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How to prove...

To show that two processes are bisimilar, it is enough to fo find a bisimulation
relating them. Easy?

Example: we want to show that (in the pi-calculus) bisimilarity is preserved by
parallel composition. We naturally consider

R = {(P
n

R , Q
n

R) : P ≈ Q}

as a candidate bisimulation. But...
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The candidate bisimulation

1. may be larger than at first envisaged;

2. may be infinite;

example: to show that x(z).y〈z〉 ≈ (νw)(x(z).w〈z〉
f

w(v).y〈v〉), we must consider:

{(x(z).y〈z〉, (νw)(x(z).w〈z〉
f

w(v).y〈v〉))}
∪ {(y〈a〉, (νw)(w〈a〉

f
w(v).y〈v〉)) : a arbitrary}

∪ {(y〈a〉, (νw)(0
f

y〈a〉)) : a arbitrary}
∪ {(0, (νw)(0

f
0))}

3. hard to guess;

which is the smallest bisimulation relating !!P and !P ?

4. awkward to describe and to work with...
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Up-to proof techniques

Idea: find classes of relations that:

1. are not themselves bisimulations;

2. can be automatically completed into bisimulations.

Idea, explained: if we had such a class then to prove that two processes are
bisimilar it would be enough to exhibit a relation in this class1 that contains the
two processes.

1Hopefully, it is easier to find such relation than to find the candidate bisimulation directly.
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Warm-up: bisimulation up to structural congruence

A symmetric relation R is a bisimulation up-to ≡ if whenever P R Q and

P
`−−→ P ′ then there exists a process Q′ such that Q

ˆ̀
=⇒ Q′ and P ′ ≡R≡ Q′.

Exercise: prove that if P R Q and R is a bisimulation up-to ≡, then P ≈ Q.

Exercise: prove that (νx)(x〈v〉
f

x(u).P
f

Q) ≈ Q
f

P .

Exercise: prove that !P ≈ !!P .
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Bisimulation up to non-input context

A symmetric relation R is a bisimulation up-to non-input context if whenever

P R Q and P
`−−→ P ′ then there exists a process Q′ such that Q

ˆ̀
=⇒ Q′

and there exist a non-input context C[−] and processes P ′′ and Q′′ such that
P ′ ≡ C[P ′′], Q′ ≡ C[Q′′], and P ′′ R Q′′.

Exercise: Prove that if R is a bisimulation up to non-input context, then

{(C[P ], C[Q]) : P R Q and C[−] is a non-input context}

is a bisimulation up to structural congruence.

Exercise: Prove that !P
f

!P ≈ !P (hint: show that the relation R =
{(!P

f
!P, !P )} is a bisimulation up to non-input context).
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Alternative LTS rules for replication

It is often convenient to replace the rule:

P
f

!P
`−→ P ′

!P
`−→ P ′

with the three rules:

P
`−→ P ′

!P
`−→ P ′ f

!P

P
x〈y〉−−−→ P1 P

x(y)−−−→ P2

!P
τ−→ (P1

f
P2)

f
!P

P
(νy)x〈y〉−−−−−−→ P1 P

x(y)−−−→ P2

!P
τ−→ (νy)(P1

f
P2)

f
!P
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Theorems about replication

The equivalence !P
f

!P ≈ !P shows that duplication of a replicable resource has
no behavioural effect. Consider now

(νx)(P
n

!x(y).Q)

We may call !x(y).Q a private resource of P . Suppose P ≡ P1

f
P2. It holds

that

(νx)
(
P1

n
P2

n
!x(y).Q

)
≈ (νx)

(
P1

n
!x(y).Q

) n
(νx)

(
P2

n
!x(y).Q

)
provided that P1 and P2 never read over x.
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Function as processes: call-by-value lambda calculus

The call-by-value lambda calculus:

terms M,N ::= x
∣∣ λx.M

∣∣ M N

values V ::= x
∣∣ λx.M

Reduction rules:

(λx.M) V _ M{V/x}
M _ M ′

M N _ M ′N

N _ N ′

V N _ V N ′
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Lambda vs. pi

• Lambda-calculus substitues terms for variables; pi-calculus relies only on name
substitutions;

• In (λx.M) N the terms λx.M and N are committed to interacting with each
other, even if they are part of a larger term; interference for the environment
can prevent pi-calculus term to interact.

