Pi-calculus

proof-techniques, asynchrony, mobility

Francesco Zappa Nardelli INRIA Rocquencourt, MOSCOVA research team

francesco.zappa_nardelli@inria.fr

MPRI Concurrency course with:

Pierre-Louis Curien (PPS), Roberto Amadio (PPS), Catuscia Palamidessi (INRIA Futurs)

MPRI - Concurrency

November 3, 2006

Premises

- Unless otherwise stated, all the equivalences mentioned are *weak equivalences*;
- reduction barbed congruence = reduction-closed barbed congruence = natural contextual equivalence;
- (at the blackboard) one vertical bar = two vertical bars || .

Other doubts?

We can start now...

How to prove...

To show that two processes are bisimilar, it is enough to fo find a bisimulation relating them. Easy?

Example: we want to show that (in the pi-calculus) bisimilarity is preserved by parallel composition. We naturally consider

$$\mathcal{R} = \{ (P \mid | R, Q \mid | R) : P \approx Q \}$$

as a candidate bisimulation. But...

The candidate bisimulation

- 1. may be larger than at first envisaged;
- 2. may be infinite;

example: to show that $x(z).\overline{y}\langle z \rangle \approx (\nu w)(x(z).\overline{w}\langle z \rangle \parallel w(v).\overline{y}\langle v \rangle)$, we must consider:

$$\{ (x(z).\overline{y}\langle z \rangle, (\boldsymbol{\nu}w)(x(z).\overline{w}\langle z \rangle \parallel w(v).\overline{y}\langle v \rangle)) \}$$

$$\cup \ \{ (\overline{y}\langle a \rangle, (\boldsymbol{\nu}w)(\overline{w}\langle a \rangle \parallel w(v).\overline{y}\langle v \rangle)) : a \text{ arbitrary} \}$$

$$\cup \ \{ (\overline{y}\langle a \rangle, (\boldsymbol{\nu}w)(\mathbf{0} \parallel \overline{y}\langle a \rangle)) : a \text{ arbitrary} \}$$

$$\cup \ \{ (\mathbf{0}, (\boldsymbol{\nu}w)(\mathbf{0} \parallel \mathbf{0})) \}$$

3. hard to guess;

which is the smallest bisimulation relating !!P and !P?

4. awkward to describe and to work with...

Completing relations

Idea: find classes of relations that:

1. are not themselves bisimulations;

2. can be *automatically* completed into bisimulations.

Idea, explained: if we had such a class then to prove that two processes are bisimilar it would be enough to exhibit a relation in this class¹ that contains the two processes.

¹Hopefully, it is easier to find such relation than to find the candidate bisimulation directly.

Bisimulation up to structural congruence

A symmetric relation R is a *bisimulation up-to* \equiv if whenever $P \mathcal{R} Q$ and $P \stackrel{\ell}{\longrightarrow} P'$ then there exists a process Q' such that $Q \stackrel{\hat{\ell}}{\Longrightarrow} Q'$ and there exist processes P'' and Q'' such that $P' \equiv P'' \mathcal{R} Q'' \equiv Q'$.

Exercise: prove that if \mathcal{R} is a bisimulation up to \equiv , then $\equiv \mathcal{R} \equiv$ is a bisimulation.

Exercise: prove that for all P, Q it holds $P \parallel Q \approx Q \parallel P$.

Bisimulation up to non-input context

A symmetric relation R is a *bisimulation up-to non-input context* if whenever $P \mathcal{R} Q$ and $P \stackrel{\ell}{\longrightarrow} P'$ then there exists a process Q' such that $Q \stackrel{\hat{\ell}}{\Longrightarrow} Q'$ and there exist a *non-input context* C[-] and processes P'' and Q'' such that $P' \equiv C[P''], Q' \equiv C[Q''], \text{ and } P'' \mathcal{R} Q''.$

Exercise: Prove that if \mathcal{R} is a bisimulation up to non-input context, then

 $\{(C[P], C[Q]): P \mathcal{R} Q \text{ and } C[-] \text{ is a non-input context}\}$

is a bisimulation up to structural congruence.

Exercise: Prove that $!P \parallel !P \approx !P$ (hint: show that the relation $\mathcal{R} = \{(!P \parallel !P, !P)\}$ is a bisimulation up to non-input context).

A slippery ground...

It would be nice to be able to abstract from internal reduction steps, thus defining *(weak) bisimulation up to (weak) bisimulation*.

But this proof method is not sound: $\tau.a.0$ and 0 are (weakly) bisimilar up to (weak) bisimulation, but they are not bisimilar!

Several solutions: almost-weak bisimulation, expansion, etc...

Some references

- D. Sangiorgi, R. Milner, The problem of weak bisimulation up to, 1992
- D. Sangiorgi, On the bisimulation proof method, 1994

Asynchronous communication

CCS and pi-calculus (and many others) are based on *synchronized interaction*, that is, the acts of sending a datum and receiving it coincide:

$$\overline{a}.P \mid \mid a.Q \implies P \mid \mid Q.$$

In real-world distributed systems, sending a datum and receiving it are *distinct acts*:

$$\overline{a}.P \mid \mid a.Q \ldots \twoheadrightarrow \ldots \overline{a} \mid \mid P \mid \mid a.Q \ldots \twoheadrightarrow \ldots P' \mid \mid Q.$$

In an *asynchronous* world, the prefix . does not express temporal precedence.

