Concurrency theory

Its, bisimulation and contextual equivalences

A historical perspective

CSP Hoare defined the semantics of CSP using an axiomatic approach (problem: you cannot execute a program);

CCS Milner defined the operational semantics of CCS in term of a labelled transition system and associated bisimilarity;
...several attempts to handle mobility algebraically led to...
pi-calculus Milner, Parrow and Walker introduced the pi-calculus. They defined its semantics along the lines of research on CCS, that is, before defining the reduction semantics, they defined an LTS...

Lifting CCS techniques to name-passing
 is not straightforward

Actually, the original paper on pi-calculus defines two LTSs (excerpts):
Early LTS

> Late LTS

$$
\begin{aligned}
& \bar{x}\langle v\rangle . P \xrightarrow{\bar{x}\langle v\rangle} P \\
& x(y) . P \xrightarrow{x(v)} P\{v / y\} \\
& P \xrightarrow{\bar{x}\langle v\rangle} P^{\prime} \quad Q \xrightarrow{x(v)} Q^{\prime} \\
& P\left\|Q \xrightarrow{\tau} P^{\prime}\right\| Q^{\prime} \\
& \bar{x}\langle v\rangle . P \xrightarrow{\bar{x}\langle v\rangle} P \\
& x(y) . P \xrightarrow{x(y)} P \\
& P \xrightarrow{\bar{x}\langle v\rangle} P^{\prime} \quad Q \xrightarrow{x(y)} Q^{\prime} \\
& P\left\|Q \xrightarrow{\tau} P^{\prime}\right\| Q^{\prime}\{v / y\}
\end{aligned}
$$

These LTSs define the same τ-transitions, where is the problem?

Problem

Definition: Weak bisimilarity, denoted \approx, is the largest symmetric relation such that whenever $P \approx Q$ and $P \xrightarrow{\ell} P^{\prime}$ there exists Q^{\prime} such that $Q \xlongequal{\hat{\ell}} Q^{\prime}$ and $P^{\prime} \approx Q^{\prime}$.

But the bisimilarity built on top of them observe all the labels: do the resulting bisimilarities coincide? No!

Which is the right one? Which is the role of the LTS?

Back to CCS - reductions

Syntax:

Reduction semantics:

$$
a . P\|\bar{a} . Q \rightarrow P\| Q \quad \frac{P \rightarrow P^{\prime}}{(\boldsymbol{\nu} a) P \rightarrow(\boldsymbol{\nu} a) P^{\prime}} \quad \frac{P \equiv P^{\prime} \rightarrow Q^{\prime} \equiv Q}{P \rightarrow Q}
$$

where \equiv is defined as:

$$
\begin{gathered}
P\|\mathbf{0} \equiv P \quad P\| Q \equiv Q\|P \quad(P \| Q)\| R \equiv P \|(Q \| R) \\
(\boldsymbol{\nu} a) P \| Q \equiv(\boldsymbol{\nu} a)(P \| Q) \text { if } a \notin \operatorname{fn}(Q)
\end{gathered}
$$

Back to CCS - observational equivalence

Let reduction barbed congruence, denoted \simeq, be the largest symmetric relation over processes that is
preserved by contexts: if $P \simeq Q$ then $C[P] \simeq C[Q]$ for all contexts $C[-]$.
barb preserving: if $P \simeq Q$ and $P \downarrow_{n}$, then $Q \Downarrow_{n}$.
Remark:
$P \downarrow n \quad$ holds if $\quad P \equiv(\boldsymbol{\nu} \tilde{a})\left(n . P^{\prime} \| P^{\prime \prime}\right)$ or $P \equiv(\boldsymbol{\nu} \tilde{a})\left(\bar{n} . P^{\prime} \| P^{\prime \prime}\right)$ with $n \notin\{\tilde{a}\}$
and $P \Downarrow n$ holds if there exists P^{\prime} such that $P \rightarrow \rightarrow^{*} P^{\prime}$ and $P^{\prime} \downarrow n$.
reduction closed: if $P \simeq Q$ and $P \rightarrow P^{\prime}$, then there is a Q^{\prime} such that $Q \rightarrow{ }^{*} Q^{\prime}$ and $P^{\prime} \simeq Q^{\prime}\left(\rightarrow^{*}\right.$ is the reflexive and transitive closure of $\left.\rightarrow\right)$.

The role of bisimilarity

Observation: the definition of bisimilarity does not involve a universal quantification over all contexts!

