p1) ∗ q

2. Prove that

(x 7→ y ∗ x′ 7→ y′) ∗ true ⇒ ((x 7→ y ∗ true) ∧ (x′ 7→ y′ ∗ true)) ∧ x 6= x′.

3. Fill in the postconditions in

{(e1 7→ −) ∗ (e2 7→ −)} [e1] := e′
1; [e2] := e′

2 {?}

{(e1 7→ −) ∧ (e2 7→ −)} [e1] := e′
1; [e2] := e′

2 {?}

4. A braced list segment is a list segment with an interior pointer j to its last element; in the special
case where the list segment is empty, j is nil. Formally,

brlseg ε (i, j, k) = emp ∧ i = k ∧ j = nil

brlseg α · a (i, j, k) = lseg α (i, j) ∗ j 7→ a, k

(a) Write a procedure lookuppt that returns the final pointer of a braced list segment:

{brlseg α (i, j, k0)} lookuppt {brlseg α (i, j, k0) ∧ k = k0}

lookuppt accepts i, j as arguments and returns k.

(b) Write a procedure appright that appends an element to the right:

{brlseg α (i, j, k0)} appright {brlseg α · a (i, j, k0)}

appright accepts i, j and a as arguments and returns i, j.

Concurrent separation logic

1. Consider the program

init() { c := nil }

resource buf(c);

while (true) { while (true) {
with buf do { with buf when not(c=nil) {

x := new(c); || t := [c];
c := x; dispose(t);

} c := t;
} }

}

(a) Describe informally the behaviour of the program.

(b) Prove that {empty} program {true} (and explain the invariant you picked up for buf).

1

Owicky-Gries and rely/guarantee

1. Consider the program

x := x-1; x := x+1 || y := y+1; y := y-1

Prove that {x = y} program {x = y} is a theorem (detail the non-interference proofs).

2. Reformulate your solution to 1. using rely-guarantee reasoning.

Weak-memory models

1. Peterson algorithm is a classic solution to the mutual exclusion problem: in all executions, the
instructions of the critical sections of the two threads are not interleaved.

flag0 := false;
flag1 := false;

flag0 := true; flag1 := true;
turn := 1; turn := 0;
while (flag1 && turn = 1); || while (flag0 && turn == 0);
// critical section // critical section

... ...
// end of critical section // end of critical section
flag0 := false; flag1 := false;

(a) Explain informally why the two threads cannot be inside the critical section at the same time.

(b) Does Peterson algorithm guarantee mutual exclusion if executed on a multiprocessor machine
where store buffers are observable (e.g. x86)?

(c) Implement the Peterson algorithm in your favourite language, and verify experimentally if it
guarantees mutual exclusion.

2

