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Until now

• A syntax for visible actions, synchronisation, parallel composition: CCS.

• Executing programs: labelled transition systems (LTS).

• Equivalences: from linear time to branching time. Bisimulation as the reference
equivalence. Ignoring τ transitions: weak equivalences.

• Axiomatisations, Hennessy-Milner logic.

But remember: proving theorems is easy, writings programs is hard!
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Proving theorems is easy, writing programs is hard!
Anonymous

static void copy (char[] s, int i, char[] d, int j, int len)
{

for (int k = 0; k < len; ++k)
d[j + k] = s[i + k];

}

Claim: the function copy copies len characters of s starting from offset i into d
starting from offset j.

...not quite...
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Writing program is hard, ctd.

P_M_DERIVE(T_ALG.E_BH) :=
UC_16S_EN_16NS (TDB.T_ENTIER_16S

((1.0/C_M_LSB_BH) *
G_M_INFO_DERIVE(T_ALG.E_BH)))

Claim: this instruction multiplies the 64 bits float G_M_INFO_DERIVE(T_ALG.E_BH)
by a constant and converts the result to a 16 bit unsigned integer.

(in ADA function calls and array access share the same notation).

...unfortunately...
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Around 1949...

“As soon as we started programming, we found to our surprise that it
wasn’t as easy to get programs right as we had thought. Debugging had
to be discovered. I can remember the exact instant when I realised that
a large part of my life from then on was going to be spent in finding
mistakes in my own programs.”

Sir Maurice Wilkes (1913 - )
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..in 2008?

“How to ensure that a system behaves correctly with respect to some
specification (implicit ot explicit)?”

Answer: formal methods.

. . . types, constraints,
denotational semantics, abstract interpretation,

mathematical logic, concurrency,
new programming languages, . . .
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High-level programming languages

For non-distributed, non-concurrent programming, they are pretty good. We have
ML (SML/OCaml), Haskell, Java, C#, with:

• type safety

• rich concrete types — data types and functions

• abstraction mechanisms for program structuring — ML modules and abstract
types, type classes and monads, classes and objects, ...

But this is only within single executions of single, sequential programs.

What about distributed computation?
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Challenges (selected)

• Local concurrency: shared memory, semaphores, communication, ...

• Marshalling: choice of distributed abstractions and trust assumptions, ...

• Dynamic (re)binding and evaluation strategies: exchanging values between programs,...

• Type equality between programs: run-time type names, type-safe and abstraction-safe

interaction (and type equality within programs)

• Typed interaction handles: establishing shared expression-level names between programs

• Version change: type safety in the presence of dynamic linking. Controlling dynamic linking.

Dynamic update

• Semantics for real-world network abstractions, TCP, UDP, Sockets, ...

• Security: security policies, executing untrusted code, protocols, language based

• Module structure again: first-class/recursive/parametric modules. Exposing interfaces to other

programs via communication, ...

7



Local concurrency

Local: within a single failure domain, within a single trust domain, low-latency
interaction.

• Pure (implicit parallelism or skeletons — parallel map, etc.)

• Shared memory

— mutexes, cvars (incomprehensible, uncomposable, common)

— transactional (Venari, STM Haskell/Java, AtomCaml, ...)

• Message passing

semantic choices: asynchronous/synchronous, different synchronisation styles
(CSP/CCS, Join, ...), input-guarded/general nondeterministic choice, ...

cf Erlang [AVWW96], Telescript, Facile [TLK96,Kna95], Obliq [Car95], CML [Rep99], Pict

[PT00], JoCaml [JoC03], Alice [BRS+05], Esterel [Ber98], ...
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Concurrency theory

Set out to understand some key concepts, reveal then essential unities, classify
the important variations, behind the wide variation of concurrent systems.

Less ambitiously, in these lectures you will learn some useful techniques for
computer science.
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How to define a programming language

Recipe:

1. define the syntax of the language (that is, specify what a program is);

2. define how to execute a program (via a LTS?);

3. define when two terms are equivalent (via LTS + bisimulation?).
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CCS, synchronisation

CCS syntax (excerpt):

P,Q ::= 0
∣∣ a.P

∣∣ a.P
∣∣ P

n
Q

∣∣ (νa)P
∣∣ !P .