Question: is there any relationship between (weak) bisimilarity and reduction barbed congruence?

Theorem:

1. $P \approx Q$ implies $P \simeq Q \quad$ (soundness of bisimilarity);
2. $P \simeq Q$ implies $P \approx Q$ (completeness of bisimilarity).

Point 2. does not hold in general.
Point 1. ought to hold (otherwise your LTS/bisimilarity is very odd!).

Soundness and completeness for a fragment of CCS

Consider the fragment of CCS without sums and replication:

$$
\begin{array}{ccc}
a . P \xrightarrow{a} P & \bar{a} \cdot P \xrightarrow{\bar{a}} P & \xrightarrow[\longrightarrow]{P \xrightarrow{a} P^{\prime} Q \xrightarrow{\bar{a}} Q^{\prime}} \\
\begin{array}{ll}
P\left\|Q \xrightarrow{\tau} P^{\prime}\right\| Q^{\prime}
\end{array} \\
P\left\|Q \xrightarrow{\ell} P^{\prime} P^{\prime}\right\| Q & \frac{P \xrightarrow{\ell} P^{\prime} a \notin \mathrm{fn}(\ell)}{(\boldsymbol{\nu} a) P \xrightarrow{\ell}(\boldsymbol{\nu} a) P^{\prime}} & \text { symmetric rules omitted. }
\end{array}
$$

Barbs are defined as $P \downarrow a$ iff $P \equiv(\boldsymbol{\nu} \tilde{n})\left(a \cdot P^{\prime} \| P^{\prime \prime}\right)$ or $P \equiv(\boldsymbol{\nu} \tilde{n})\left(\bar{a} \cdot P^{\prime} \| P^{\prime \prime}\right)$ for $a \notin \tilde{n}$.

Soundness of weak bisimilarity: $P \approx Q$ implies $P \simeq Q$.

Proof We show that \approx is contextual, barb preserving, and reduction closed.

Contextuality of \approx can be shown by induction on the structure of the contexts, and by case analysis of the possible interactions between the processes and the contexts. (Congurence of bisimilarity).

Suppose that $P \approx Q$ and $P \downarrow a$. Then $P \equiv(\boldsymbol{\nu} \tilde{n})\left(a . P_{1} \| P_{2}\right)$, with $a \notin \tilde{n}$. We derive $P \xrightarrow{a}(\boldsymbol{\nu} \tilde{n})\left(P_{1} \| P_{2}\right)$. Since $P \approx Q$, there exists Q^{\prime} such that $Q \stackrel{a}{\Longrightarrow} Q^{\prime}$, that is $Q \xrightarrow{\tau} Q^{\prime \prime} \xrightarrow{a} \ldots$ But $Q^{\prime \prime}$ must be of the form $(\boldsymbol{\nu} \tilde{m})\left(a \cdot Q_{1} \| Q_{2}\right)$ with $a \notin \tilde{m}$. This implies that $Q^{\prime \prime} \downarrow a$, and in turn $Q \Downarrow a$, as required.

Suppose that $P \approx Q$ and $P \rightarrow P^{\prime}$. We have that $P \xrightarrow{\tau} P^{\prime \prime} \equiv P^{\prime}$. Since $P \approx Q$, there exists Q^{\prime} such that $Q \xrightarrow{\tau}{ }^{*} Q^{\prime}$ and $P^{\prime} \equiv P^{\prime \prime} \approx Q^{\prime}$. Since $Q \xrightarrow{\tau}{ }^{*} Q^{\prime}$ it holds that $Q \rightarrow Q^{\prime}$. Since $P^{\prime} \equiv P^{\prime \prime}$ implies $P^{\prime} \approx P^{\prime \prime}$, by transitivity of \approx we conclude $P^{\prime} \approx Q^{\prime}$, as required.

Completeness of weak bisimilarity: $P \simeq Q$ implies $P \approx Q$.

