
Concurrency theory

lts, bisimulation and contextual equivalences

Francesco Zappa Nardelli

INRIA Paris-Rocquencourt, MOSCOVA research team

francesco.zappa nardelli@inria.fr

together with

Frank Valencia (INRIA Futurs) Roberto Amadio (PPS) Emmanuel Haucourt (CEA)

MPRI - Concurrency October 23, 2008

A historical perspective

CSP Hoare defined the semantics of CSP using an axiomatic approach (problem:
you cannot execute a program);

CCS Milner defined the operational semantics of CCS in term of a labelled
transition system and associated bisimilarity ;

...several attempts to handle mobility algebraically led to...

pi-calculus Milner, Parrow and Walker introduced the pi-calculus. They defined
its semantics along the lines of research on CCS, that is, before defining the
reduction semantics, they defined an LTS...

1

Lifting CCS techniques to name-passing
is not straightforward

Actually, the original paper on pi-calculus defines two LTSs (excerpts):

Early LTS

x〈v〉.P x〈v〉−−−−→ P

x(y).P
x(v)−−−−→ P{v/y}

P
x〈v〉−−−−→ P ′ Q

x(v)−−−−→ Q′

P
f

Q
τ−−→ P ′ f

Q′

Late LTS

x〈v〉.P x〈v〉−−−−→ P

x(y).P
x(y)−−−−→ P

P
x〈v〉−−−−→ P ′ Q

x(y)−−−−→ Q′

P
f

Q
τ−−→ P ′ f

Q′{v/y}

These LTSs define the same τ -transitions, where is the problem?

2

Problem

Definition: Weak bisimilarity, denoted ≈, is the largest symmetric relation such

that whenever P ≈ Q and P
`−−→ P ′ there exists Q′ such that Q

ˆ̀
=⇒ Q′ and

P ′ ≈ Q′.

But the bisimilarity built on top of them observe all the labels: do the resulting
bisimilarities coincide? No!

Which is the right one? Which is the role of the LTS?

3

Back to CCS – reductions

Syntax:

P ::= 0
∣∣ a.P

∣∣ a.P
∣∣ P

n
P

∣∣ (νa)P

Reduction semantics:

a.P
f

a.Q _ P
f

Q
P _ P ′

(νa)P _ (νa)P ′

P ≡ P ′ _ Q′ ≡ Q

P _ Q

where ≡ is defined as:

P
f

0 ≡ P P
f

Q ≡ Q
f

P (P
f

Q)
f

R ≡ P
f

(Q
f

R)

(νa)P
f

Q ≡ (νa)(P
f

Q) if a 6∈ fn(Q)

4

Back to CCS – observational equivalence

Let reduction barbed congruence, denoted ', be the largest symmetric relation
over processes that is

preserved by contexts: if P ' Q then C[P] ' C[Q] for all contexts C[−].

barb preserving : if P ' Q and P ↓n, then Q ⇓n.

Remark:

P ↓ n holds if P ≡ (νã)(n.P
′ n

P
′′
) or P ≡ (νã)(n.P

′ n
P
′′
) with n 6∈ {ã}

and P ⇓ n holds if there exists P ′ such that P _∗ P ′ and P ′ ↓ n.

reduction closed : if P ' Q and P _ P ′, then there is a Q′ such that Q _∗ Q′

and P ′ ' Q′ (_∗ is the reflexive and transitive closure of _).

5

The role of bisimilarity

Observation: the definition of bisimilarity does not involve a universal
quantification over all contexts!

Question: is there any relationship between (weak) bisimilarity and reduction
barbed congruence?

Theorem:

1. P ≈ Q implies P ' Q (soundness of bisimilarity);

2. P ' Q implies P ≈ Q (completeness of bisimilarity).

Point 2. does not hold in general.
Point 1. ought to hold (otherwise your LTS/bisimilarity is very odd!).