In CCS, a system evolves when two threads synchronise over the same name:

b.P
n

b.Q _ P
n

Q

The arrow _ corresponds to the internal reduction
τ−−→ you are familiar with.

Actually, it is not necessary to use a LTS to define the τ -transition relation...
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CCS, reduction semantics

We define reduction, denoted _, by

a.P
f

a.Q _ P
f

Q

P _ P ′

P
f

Q _ P ′ f
Q

P _ P ′

(νx)P _ (νx)P ′

P ≡ P ′ _ Q′ ≡ Q

P _ Q

where, the structural congruence relation, denoted ≡, is defined as:

P
f

Q ≡ Q
f

P (P
f

Q)
f

R ≡ P
f

(Q
f

R)

P
f

0 ≡ P !P ≡ P
f

!P (νa)P
f

Q ≡ (νa)(P
f

Q) if a 6∈ fn(Q)

Theorem P _ Q iff P
τ−−→≡ Q.
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Value passing

Names can be interpreted as channel names: allow channels to carry values, so
instead of pure outputs a.P and inputs a.P allow e.g.: a〈15, 3〉.P and a(x, y).Q.

Value 6 being sent along channel x:

x〈6〉
n

x(u).y〈u〉 _ (y〈u〉){6/u} = y〈6〉

Restricted names are different from all others:

x〈5〉
f

(νx)(x〈6〉
f

x(u).y〈u〉) _ x〈5〉
f

(νx)(y〈6〉)
≡ ≡

x〈5〉
f

(νx′)(x′〈6〉
f

x′(u).y〈u〉) _ x〈5〉
f

(νx′′)(y〈6〉)

(note that we are working with alpha equivalence classes).
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Exercise

Program a server that increments the value it receives.

!x(u).x〈u + 1〉

Argh!!! This server exhibits exactly the problems we want to avoid when
programming concurrent systems:

x〈3〉.x(u).P
f

x〈7〉.x(v).Q
f

!x(u).x〈u + 1〉 _ . . .

. . . _ P{8/u}
f

Q{4/u}
f

!x(u).x〈u + 1〉
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Ideas...

Allow those values to include channel names.

A new implementation for the server:

!x(u, r).r〈u + 1〉

This server prevents confusion provided that the return channels are distinct.

How can we guarantee that the return channels are distinct?

Idea: use restriction, and communicate restricted names...
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The π-calculus

1. A name received on a channel can then be used itself as a channel name for
output or input — here y is received on x and the used to output 7:

x〈y〉
n

x(u).u〈7〉 _ y〈7〉

2. A restricted name can be sent outside its original scope. Here y is sent on
channel x outside the scope of the (νy) binder, which must therefore be moved
(with care, to avoid capture of free instances of y). This is scope extrusion:

(νy)(x〈y〉
f

y(v).P )
f

x(u).u〈7〉 _ (νy)(y(v).P
f

y〈7〉)

_ (νy)(P{7/v})
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The (simplest) π-calculus
Syntax:

P,Q ::= 0 nil∣∣ P
f

Q parallel composition of P and Q∣∣ c〈v〉.P output v on channel c and resume as P∣∣ c(x).P input from channel c∣∣ (νx)P new channel name creation∣∣ !P replication

Free names (alpha-conversion follows accordingly):

fn(0) = ∅ fn(P
f

Q) = fn(P ) ∪ fn(Q)
fn(c〈v〉.P ) = {c, v} ∪ fn(P ) fn(c(x).P ) = (fn(P ) \ {x}) ∪ {c}
fn((νx)P ) = fn(P ) \ {x} fn(!P ) = fn(P )

17



π-calculus, reduction semantics

Structural congruence:

P
f

0 ≡ P P
f

Q ≡ Q
f

P

(P
f

Q)
f

R ≡ P
f

(Q
f

R) !P ≡ P
f

!P

(νx)(νy)P ≡ (νy)(νx)P

P
n

(νx)Q ≡ (νx)(P
n

Q) if x 6∈ fn(P )