• Lambda-calculus is sequential : parallel or cannot be defined in PCF

Por M N =
{

true if M or N reduces to true
diverges otherwise
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Call-by-value CPS transform (Plotkin)

Idea: function calls terminate by passing their result to a continuation.

Example:
λy. let g = λn. n + 2 in (g y) + (g y)

can be rewritten as

λk y. let g = λk n. k (n + 2) in

g (λv. g(λw. k (v + w)) y) y

Transformation:

[[V ]] = λk. k[V ] [x] = x

[[M N ]] = λk. [[M ]](λv. [[N ]](λw. v w k)) [λx.M ] = λx.[[M ]]
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Call-by-value CPS transform, ctd.

Exercise: simulate the β-reduction

(λx.M)V _ M{V/x}

after the CPS transform.

Further readings: if you want to know more about continuations, then some readings:

• Reynolds, The discoveries of continuations;

• Appel, Compiling with continuations;

• the works of Plotkin, Danvy, Gordon, Felleisen, etc...

(Remark: this list is wildly uncomplete).
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Encoding of call-by-value lambda into pi

Notations: Suppose [[M ]] is (q).Q. Then y(x)[[M ]] is y(x, q).Q, and [[M ]]r is Q{r/q}.

Encoding:

[[λx.M ]] = (p). p〈y〉. !y(x)[[M ]]

[[x]] = (p).p〈x〉

[[M N ]] = (p). (νq)([[M ]]q
f

q(v).(νr)([[N ]]r
f

r(w).v〈w, p〉)

If M =β V , then [[M ]]p reduces to a process that, very roughly, returns the value
V at p. When V is a function, it cannot be passed directly at p: instead we pass
a pointer to the function.
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And call-by-name?

The call-by-name lambda calculus:

terms M,N ::= x
∣∣ λx.M

∣∣ M N

Reduction rules:

(λx.M) N _ M{N/x}
M _ M ′

M N _ M ′N
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Call-by-name CPS transform (Plotkin)

Transform:
[[x]] = λk. x k

[[λx.M ]] = λk. k (λx.[[M ]])

[[M N ]] = λk. [[M ]](λv. v[[N ]]k)

Remark: the encoding of a variable x is used as a trigger for activating a term
and providing it with a location.

Exercise: simulate β-reduction in the transform.
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Encoding of call-by-name lambda into pi

Notations: Suppose [[M ]] is (q).Q. Then y(x)[[M ]] is x(y, q).Q, and [[M ]]r is Q{r/q}.

Encoding:

[[λx.M ]] = (p). p〈v〉. v(x)[[M ]]

[[x]] = (p).x〈p〉

[[M N ]] = (p). (νq) ([[M ]]q
f

q(v).(νx)(v〈x, p〉.!x[[N ]]))

A term that is evaluated may only be the operand – not the argument – of an
application: as such it cannot be copied. Also, the argument is passed without
being evaluated, and can be evaluated every time its value is needed.
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Other reduction strategies

It is possible to encode other reduction strategies. For instance, parallel call-by-
value.

(λx.M) V _ M{V/x}
M _ M ′

M N _ M ′N

N _ N ′

M N _ M N ′

We rely on parallel composition to perform parallel reduction of M and N :

[[M N ]] = (p). (νq, r)([[M ]]q
f

[[N ]]r
f

q(v).r(w).v〈w, p〉)

16



Observational congruence for call-by-name lambda

Since call-by-name is deterministic, the definition of observation equivalence
(barbed congruence) can be simplified, by removing the bisimulation clause on
interactions.

Definition: We say that M and N are observationally equivalent, if, in all closed
contexts C[−], it holds that C[M ] ⇓ iff C[N ] ⇓.

A tractable characterisation of observation equivalence:

Definition: Applicative bisimilarity is the largest symmetric relation ≈λ on
lambda terms such that whenever M ≈λ N , M _∗ λx.M ′ implies N _∗ λx.N ′

with M ′{L/x} ≈λ N ′{L/x} for all L.

Observation equivalence and applicative bisimilarity coincide (Stoughton).
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Soundness and non-completeness

Let M and N be two lambda terms. We write M =π N if [[M ]] ∼= [[N ]].

Theorem (soundness): If M =π N then M ≈λ N .

We would not expect completeness to hold: pi-calculus contexts are potentially
more discriminating than lambda-calculus contexts.