6

Soundness and completeness for a fragment of CCS

Consider the fragment of CCS without sums and replication:

a.P
a−→ P a.P

a−→ P
P

a−→ P ′ Q
a−→ Q′

P
f

Q
τ−→ P ′ f

Q′

P
`−→ P ′

P
f

Q
`−→ P ′ f

Q

P
`−→ P ′ a 6∈ fn(`)

(νa)P
`−→ (νa)P ′

symmetric rules omitted.

Barbs are defined as P ↓ a iff P ≡ (νñ)(a.P ′ f
P ′′) or P ≡ (νñ)(a.P ′ f

P ′′)
for a 6∈ ñ.

7

Soundness of weak bisimilarity: P ≈ Q implies P ' Q.

Proof We show that ≈ is contextual, barb preserving, and reduction closed.

Contextuality of ≈ can be shown by induction on the structure of the contexts, and by case

analysis of the possible interactions between the processes and the contexts. (Congurence of

bisimilarity).

Suppose that P ≈ Q and P ↓ a. Then P ≡ (νñ)(a.P1

f
P2), with a 6∈ ñ. We derive

P
a−→ (νñ)(P1

f
P2). Since P ≈ Q, there exists Q′ such that Q

a
=⇒ Q′, that is

Q
τ−→

∗
Q′′ a−→ But Q′′ must be of the form (νm̃)(a.Q1

f
Q2) with a 6∈ m̃. This

implies that Q′′ ↓ a, and in turn Q ⇓ a, as required.

Suppose that P ≈ Q and P _ P ′. We have that P
τ−→ P ′′ ≡ P ′. Since P ≈ Q, there

exists Q′ such that Q
τ−→

∗
Q′ and P ′ ≡ P ′′ ≈ Q′. Since Q

τ−→
∗

Q′ it holds that Q _∗ Q′.

Since P ′ ≡ P ′′ implies P ′ ≈ P ′′, by transitivity of ≈ we conclude P ′ ≈ Q′, as required. 2

8

Completeness of weak bisimilarity: P ' Q implies P ≈ Q.

Proof We show that ' is a bisimulation.

Suppose that P ' Q and P
a−→ P ′ (the case P ' Q and P

τ−→ P ′ is easy). Let

Ca[−] = −
f

a.d F lip = d.(o⊕ f)

Ca[−] = −
f

a.d −1 ⊕−2 = (νz)(z.−1

f
z.−2

f
z)

where the names z, o, f, d are fresh for P and Q.

Lemma 1. Ca[P] _∗ P ′ f
d if and only if P

a
=⇒ P ′. Similarly for Ca[−].

Since ' is contextual, we have Ca[P]
f

Flip ' Ca[Q]
f

Flip. By Lemma 1. we have

Ca[P]
f

Flip _∗ P1 ≡ P ′ f
o

f
(νz)z.f .

Lemma 2. If P ' Q and P _∗ P ′ then there exists Q′ such that Q _∗ Q′ and P ′ ' Q′.

9

By Lemma 2. there exists Q1 such that Ca[Q]
f

Flip _∗ Q1 and P1 ' Q1. Now, P1 ↓ o

and P1 6↓ f . Since ' is barb preserving, we have Q1 ⇓ o and Q1 6⇓ f . The absence of the barb

f implies that the ⊕ operator reduced, and in turn that the d action has been consumed: this

can only occur if Q realised the a action. Thus we can conclude Q1 ≡ Q′ f
o

f
(νz)z.f , and

by Lemma 1. we also have Q
a

=⇒ Q′.

It remains to show that P ′ ' Q′.

Lemma 3. (νz)z.P ' 0.

Since P1 ' Q1 and ' is contextual, we have (νo)P1 ' (νo)Q1. By Lemma 3., we have

P
′ ' P

′ n
(νo)o

n
(νz)z.f ≡ (νo)P1 ' (νo)Q1 ≡ Q

′ n
(νo)o

n
(νz)z.f ' Q

′
.

The equivalence P ′ ' Q′ follows because ≡ ⊆ ' and ' is transitive. 2

Exercise: explain the role of the Flip process.

10

LTSs revisited

Reduction barbed congruence involves a universal quantification over all contexts.
Weak bisimilarity does not, yet bisimilarity is a sound proof technique for reduction
barbed congruence. How is this possible?