Reduction rules:

c〈v〉.P
f

c(x).Q _ P
f

Q{v/x}

P _ P ′

P
f

Q _ P ′ f
Q

P _ P ′

(νx)P _ (νx)P ′

P ≡ P ′ _ Q′ ≡ Q

P _ Q
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Expressiveness

A small calculus (and the semantics only involves name-for-name substitution,
not term-for-variable substitution), but very expressive:

• encoding data structures

• encoding functions as processes (Milner, Sangiorgi)

• encoding higher-order π (Sangiorgi)

• encoding synchronous communication with asynchronous (Honda/Tokoro,
Boudol)

• encoding polyadic communication with monadic (Quaglia, Walker)

• encoding choice (or not) (Nestmann, Palamidessi)

• ...
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Example: polyadic with monadic

Let us extend our notion of monadic channels, which carry exactly one name, to
polyadic channels, which carry a vector of names, i.e.

P ::= x〈y1, ..., yn〉.P output∣∣ x(y1, ..., yn).P input

with the main reduction rule being:

x〈y1, ..., yn〉P
n

x(z1, ..., zn).Q _ P
n

Q{y1,...yn/z1,...,zn}

Is there an encoding from polyadic to monadic channels?
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Polyadic with monadic, ctd.

We might try:

[[x〈y1, ..., yn〉.P ]] = x〈y1〉. . . . .x〈yn〉.[[P ]]
[[x(y1, ..., yn).P ]] = x(y1). . . . .x(yn).[[P ]]

but this is broken! Why?

The right approach is use new binding:

[[x〈y1, ..., yn〉.P ]] = (νz)(x〈z〉.z〈y1〉. . . . .z〈yn〉.[[P ]])
[[x(y1, ..., yn).P ]] = x(z).z(y1). . . . .z(yn).[[P ]]

where z 6∈ fn(P ) (why?). (We also need some well-sorted assumptions.)
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Data as processes: booleans

Consider the truth-values {True, False}. Consider the abstractions:

T = (x).x(t, f).t〈〉 and F = (x).x(t, f).f〈〉

These represent a located copy of a truth-value at x. The process

R = (νt)(νf)b〈t, f〉.(t().P
n

f().Q)

where t, f 6∈ fn(P,Q) can test for a truth-value at x and behave accordingly as
P or Q:

R
n

T bbc __ P
n

(νt, f)f().Q

The term obtained behaves as P because the thread (νt, f)f().Q is deadlocked.
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Data as processes: integers

Using a unary representation.

[[k]] = (x).x(z, o).(o〈〉)k.z〈〉

where (o〈〉)k abbreviates o〈〉.o〈〉. . . . .o〈〉 (k occurrences).

Operations on integers can be expressed as processes. For instance,

succ = (x, y).!x(z, o).o〈〉.y〈z, o〉

Which is the role of the final output on z? (Hint: omit it, and try to define the test for zero).
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Another representation for integers

type nat = Zero | Succ nat

Define:
[[Zero]] = (x).!x(z, s).z〈〉
[[Succ]] = (x, y).!x(z, s).s〈y〉

and for each e of type Nat:

[[succ e]] = (x).(νy)([[succ]]bx, yc
n

[[e]]byc)

This approach generalises to arbitrary datatypes.

24



Recursion

Alternative to replication: recursive definition of processes.

Recursive definition (in CCS we used to write K(x̃) = P ):

K = (x̃).P

Constant application:
Kbac

Reduction rule:

K = (x̃).P

Kbãc _ P{ã/̃x}
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Recursion vs. Replication

Theorem Any process involving recursive definitions is representable using
replication, and conversely replication is redundant in presence of recursion.

The proof requires some techniques we have not seen, but...