Proof We show that \simeq is a bisimulation.
Suppose that $P \simeq Q$ and $P \xrightarrow{a} P^{\prime}$ (the case $P \simeq Q$ and $P \xrightarrow{\tau} P^{\prime}$ is easy). Let

$$
\begin{aligned}
C_{a}[-] & =-\| \bar{a} . d & \text { Flip } & =\bar{d} \cdot(o \oplus f) \\
C_{\bar{a}}[-] & =-\| a . d & -{ }_{1} \oplus-{ }_{2} & =(\boldsymbol{\nu} z)\left(z .-_{1}\left\|z \cdot-_{2}\right\| \bar{z}\right)
\end{aligned}
$$

where the names z, o, f, d are fresh for P and Q.
Lemma 1. $C_{a}[P] \rightarrow^{*} P^{\prime} \| d$ if and only if $P \xlongequal{a} P^{\prime}$. Similarly for $C_{\bar{a}}[-]$.
Since \simeq is contextual, we have $C_{a}[P] \|$ Flip $\simeq C_{a}[Q] \|$ Flip. By Lemma 1. we have $C_{a}[P] \|$ Flip $\rightarrow^{*} P_{1} \equiv P^{\prime}\|o\|(\boldsymbol{\nu} z) z . f$.

Lemma 2. If $P \simeq Q$ and $P \rightarrow{ }^{*} P^{\prime}$ then there exists Q^{\prime} such that $Q \rightarrow{ }^{*} Q^{\prime}$ and $P^{\prime} \simeq Q^{\prime}$.

By Lemma 2. there exists Q_{1} such that $C_{a}[Q] \|$ Flip $\rightarrow^{*} Q_{1}$ and $P_{1} \simeq Q_{1}$. Now, $P_{1} \downarrow o$ and $P_{1} \Downarrow f$. Since \simeq is barb preserving, we have $Q_{1} \Downarrow o$ and $Q_{1} \Downarrow f$. The absence of the barb f implies that the \oplus operator reduced, and in turn that the d action has been consumed: this can only occur if Q realised the a action. Thus we can conclude $Q_{1} \equiv Q^{\prime}\|o\|(\boldsymbol{\nu} z) z . f$, and by Lemma 1 . we also have $Q \stackrel{a}{\Longrightarrow} Q^{\prime}$.

It remains to show that $P^{\prime} \simeq Q^{\prime}$.
Lemma 3. $(\nu z) z . P \simeq 0$.
Since $P_{1} \simeq Q_{1}$ and \simeq is contextual, we have $(\boldsymbol{\nu} o) P_{1} \simeq(\boldsymbol{\nu} o) Q_{1}$. By Lemma 3., we have
$P^{\prime} \simeq P^{\prime}\|(\boldsymbol{\nu} o) o\|(\boldsymbol{\nu} z) z . f \equiv(\boldsymbol{\nu} o) P_{1} \simeq(\boldsymbol{\nu} o) Q_{1} \equiv Q^{\prime}\|(\boldsymbol{\nu} o) o\|(\boldsymbol{\nu} z) z \cdot f \simeq Q^{\prime}$.
The equivalence $P^{\prime} \simeq Q^{\prime}$ follows because $\equiv \subseteq \simeq$ and \simeq is transitive.
Exercise: explain the role of the Flip process.

LTSs revisited

Reduction barbed congruence involves a universal quantification over all contexts. Weak bisimilarity does not, yet bisimilarity is a sound proof technique for reduction barbed congruence. How is this possible?

An LTS captures all the interactions that a term can have with an arbitrary context. In particular, each label correspond to a minimal context.

For instance, in CCS, $P \xrightarrow{a} P^{\prime}$ denotes the fact that P can interact with the context $C[-]=-\| \bar{a}$, yielding P^{\prime}.

And τ transitions characterises all the interactions with an empty context.

Pi-calculus: labels

Given a process P, which are the contexts ${ }^{1}$ that yield a reduction?

- if $P \equiv(\boldsymbol{\nu} \tilde{n})\left(\bar{x}\langle v\rangle . P_{1} \| P_{2}\right)$ with $x, v \notin \tilde{n}$, then P interacts with the context

$$
C[-]=-\| x(y) \cdot Q
$$

yielding:

$$
C[P] \rightarrow \underbrace{(\boldsymbol{\nu} \tilde{n})\left(P_{1} \| P_{2}\right)}_{P^{\prime}} \| Q\{v / y\}
$$

We record this interaction with the label $\bar{x}\langle v\rangle: P \xrightarrow{\bar{x}\langle v\rangle} P^{\prime}$.