An LTS captures all the interactions that a term can have with an arbitrary
context. In particular, each label correspond to a minimal context.

For instance, in CCS, P
a−−→ P ′ denotes the fact that P can interact with the

context C[−] = −
f

a, yielding P ′.

And τ transitions characterises all the interactions with an empty context.

11

Pi-calculus: labels

Given a process P , which are the contexts1 that yield a reduction?

• if P ≡ (νñ)(x〈v〉.P1

f
P2) with x, v 6∈ ñ, then P interacts with the context

C[−] = −
n

x(y).Q

yielding:

C[P] _ (νñ)(P1

n
P2)︸ ︷︷ ︸

P ′

n
Q{v/y}

We record this interaction with the label x〈v〉: P
x〈v〉−−−−→ P ′.

1to simplify the notations, we will not write the most general contexts.

12

• if P ≡ (νñ)(x(y).P1

f
P2) with x 6∈ ñ, then P interacts with the context

C[−] = −
n

x〈v〉.Q for v 6∈ ñ, yielding:

C[P] _ (νñ)(P1{v/y}
n

P2)︸ ︷︷ ︸
P ′

n
Q

We record this interaction with the label x(v): P
x(v)−−−−→ P ′

• If P _ P ′, then P reduces without interacting with a context C[−] = −
f

Q:

C[P] _ P ′
n

Q

We record this interaction with the label τ : P
τ−−→ P ′.

13

Intermezzo

What if we define a labelled bisimilarity using the previous labels?

Consider the processes:

P = (νv)x〈v〉 and Q = 0

Obviously, P 6' Q because P ↓ x while Q 6⇓ x.

But both P and Q realise no labels: they are equated by the bisimilarity.

The bisimilarity is not sound!

Maybe we forgot a label...

14

The missing interaction

• if P ≡ (νñ)(x〈v〉.P1

f
P2) with x 6∈ ñ and v ∈ ñ, then P interacts with the

context
C[−] = −

n
x(y).Q

yielding:

C[P] _ (νv)((νñ \ v)(P1

n
P2)︸ ︷︷ ︸

P ′

n
Q{v/y})

We record this interaction with the label (νv)x〈v〉: P
(νv)x〈v〉−−−−−−−→ P ′.

Intuition: in P ′ the scope of v has been opened.

15

Summary of actions

` kind fn(`) bn(`) n(`)

x〈y〉 free output {x, y} ∅ {x, y}
(νy)x〈y〉 bound output {x} {y} {x, y}

x(y) input {x, y} ∅ {x, y}
τ internal ∅ ∅ ∅

16

Pi-calculus: LTS

x〈v〉.P x〈v〉−−−−→ P x(y).P
x(v)−−−−→ P{v/y}

P
x〈v〉−−−−→ P ′ Q

x(v)−−−−→ Q′

P
f

Q
τ−−→ P ′ f

Q′

P
`−−→ P ′ bn(`) ∩ fn(Q) = ∅

P
f

Q
`−−→ P ′ f

Q

P
`−−→ P ′ v 6∈ n(`)

(νv)P `−−→ (νv)P ′

P
f

!P `−−→ P ′

!P `−−→ P ′

P
x〈v〉−−−−→ P ′ x 6= v

(νv)P
(νv)x〈v〉−−−−−−−→ P ′

P
(νv)x〈v〉−−−−−−−→ P ′ Q

x(v)−−−−→ Q′ v 6∈ fn(Q)

P
f

Q
τ−−→ (νv)(P ′ f

Q′)

17

Pi-calculus: bisimilarity

We can define bisimilarity for pi-calculus in the standard way.

Let
ˆ̀

=⇒ be
τ−−→

∗ `−−→ τ−−→
∗

if ` 6= τ , and
τ−−→

∗
otherwise.

Definition: Weak bisimilarity, denoted ≈, is the largest symmetric relation such

that whenever P ≈ Q and P
`−−→ P ′ there exists Q′ such that Q

ˆ̀
=⇒ Q′ and

P ′ ≈ Q′.