Intuition: given
F = (x̃).P

where P may contain recursive calls to F of the form F bz̃c, we may replace the
RHS with the following process abstraction containing no mention of F :

(x̃).(νf)(f〈x̃〉
n

!f(x̃).P ′)

where P ′ is obtained by replacing every occurrence of F bz̃c by f〈z̃〉 in P , and f
is fresh for P .
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A step backward: defining a language

Recipe:

1. define the syntax of the language (that is, specify what a program is);

2. define its reduction semantics (that is, specify how programs are executed);

3. define when two terms are equivalent (via LTS + bisimulation?).
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Lifting CCS techniques to name-passing
is not straightforward

Actually, the original paper on pi-calculus defines two LTSs (excerpts):

Early LTS

x〈v〉.P x〈v〉−−−−→ P

x(y).P
x(v)−−−−→ {v/y}P

P
x〈v〉−−−−→ P ′ Q

x(v)−−−−→ Q′

P
f

Q
τ−−→ P ′ f

Q′

Late LTS

x〈v〉.P x〈v〉−−−−→ P

x(y).P
x(y)−−−−→ P

P
x〈v〉−−−−→ P ′ Q

x(y)−−−−→ Q′

P
f

Q
τ−−→ P ′ f

{v/y}Q′

These LTSs define the same τ -transitions, where is the problem?
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Problem

Definition: Weak bisimilarity, denoted ≈, is the largest symmetric relation such

that whenever P ≈ Q and P
`−−→ P ′ there exists Q′ such that Q

ˆ̀
=⇒ Q′ and

P ′ ≈ Q′.

But the bisimilarity built on top of them observe all the labels: do the resulting
bisimilarities coincide? No!

Which is the right one? Which is the role of the LTS?
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Equivalent?

Suppose that P and Q are equivalent (in symbols: P ' Q).

Which properties do we expect?

Preservation under contexts For all contexts C[−], we have C[P ] ' C[Q];

Same observations If P ↓ x then Q ↓ x, where P ↓ x means that we can
observe x at P (or P can do x);

Preservation of reductions P and Q must mimic their reduction steps (that is,
they realise the same nondeterministic choices).
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Formally

A relation R between processes is

preserved by contexts: if P R Q implies C[P ] R C[Q] for all contexts C[−].

barb preserving: if P R Q and P ↓ x imply Q ⇓ x, where P ⇓ x holds if there
exists P ′ such that P _∗ P ′ and P ′ ↓ x, while

P ≡ (νñ)(x〈y〉.P ′
n

P ′′) or P ≡ (νñ)(x(u).P ′
n

P ′′) for x 6∈ ñ ;

reduction closed: if P R Q and P _ P ′, imply that there is a Q′ such that
Q _∗ Q′ and P ′ R Q′ (_∗ is the reflexive and transitive closure of _).
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Reduction-closed barbed congruence

Let reduction barbed congruence, denoted ', be the largest symmetric
relation over processes that is preserved by contexts, barb preserving, and
reduction closed.

Remark: reduction barbed congruence is a weak equivalence: the number of
internal reduction steps is not important in the bisimulation game imposed by
“reduction closed”.
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Some equivalences (?)

Compare the processes

1. P = x〈y〉 and Q = 0

2. P = a〈x〉 and Q = a〈z〉

3. P = (νx)x〈〉.R and Q = 0

4. P = (νx)(x〈y〉.R1

f
x(z).R2) and Q = (νx)(R1

f
R2{y/z})

Argh... we need other proof techniques to show that processes are equivalent!

Remark: we can reformulate barb preservation as “if P R Q and P ⇓ x imply
Q ⇓ x”. This is sometimes useful...
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Example: local names are different from global names

Show that in general
(νx)!P 6' !(νx)P

Intuition: the copies of P in (νx)!P can interact over x, while the copies of (νx)P cannot.

We need a process that interacts with another copy of itself over x, but that cannot interact with

itself over x. Take

P = x〈〉 ⊕ x().b〈〉
where Q1 ⊕ Q2 = (νw)(w〈〉

f
w().Q1

f
w().Q2.

We have that (νx)!P ⇓ b, while !(νx)P 6⇓ b.
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Exercises

1. Compare the transitions of Fbu, vc, where F = (x, y).x(y).Fby, xc to those of its

encoding in the recursion free calculus (use replication).

2. Consider the pair of mutually recursive definitions

G = (u, v).(u().Hbu, vc
f

k().Hbu, vc)
H = (u, v).v().Gbu, vc

Write the process Gbx, yc in terms of replication (you have to invent the tecnique to translate

mutually recursive definitions yourself).

3. Implement a process that negates at location a the truth-value found at location b. Implement

a process that sums of two integers (using both the representations we have seen).

4. Design a representation for lists using π-calculus processes. Implement list append.
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