[^0]- if $P \equiv(\boldsymbol{\nu} \tilde{n})\left(x(y) . P_{1} \| P_{2}\right)$ with $x \notin \tilde{n}$, then P interacts with the context

$$
\begin{gathered}
C[-]=-\| \bar{x}\langle v\rangle \cdot Q \quad \text { for } v \notin \tilde{n} \text {, yielding: } \\
C[P] \rightarrow \underbrace{(\boldsymbol{\nu} \tilde{n})\left(P_{1}\{v / y\} \| P_{2}\right)}_{P^{\prime}} \| Q
\end{gathered}
$$

We record this interaction with the label $x(v): P \xrightarrow{x(v)} P^{\prime}$

- If $P \rightarrow P^{\prime}$, then P reduces without interacting with a context $C[-]=-\| Q$:

$$
C[P] \rightarrow P^{\prime} \| Q
$$

We record this interaction with the label $\tau: P \xrightarrow{\tau} P^{\prime}$.

Intermezzo

What if we define a labelled bisimilarity using the previous labels?
Consider the processes:

$$
P=(\boldsymbol{\nu} v) \bar{x}\langle v\rangle \quad \text { and } \quad Q=\mathbf{0}
$$

Obviously, $P \not \not 二 Q$ because $P \downarrow x$ while $Q \Downarrow x$.
But both P and Q realise no labels: they are equated by the bisimilarity.
The bisimilarity is not sound!
Maybe we forgot a label...

The missing interaction

- if $P \equiv(\boldsymbol{\nu} \tilde{n})\left(\bar{x}\langle v\rangle . P_{1} \| P_{2}\right)$ with $x \notin \tilde{n}$ and $v \in \tilde{n}$, then P interacts with the context

$$
C[-]=-\| x(y) \cdot Q
$$

yielding:

$$
C[P] \rightarrow(\boldsymbol{\nu} v)(\underbrace{(\boldsymbol{\nu} \tilde{n} \backslash v)\left(P_{1} \| P_{2}\right)}_{P^{\prime}} \| Q\{v / y\})
$$

We record this interaction with the label $(\boldsymbol{\nu} v) \bar{x}\langle v\rangle: P \xrightarrow{(\boldsymbol{\nu} v) \bar{x}\langle v\rangle} P^{\prime}$. Intuition: in P^{\prime} the scope of v has been opened.

Summary of actions

ℓ	kind	$\mathrm{fn}(\ell)$	$\mathrm{bn}(\ell)$	$\mathrm{n}(\ell)$
$\bar{x}\langle y\rangle$	free output	$\{x, y\}$	\emptyset	$\{x, y\}$
$(\boldsymbol{\nu} y) \bar{x}\langle y\rangle$	bound output	$\{x\}$	$\{y\}$	$\{x, y\}$
$x(y)$	input	$\{x, y\}$	\emptyset	$\{x, y\}$
τ	internal	\emptyset	\emptyset	\emptyset

Pi-calculus: LTS

$$
\begin{aligned}
& \bar{x}\langle v\rangle . P \xrightarrow{\bar{x}\langle v\rangle} P \quad x(y) . P \xrightarrow{x(v)} P\{v / y\} \quad \xrightarrow{P\left\|Q \xrightarrow{\bar{x}\langle v\rangle} P^{\prime} P \xrightarrow{x(v)} P^{\prime}\right\| Q^{\prime}}
\end{aligned}
$$

$$
\begin{aligned}
& P\left\|Q \xrightarrow{\ell} P^{\prime}\right\| Q \quad(\boldsymbol{\nu} v) P \xrightarrow{\ell}(\boldsymbol{\nu} v) P^{\prime} \quad!P \xrightarrow{\ell} P^{\prime} \\
& P \xrightarrow{\bar{x}\langle v\rangle} P^{\prime} \quad x \neq v \quad P \xrightarrow{(\nu v) \bar{x}\langle v\rangle} P^{\prime} \quad Q \xrightarrow{x(v)} Q^{\prime} \quad v \notin \operatorname{fn}(Q) \\
& (\boldsymbol{\nu} v) P \xrightarrow{(\boldsymbol{\nu} v) \bar{x}\langle v\rangle} P^{\prime} \\
& P \| Q \xrightarrow{\tau}(\boldsymbol{\nu} v)\left(P^{\prime} \| Q^{\prime}\right)
\end{aligned}
$$

Pi-calculus: bisimilarity

We can define bisimilarity for pi-calculus in the standard way.
Let $\xrightarrow{\hat{\ell}}$ be $\xrightarrow{\tau}{ }^{*} \ell \overbrace{}^{*}$ if $\ell \neq \tau$, and $\xrightarrow{\tau}$ otherwise.