18

Last week examples

1. x〈y〉 6≈ 0: trivial because x〈y〉 x〈y〉−−−−→ and 0 6 x〈y〉−−−−→.

2. (νx)x〈〉.R ≈ 0: the relation R = {((νx)x〈〉.R,0)}= is a bisimulation.

3. (νx)(x〈y〉.R1

f
x(z).R2) ≈ (νx)(R1

f
R2{y/z})

The relation

R = {((νx)(x〈y〉.R1

n
x(z).R2), (νx)(R1

n
R2{y/z}))}= ∪ I

is a bisimulation.

I is the identity relation over processes, and R= denotes the symmetric closure of R.

19

Subtleties of pi-calculus LTS

Exercise: derive a τ transition corresponding to this reduction:

(νx)a〈x〉.P
n

a(y).Q _ (νx)(P
n

Q{x/y})

Exercise: each side condition in the definition of the LTS is needed to have the
theorem

P _ Q iff P
τ−−→≡ Q

Remove on side condition at a time and find counter-examples to this theorem.

20

Weak bisimulation is a sound proof technique
for reduction barbed congruence

• Prove that weak bisimulation is reduction closed.
...at the blackboard

• Prove that weak bisimulation is barb preserving.
...at the blackboard

• Prove that weak-bisimulation is a congruence.
...ahem, think twice...

21

On soundness of weak bisimilarity

Exercise: Consider the terms (in a pi-calculus extended with +):

P = x〈v〉
n

y(z)

Q = x〈v〉.y(z) + y(z).x〈v〉

1. Prove that P ≈ Q2.

2. Does P ' Q?3

2Does this hold if we replace + by −1 ⊕−2 = (νw)(w〈〉
f

w().−1
f

w().−2) in Q?
3Hint: define a context that equates the names x and y.

22

Bisimilarity is not a congruence

In pi-calculus, bisimilarity (both strong and weak) is not preserved by input
prefixes, that is contexts of the form C[−] = x(y).−. When we built the labels,
we forgot the contexts which can interact with the process by changing its internal
structure.

Question: how to recover the soundness of the bisimilarity with respect to the
reduction barbed congruence? Two solutions:

1. close the reduction barbed congruence under all non input prefix contexts;

2. close the bisimilarity under substitution: let P ≈c Q (P is fully bisimilar with
Q) if Pσ ≈ Qσ for all substitutions σ.

Exercise: Show that P 6≈c Q, where P and Q are defined in the previous slide.

23

And completeness?

Completeness of bisimulation with respect to barbed congruence4 (closed under
non-input prefixes, denoted '−) holds in the strong case. In the weak case, we
have that for

P = a〈x〉
n

Exy Q = a〈y〉
n

Exy

where
Exy = !x(z).y〈z〉

n
!y(z).x〈z〉

it holds that P 6≈ Q but P '− Q for each context C[−].

Completeness (for image-finite processes) holds if a name-matching operator is
added to the language.

4barbed congruence is a variant of reduction-closed barbed congruence in which closure under context is allowed
only at the beginning of the bisimulation game.

24

Asynchronous communication

CCS and pi-calculus (and many others) are based on synchronized interaction,
that is, the acts of sending a datum and receiving it coincide:

a.P
n

a.Q _ P
n

Q .

In real-world distributed systems, sending a datum and receiving it are distinct
acts:

a.P
n

a.Q . . . _ . . . a
n

P
n

a.Q . . . _ . . . P ′
n

Q .

In an asynchronous world, the prefix . does not express temporal precedence.

25

Asynchronous interaction made easy

Idea: the only term than can appear underneath an output prefix is 0.

Intuition: an unguarded occurence of x〈y〉 can be thought of as a datum y in an
implicit communication medium tagged with x.

Formally:

x〈y〉
n

x(z).P _ P{y/z} .

We suppose that the communication medium has unbounded capacity and
preserves no ordering among output particles.

26

Asynchronous pi-calculus

Syntax:

P ::= 0
∣∣ x(y).P

∣∣ x〈y〉
∣∣ P

n
P

∣∣ (νx)P
∣∣ !P

The definitions of free and bound names, of structural congruence ≡, and of the
reduction relation _ are inherited from pi-calculus.