More in detail:

• the CPS transform itself is not complete: there are terms that are applicative bisimilar,

but whose CPS images are distinguishable (and thus separated by appropriate pi-calculus

contexts);

• the canonical model (Abramsky) is sound but not complete, because the model contains

denotations of terms not definable (eg. the parallel convergence test), and whose addition

increases the discriminating power of the contexts.

See Sangiorgi and Walker book, part 4, for more details.
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Types and sequential languages

In sequential languages, types are “widely” used:

• to detect simple programming errors at compilation time;

• to perform optimisations in compilers;

• to aid the structure and design of systems;

• to compile modules separately;

• to reason about programs;

• ahem, etc...
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Data types and pi-calculus

In pi-calculus, the only values are names. We now extend pi-calculus with base
values of type int and bool, and with tuples.

Unfortunately (?!) this allows writing terms which make no sense, as

x〈true〉.P
n

x(y).z〈y + 1〉

or (even worse)

x〈true〉.P
n

x(y).y〈4〉 .

These terms raise runtime errors, a concept you should be familiar with.

20



Preventing runtime errors

We know that 3 : int and true : bool.

Names are values (they denote channels). Question: in the term

P ≡ x〈3〉.P ′

which type can we assign to x?

Idea: state that x is a channel that can transport values of type int. Formally

x : ch(int) .

A complete type system can be developed along these lines...
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Simply-typed pi-calculus: syntax and reduction semantics

Types:
T ::= ch(T )

∣∣ T × T
∣∣ unit

∣∣ int
∣∣ bool

Terms (messages and processes):

M ::= x
∣∣ (M,M)

∣∣ ()
∣∣ 1, 2, ...

∣∣ true
∣∣ false

P ::= 0
∣∣ x(y : T ).P

∣∣ x〈M〉.P
∣∣ P

f
P

∣∣ (νx : T )P∣∣ match z with (x : T1, y : T2) in P
∣∣ !P

Notation: we write w(x, y).P for w(z : T1 × T2).match z with (x : T1, y : T2) in P .
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Simply-typed pi-calculus: the type system

Type environment: Γ ::= ∅
∣∣ Γ, x:T .

Type judgements:

• Γ ` M : T value M has type T under the type assignement for names Γ;

• Γ ` P process P respects the type assignement for names Γ.
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Simply-typed pi-calculus: the type rules (excerpt)

Messages:

3 : int
Γ(x) = T

Γ ` x : T

Γ ` M1 : T1 Γ ` M2 : T2

Γ ` (M1,M2) : T1 × T2

Processes:

Γ ` 0
Γ ` P1 Γ ` P2

Γ ` P1

f
P2

Γ, x:T ` P

Γ ` (νx : T )P

Γ ` x : ch(T ) Γ, y:T ` P

Γ ` x(y : T ).P

Γ ` x : ch(T ) Γ ` M : T Γ ` P

Γ ` x〈M〉.P
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Soundness

The soundness of the type system can be proved along the lines of Wright and
Felleisen’s syntactic approach to type soundness.

• extend the syntax with the wrong process, and add reduction rules to capture
runtime errors:

where x is not a name

x〈M〉.P τ−−→ wrong

where x is not a name

x(y:T ).P τ−−→ wrong

• prove that if Γ ` P , with Γ closed, and P _∗ P ′, then P ′ does not have
wrong as a subterm.
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Soundness, ctd.

Lemma Suppose that Γ ` P , Γ(x) = T , Γ ` v : T . Then Γ ` P{v/x}.

Proof. Induction on the derivation of Γ ` P .

Theorem Suppose Γ ` P , and P
α−−→ P ′.

1. If α = τ then Γ ` P ′.

2. If α = a(v) then there is T such that Γ ` a : ch(T ) and if Γ ` v : T then
Γ ` P ′.

3. If α = (νx̃ : S̃)a〈v〉 then there is T such that Γ ` a : ch(T ), Γ, x̃ : S̃ ` v : T ,
Γ, x̃ : S̃ ` P ′, and each component of S̃ is a link type.

Proof. At the blackboard.
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pi-calculus is hardly ever used untyped

Types can be enriched in many ways.

• Familiar type constructs: union, record, variants, basic values, functions,
linearity, polymorphsim,. . .

• Type constructs specific to processes: process-passing, receptiveness, deadlock-
freedom, sessions, . . .

Remark: types are assigned to names. (More on types next Thursday).
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