Definition: Weak bisimilarity, denoted \approx, is the largest symmetric relation such that whenever $P \approx Q$ and $P \xrightarrow{\ell} P^{\prime}$ there exists Q^{\prime} such that $Q \stackrel{\hat{\ell}}{\Longrightarrow} Q^{\prime}$ and $P^{\prime} \approx Q^{\prime}$.

Last week examples

1. $\bar{x}\langle y\rangle \not \approx \mathbf{0}$: trivial because $\bar{x}\langle y\rangle \xrightarrow{\bar{x}\langle y\rangle}$ and $\mathbf{0} \xrightarrow{\bar{x}\langle y\rangle}$.
2. $(\boldsymbol{\nu} x) \bar{x}\rangle . R \approx \mathbf{0}$: the relation $\mathcal{R}=\{((\boldsymbol{\nu} x) \bar{x}\langle \rangle \cdot R, \mathbf{0})\}=$ is a bisimulation.
3. $(\boldsymbol{\nu} x)\left(\bar{x}\langle y\rangle \cdot R_{1} \| x(z) \cdot R_{2}\right) \approx(\boldsymbol{\nu} x)\left(R_{1} \| R_{2}\left\{{ }^{y} / z\right\}\right)$

The relation

$$
\mathcal{R}=\left\{\left((\boldsymbol{\nu} x)\left(\bar{x}\langle y\rangle \cdot R_{1} \| x(z) \cdot R_{2}\right),(\boldsymbol{\nu} x)\left(R_{1} \| R_{2}\{y / z\}\right)\right)\right\}^{=} \cup \mathcal{I}
$$

is a bisimulation.
\mathcal{I} is the identity relation over processes, and $\mathcal{R}^{=}$denotes the symmetric closure of \mathcal{R}.

Subtleties of pi-calculus LTS

Exercise: derive a τ transition corresponding to this reduction:

$$
(\boldsymbol{\nu} x) \bar{a}\langle x\rangle \cdot P \| a(y) \cdot Q \rightarrow(\boldsymbol{\nu} x)(P \| Q\{x / y\})
$$

Exercise: each side condition in the definition of the LTS is needed to have the theorem

$$
P \rightarrow Q \text { iff } P \xrightarrow{\tau} \equiv Q
$$

Remove on side condition at a time and find counter-examples to this theorem.

Weak bisimulation is a sound proof technique for reduction barbed congruence

- Prove that weak bisimulation is reduction closed.

...at the blackboard

- Prove that weak bisimulation is barb preserving.
...at the blackboard
- Prove that weak-bisimulation is a congruence.
...ahem, think twice...

On soundness of weak bisimilarity

Exercise: Consider the terms (in a pi-calculus extended with +):

$$
\begin{aligned}
P & =\bar{x}\langle v\rangle \| y(z) \\
Q & =\bar{x}\langle v\rangle . y(z)+y(z) \cdot \bar{x}\langle v\rangle
\end{aligned}
$$

1. Prove that $P \approx Q^{2}$.
2. Does $P \simeq Q ?^{3}$
[^1]
Bisimilarity is not a congruence

In pi-calculus, bisimilarity (both strong and weak) is not preserved by input prefixes, that is contexts of the form $C[-]=x(y)$. -. When we built the labels, we forgot the contexts which can interact with the process by changing its internal structure.

Question: how to recover the soundness of the bisimilarity with respect to the reduction barbed congruence? Two solutions:

1. close the reduction barbed congruence under all non input prefix contexts;
2. close the bisimilarity under substitution: let $P \approx^{c} Q$ (P is fully bisimilar with Q) if $P \sigma \approx Q \sigma$ for all substitutions σ.

Exercise: Show that $P \not \nsim^{c} Q$, where P and Q are defined in the previous slide.

And completeness?

Completeness of bisimulation with respect to barbed congruence ${ }^{4}$ (closed under non-input prefixes, denoted \simeq^{-}) holds in the strong case. In the weak case, we have that for

$$
P=\bar{a}\langle x\rangle\left\|E_{x y} \quad Q=\bar{a}\langle y\rangle\right\| E_{x y}
$$

where

$$
E_{x y}=!x(z) \cdot \bar{y}\langle z\rangle \|!y(z) \cdot \bar{x}\langle z\rangle
$$

it holds that $P \not \approx Q$ but $P \simeq^{-} Q$ for each context $C[-]$.
Completeness (for image-finite processes) holds if a name-matching operator is added to the language.