27

Examples

Sequentialization of output actions is still possible:

(νy, z)(x〈y〉
n

y〈z〉
n

z〈a〉
n

R) .

Synchronous communication can be implemented by waiting for an
acknoledgement:

[[x〈y〉.P]] = (νu)(x〈y, u〉
n

u().P)

[[x(v).Q]] = x(v, w).(w〈〉
n

Q) for w 6∈ Q

Exercise: implement synchronous communication without relying on polyadic primitives.

28

Contextual equivalence and asynchronous pi-calculus

It is natural to impose two constraints to the basic recipe:

• compare terms using only asynchronous contexts;

• restrict the observables to be co-names. To observe a process is to interact
with it by performing a complementary action and reporting it: in asynchronous
pi-calculus input actions cannot be observed.

29

A peculiarity of synchronous equivalences

The terms

P = !x(z).x〈z〉
Q = 0

are not reduction barbed congruent, but they are asynchronous reduction barbed
congruent.

Intuition: in an asynchronous world, if the medium is unbound, then buffers do
not influence the computation.

30

A proof method

Consider now the weak bisimilarity ≈s built on top of the standard (early) LTS
for pi-calculus. As asynchronous pi-calculus is a sub-calculus of pi-calculus, ≈s is
an equivalence for asynchronous pi-calculus terms.

It holds ≈s ⊆ ', that is the standard pi-calculus bisimilarity is a sound proof
technique for '.

But
!x(z).x〈z〉 6≈s 0 .

Question: can a labelled bisimilarity recover the natural contextual equivalence?

31

A problem and two solutions

Transitions in an LTS should represent observable interactions a term can engage
with a context:

• if P
x〈y〉−−−−→ P ′ then P can interact with the context −

f
x(u).beep, where

beep is activated if and only if the output action has been observed;

• if P
x(y)−−−−→ P ′ then in no way beep can be activated if and only if the input

action has been observed!

Solutions:

1. relax the matching condition for input actions in the bisimulation game;

2. modify the LTS so that it precisely identifies the interactions that a term can
have with its environment.

32

Amadio, Castellani, Sangiorgi - 1996

Idea: relax the matching condition for input actions.

Let asynchronous bisimulation ≈a be the largest symmetric relation such that
whenever P ≈a Q it holds:

1. if P
`−−→ P ′ and ` 6= x(y) then there exists Q′ such that Q

ˆ̀
=⇒ Q′ and

P ′ ≈a Q′;

2. if P
x(y)−−−−→ P ′ then there exists Q′ such that Q

f
x〈y〉 =⇒ Q′ and P ′ ≈a Q′.

Remark : P ′ is the outcome of the interaction of P with the context −
f

x〈y〉.
Clause 2. allows Q to interact with the same context, but does not force this
interaction.

33

Honda, Tokoro - 1992

x〈y〉 x〈y〉−−−→ 0 x(u).P
x(y)−−−→ P{y/u} 0

x(y)−−−→ x〈y〉

P
x〈y〉−−−→ P ′ x 6= y

(νy)P
(νy)x〈y〉−−−−−−→ P ′

P
α−−→ P ′ y 6∈ α

(νy)P
α−−→ (νy)P ′

P
x〈y〉−−−→ P ′ Q

x(y)−−−→ Q′

P
f

Q
τ−→ P ′ f

Q′

P
(νy)x〈y〉−−−−−−→ P ′ Q

x(y)−−−→ Q′ y 6∈ fn(Q)

P
f

Q
τ−→ (νy)(P ′ f

Q′)

P
α−−→ P ′ bn(α) ∩ fn(Q) = ∅

P
f

Q
α−−→ P ′ f

Q

P ≡ P ′ P ′ α−−→ Q′ Q′ ≡ Q

P
α−−→ Q

34

Honda, Tokoro explained

Ideas:

• modify the LTS so that it precisely identifies the interactions that a term can
have with its environment;

• rely on a standard weak bisimulation.