[^2]
Asynchronous communication

CCS and pi-calculus (and many others) are based on synchronized interaction, that is, the acts of sending a datum and receiving it coincide:

$$
\bar{a} . P\|a \cdot Q \rightarrow P\| Q .
$$

In real-world distributed systems, sending a datum and receiving it are distinct acts:

$$
\bar{a} . P\|a \cdot Q \ldots \rightarrow \ldots \bar{a}\| P\left\|a \cdot Q \ldots \rightarrow \ldots P^{\prime}\right\| Q .
$$

In an asynchronous world, the prefix . does not express temporal precedence.

Asynchronous interaction made easy

Idea: the only term than can appear underneath an output prefix is $\mathbf{0}$.
Intuition: an unguarded occurence of $\bar{x}\langle y\rangle$ can be thought of as a datum y in an implicit communication medium tagged with x.

Formally:

$$
\bar{x}\langle y\rangle \| x(z) . P \rightarrow P\{y / z\} .
$$

We suppose that the communication medium has unbounded capacity and preserves no ordering among output particles.

Asynchronous pi-calculus

Syntax:

$$
P::=\mathbf{0}|x(y) . P \quad| \bar{x}\langle y\rangle \left\lvert\, \begin{array}{ll|l|l}
& P \| P \mid & (\boldsymbol{\nu} x) P \mid & \mid P
\end{array}\right.
$$

The definitions of free and bound names, of structural congruence \equiv, and of the reduction relation \rightarrow are inherited from pi-calculus.

Examples

Sequentialization of output actions is still possible:

$$
(\boldsymbol{\nu} y, z)(\bar{x}\langle y\rangle\|\bar{y}\langle z\rangle\| \bar{z}\langle a\rangle \| R)
$$

Synchronous communication can be implemented by waiting for an acknoledgement:

$$
\begin{aligned}
\llbracket \bar{x}\langle y\rangle \cdot P \rrbracket & =(\boldsymbol{\nu} u)(\bar{x}\langle y, u\rangle \| u() \cdot P) \\
\llbracket x(v) \cdot Q \rrbracket & =x(v, w) \cdot(\bar{w}\langle \rangle \| Q) \quad \text { for } w \notin Q
\end{aligned}
$$

Exercise: implement synchronous communication without relying on polyadic primitives.

Contextual equivalence and asynchronous pi-calculus

It is natural to impose two constraints to the basic recipe:

- compare terms using only asynchronous contexts;
- restrict the observables to be co-names. To observe a process is to interact with it by performing a complementary action and reporting it: in asynchronous pi-calculus input actions cannot be observed.

A peculiarity of synchronous equivalences

The terms

$$
\begin{aligned}
P & =!x(z) \cdot \bar{x}\langle z\rangle \\
Q & =\mathbf{0}
\end{aligned}
$$

are not reduction barbed congruent, but they are asynchronous reduction barbed congruent.

Intuition: in an asynchronous world, if the medium is unbound, then buffers do not influence the computation.

A proof method

Consider now the weak bisimilarity \approx_{s} built on top of the standard (early) LTS for pi-calculus. As asynchronous pi-calculus is a sub-calculus of pi-calculus, \approx_{s} is an equivalence for asynchronous pi-calculus terms.

It holds $\approx_{s} \subseteq \simeq$, that is the standard pi-calculus bisimilarity is a sound proof technique for \simeq.

But

$$
!x(z) \cdot \bar{x}\langle z\rangle \not \chi_{s} \mathbf{0} .
$$

Question: can a labelled bisimilarity recover the natural contextual equivalence?

A problem and two solutions

Transitions in an LTS should represent observable interactions a term can engage with a context:

- if $P \xrightarrow{\bar{x}\langle y\rangle} P^{\prime}$ then P can interact with the context $-\| x(u)$.beep, where beep is activated if and only if the output action has been observed;
- if $P \xrightarrow{x(y)} P^{\prime}$ then in no way beep can be activated if and only if the input action has been observed!

Solutions:

1. relax the matching condition for input actions in the bisimulation game;
2. modify the LTS so that it precisely identifies the interactions that a term can have with its environment.

Amadio, Castellani, Sangiorgi - 1996

Idea: relax the matching condition for input actions.
Let asynchronous bisimulation \approx_{a} be the largest symmetric relation such that whenever $P \approx_{a} Q$ it holds:

1. if $P \xrightarrow{\ell} P^{\prime}$ and $\ell \neq x(y)$ then there exists Q^{\prime} such that $Q \stackrel{\hat{\ell}}{\Longrightarrow} Q^{\prime}$ and $P^{\prime} \approx_{a} Q^{\prime}$;
2. if $P \xrightarrow{x(y)} P^{\prime}$ then there exists Q^{\prime} such that $Q \| \bar{x}\langle y\rangle \Longrightarrow Q^{\prime}$ and $P^{\prime} \approx_{a} Q^{\prime}$.

Remark: P^{\prime} is the outcome of the interaction of P with the context $-\| \bar{x}\langle y\rangle$. Clause 2. allows Q to interact with the same context, but does not force this interaction.

Honda, Tokoro - 1992

$$
\begin{aligned}
& \bar{x}\langle y\rangle \xrightarrow{\bar{x}\langle y\rangle} \mathbf{0} \quad x(u) . P \xrightarrow{x(y)} P\{y / u\} \quad \mathbf{0} \xrightarrow{x(y)} \bar{x}\langle y\rangle \\
& P \xrightarrow{\bar{x}\langle y\rangle} P^{\prime} \quad x \neq y \\
& (\boldsymbol{\nu} y) P \xrightarrow{(\boldsymbol{\nu} y) \bar{x}\langle y\rangle} P^{\prime} \\
& \frac{P \xrightarrow{\alpha} P^{\prime} \quad y \notin \alpha}{(\boldsymbol{\nu} y) P \xrightarrow{\alpha}(\boldsymbol{\nu} y) P^{\prime}} \\
& \xrightarrow[{P\left\|Q \xrightarrow{\tau} P^{\prime}\right\| Q^{\prime}}]{P} \quad \xrightarrow{\bar{x}\langle y\rangle} P^{\prime} Q \xrightarrow{x(y)} Q^{\prime} \quad P^{\prime} Q \xrightarrow{\text { 步y) } \bar{x}\langle y\rangle} Q^{\prime} y \notin \mathrm{fn}(Q) \\
& \begin{array}{c}
P \xrightarrow{\alpha} P^{\prime} \quad \operatorname{bn}(\alpha) \cap \mathrm{fn}(Q)=\emptyset \\
P\left\|Q \xrightarrow{\alpha} P^{\prime}\right\| Q
\end{array} \\
& P \equiv P^{\prime} \quad P^{\prime} \xrightarrow{\alpha} Q^{\prime} \quad Q^{\prime} \equiv Q \\
& P \xrightarrow{\alpha} Q
\end{aligned}
$$

Honda, Tokoro explained

Ideas:

- modify the LTS so that it precisely identifies the interactions that a term can have with its environment;
- rely on a standard weak bisimulation.

Amazing results: asynchrounous bisimilarity in ACS style, bisimilarity on top of HT LTS, and barbed congruence coincide. ${ }^{5}$

[^3]
Properties of asynchronous bisimilarity in ACS style

- Bisimilarity is a congruence;
it is preserved also by input prefix, while it is not in the synchronous case;
- bisimilarity is an equivalence relation (transitivity is non-trivial);
- bisimilarity is sound with respect to reduction barbed congruence;
- bisimilarity is complete with respect to barbed congruence. ${ }^{6}$

[^4]
Some proofs about ACS bisimilarity... on asynchronous CCS

Syntax:

Reduction semantics:

$$
a . P \| \bar{a} \rightarrow P
$$

$$
\begin{aligned}
P \equiv P^{\prime} \rightarrow Q^{\prime} \equiv Q \\
P \rightarrow Q
\end{aligned}
$$

where \equiv is defined as:

$$
\begin{gathered}
P\|Q \equiv Q\| P \quad(P \| Q)\|R \equiv P\|(Q \| R) \\
(\boldsymbol{\nu} a) P \| Q \equiv(\boldsymbol{\nu} a)(P \| Q) \text { if } a \notin \operatorname{fn}(Q)
\end{gathered}
$$

Background: LTS and weak bisimilarity for asynchronous CCS

$$
\begin{array}{cc}
a . P \xrightarrow{a} P & \begin{array}{c}
\bar{a} \xrightarrow{\bar{a}} \mathbf{0} \\
P \xrightarrow{\ell} P^{\prime} \\
P\left\|Q \xrightarrow{\ell} P^{\prime}\right\| Q
\end{array} \\
\underset{(\boldsymbol{\nu} a) P \xrightarrow{\ell}(\boldsymbol{\nu} a) P^{\prime}}{P \xrightarrow{\ell} P^{\prime} \quad Q \xrightarrow{\bar{a}} Q^{\prime}} \\
& \begin{array}{l}
P \notin \mathrm{fn}(\ell)
\end{array} \\
\text { symmetric rules omitted. }
\end{array}
$$