Amazing results: asynchrounous bisimilarity in ACS style, bisimilarity on top of
HT LTS, and barbed congruence coincide.5

5ahem, modulo some technical details.

35

Properties of asynchronous bisimilarity in ACS style

• Bisimilarity is a congruence;

it is preserved also by input prefix, while it is not in the synchronous case;

• bisimilarity is an equivalence relation (transitivity is non-trivial);

• bisimilarity is sound with respect to reduction barbed congruence;

• bisimilarity is complete with respect to barbed congruence.6

6for completeness the calculus must be equipped with a matching operator.

36

Some proofs about ACS bisimilarity... on asynchronous CCS

Syntax:

P ::= 0
∣∣ a.P

∣∣ a
∣∣ P

n
P

∣∣ (νa)P .

Reduction semantics:

a.P
f

a _ P
P ≡ P ′ _ Q′ ≡ Q

P _ Q

where ≡ is defined as:

P
f

Q ≡ Q
f

P (P
f

Q)
f

R ≡ P
f

(Q
f

R)

(νa)P
f

Q ≡ (νa)(P
f

Q) if a 6∈ fn(Q)

37

Background: LTS and weak bisimilarity for asynchronous CCS

a.P
a−→ P a

a−→ 0
P

a−→ P ′ Q
a−→ Q′

P
f

Q
τ−→ P ′ f

Q′

P
`−→ P ′

P
f

Q
`−→ P ′ f

Q

P
`−→ P ′ a 6∈ fn(`)

(νa)P
`−→ (νa)P ′

symmetric rules omitted.

Definition: Asynchronous weak bisimilarity, denoted ≈, is the largest symmetric
relation such that whenever P ≈ Q and

• P
`−−→ P ′, ` ∈ {τ, a}, there exists Q′ such that Q

ˆ̀
=⇒ Q′ and P ′ ≈ Q′;

• P
a−−→ P ′, there exists Q′ such that Q

f
a =⇒ Q′ and P ′ ≈ Q′.

38

Sketch of the proof of transitivity of ≈

Let R = {(P, R) : P ≈ Q ≈ R}. We show that R ⊆ ≈.

• Suppose that P R R because P ≈ Q ≈ R, and that P
a−→ P ′.

The definition of ≈ ensures that there exists Q′ such that Q
f

a =⇒ Q′ and P ′ ≈ Q′.

Since ≈ is a congruence and Q ≈ R, it holds that Q
f

a ≈ R
f

a.

A simple corollary of the defintion of the bisimilarity ensures that there exists R′ such that

R
f

a =⇒ R′ and Q′ ≈ R′.

Then P ′ R R′ by construction of R.

• The other cases are standard.

Remark the unusual use of the congruence of the bisimilarity.

39

Sketch of the proof of completeness

We show that ' ⊆ ≈.

• Suppose that P ' Q and that P
a−→ P ′.

We must conclude that there exists Q′ such that Q
f

a =⇒ Q′ and P ′ ' Q′.

Since ' is a congruence, it holds that P
f

a ' Q
f

a.

Since P
a−→ P ′, it holds that P

f
a

τ−→ P ′.

Since P
f

a ' Q
f

a, the definition of' ensures that there exists Q′ such that Q
f

a =⇒ Q′

and P ′ ' Q′, as desired.

• The other cases are analogous to the completeness proof in synchronous CCS.

The difficulty of the completeness proof is to construct contexts that observe the actions of a

process. The case P
a−→ P ′ is straightforward because “there is nothing to observe”.

40

Some references

Kohei Honda, Mario Tokoro: An Object Calculus for Asynchronous
Communication. ECOOP 1991.

Kohei Honda, Mario Tokoro, On asynchronous communication semantics. Object-
Based Concurrent Computing 1991.

Gerard Boudol, Asynchrony and the pi-calculus. INRIA Research Report, 1992.

Roberto Amadio, Ilaria Castellani, Davide Sangiorgi, On bisimulations for the
asynchronous pi-calculus. Theor. Comput. Sci. 195(2), 1998.

41