Definition: Asynchronous weak bisimilarity, denoted \approx, is the largest symmetric relation such that whenever $P \approx Q$ and

- $P \xrightarrow{\ell} P^{\prime}, \ell \in\{\tau, \bar{a}\}$, there exists Q^{\prime} such that $Q \stackrel{\hat{\ell}}{\Longrightarrow} Q^{\prime}$ and $P^{\prime} \approx Q^{\prime}$;
- $P \xrightarrow{a} P^{\prime}$, there exists Q^{\prime} such that $Q \| \bar{a} \Longrightarrow Q^{\prime}$ and $P^{\prime} \approx Q^{\prime}$.

Sketch of the proof of transitivity of \approx

Let $\mathcal{R}=\{(P, R): P \approx Q \approx R\}$. We show that $\mathcal{R} \subseteq \approx$.

- Suppose that $P \mathcal{R} R$ because $P \approx Q \approx R$, and that $P \xrightarrow{a} P^{\prime}$.

The definition of \approx ensures that there exists Q^{\prime} such that $Q \| \bar{a} \Longrightarrow Q^{\prime}$ and $P^{\prime} \approx Q^{\prime}$.
Since \approx is a congruence and $Q \approx R$, it holds that $Q\|\bar{a} \approx R\| \bar{a}$.
A simple corollary of the defintion of the bisimilarity ensures that there exists R^{\prime} such that $R \| \bar{a} \Longrightarrow R^{\prime}$ and $Q^{\prime} \approx R^{\prime}$.
Then $P^{\prime} \mathcal{R} R^{\prime}$ by construction of \mathcal{R}.

- The other cases are standard.

Remark the unusual use of the congruence of the bisimilarity.

Sketch of the proof of completeness

We show that $\simeq \subseteq \approx$.

- Suppose that $P \simeq Q$ and that $P \xrightarrow{a} P^{\prime}$.

We must conclude that there exists Q^{\prime} such that $Q \| \bar{a} \Longrightarrow Q^{\prime}$ and $P^{\prime} \simeq Q^{\prime}$.
Since \simeq is a congruence, it holds that $P\|\bar{a} \simeq Q\| \bar{a}$.
Since $P \xrightarrow{a} P^{\prime}$, it holds that $P \| \bar{a} \xrightarrow{\tau} P^{\prime}$.
Since $P\|\bar{a} \simeq Q\| \bar{a}$, the definition of \simeq ensures that there exists Q^{\prime} such that $Q \| \bar{a} \Longrightarrow Q^{\prime}$ and $P^{\prime} \simeq Q^{\prime}$, as desired.

- The other cases are analogous to the completeness proof in synchronous CCS.

The difficulty of the completeness proof is to construct contexts that observe the actions of a process. The case $P \xrightarrow{a} P^{\prime}$ is straightforward because "there is nothing to observe".

Some references

Kohei Honda, Mario Tokoro: An Object Calculus for Asynchronous Communication. ECOOP 1991.

Kohei Honda, Mario Tokoro, On asynchronous communication semantics. ObjectBased Concurrent Computing 1991.

Gerard Boudol, Asynchrony and the pi-calculus. INRIA Research Report, 1992.
Roberto Amadio, Ilaria Castellani, Davide Sangiorgi, On bisimulations for the asynchronous pi-calculus. Theor. Comput. Sci. 195(2), 1998.

[^0]: ${ }^{1}$ to simplify the notations, we will not write the most general contexts.

[^1]: ${ }^{2}$ Does this hold if we replace + by $-_{1} \oplus-{ }_{2}=(\boldsymbol{\nu} w)\left(\bar{w}\langle \rangle\left\|w() .-_{1}\right\| w() .-_{2}\right)$ in Q ?
 ${ }^{3}$ Hint: define a context that equates the names x and y.

[^2]: ${ }^{4}$ barbed congruence is a variant of reduction-closed barbed congruence in which closure under context is allowed only at the beginning of the bisimulation game.

[^3]: ${ }^{5}$ ahem, modulo some technical details.

[^4]: ${ }^{6}$ for completeness the calculus must be equipped with a matching operator.