Asynchronous interaction made easy

Idea: the only term than can appear underneath an output prefix is 0.

Intuition: an unguarded occurrence of $\overline{x}\langle y \rangle$ can be thought of as a datum y in an implicit communication medium tagged with x.

Formally:

$$\overline{x}\langle y\rangle \mid \mid x(z).P \implies P\{\frac{y}{z}\}.$$

We suppose that the communication medium has unbounded capacity and preserves no ordering among output particles.

Asynchronous pi-calculus

Syntax:

$$P ::= \mathbf{0} \mid x(y).P \mid \overline{x}\langle y \rangle \mid P \mid P \mid (\mathbf{\nu}x)P \mid !P$$

The definitions of free and bound names, of structural congruence \equiv , and of the reduction relation \rightarrow are inherited from pi-calculus.

Examples

Sequentialization of output actions is still possible:

$$(\boldsymbol{\nu} y, z)(\overline{x} \langle y \rangle \ \big| \big| \ \overline{y} \langle z \rangle \ \big| \big| \ \overline{z} \langle a \rangle \ \big| \big| \ R) \ .$$

Synchronous communication can be implemented by waiting for an acknoledgement:

$$\begin{bmatrix} \overline{x}\langle y \rangle . P \end{bmatrix} = (\nu u)(\overline{x}\langle y, u \rangle || u().P)$$
$$\begin{bmatrix} x(v).Q \end{bmatrix} = x(v,w).(\overline{w}\langle \rangle || Q) \quad \text{for } w \notin Q$$

Exercise: implement synchronous communication without relying on polyadic primitives.

Background: a recipe for a "natural" contextual equivalence

Say that P and Q are equivalent (in symbols: $P \simeq Q$) if:

Preservation under contexts For all contexts C[-], we have $C[P] \simeq C[Q]$;

Preservation of observations If $P \downarrow x$ then $Q \Downarrow x$, where $P \downarrow x$ is defined as

$$P \equiv (\boldsymbol{\nu}\tilde{n})(\overline{x}\langle y\rangle.P' \mid | P'') \text{ or } P \equiv (\boldsymbol{\nu}\tilde{n})(x(u).P' \mid | P'') \text{ for } x \notin \tilde{n} ;$$

Preservation of reductions If $P \simeq Q$ and $P \twoheadrightarrow P'$ then there is a Q' such that $Q \twoheadrightarrow^* Q'$ and $P' \simeq Q'$.

Contextual equivalence and asynchronous pi-calculus

It is natural to impose two constraints to the basic recipe:

- compare terms using only *asynchronous contexts*;
- restrict the observables to be *co-names*. To observe a process *is* to interact with it by performing a complementary action and reporting it: in asynchronous pi-calculus *input actions cannot be observed*.

A peculiarity of synchronous equivalences

The terms

$$P = !x(z).\overline{x}\langle z \rangle$$
$$Q = 0$$

are not reduction barbed congruent, but they are asynchronous reduction barbed congruent.

Intuition: in an asynchronous world, if the medium is unbound, then buffers do not influence the computation.

A proof method

Consider now the weak bisimilarity \approx_s built on top of the standard (early) LTS for pi-calculus. As asynchronous pi-calculus is a sub-calculus of pi-calculus, \approx_s is an equivalence for asynchronous pi-calculus terms.

It holds $\approx_s \subseteq \simeq$, that is the standard pi-calculus bisimilarity is a sound proof technique for \simeq .

But

$$|x(z).\overline{x}\langle z\rangle \not\approx_s \mathbf{0}$$
.

Question: can a labelled bisimilarity recover the natural contextual equivalence?

A problem and two solutions

Transitions in an LTS should represent observable interactions a term can engage with a context:

- if $P \xrightarrow{\overline{x}\langle y \rangle} P'$ then P can interact with the context || x(u).beep, where beep is activated if and only if the output action has been observed;
- if $P \xrightarrow{x(y)} P'$ then in no way beep can be activated if and only if the input action has been observed!

Solutions:

- 1. relax the matching condition for input actions in the bisimulation game;
- 2. modify the LTS so that it precisely identifies the interactions that a term can have with its environment.

Amadio, Castellani, Sangiorgi - 1996

Idea: relax the matching condition for input actions.

Let asynchronous bisimulation \approx_a be the largest symmetric relation such that whenever $P \approx_a Q$ it holds:

1. if
$$P \xrightarrow{\ell} P'$$
 and $\ell \neq x(y)$ then there exists Q' such that $Q \stackrel{\hat{\ell}}{\Longrightarrow} Q'$ and $P' \approx_a Q'$;

2. if $P \xrightarrow{x(y)} P'$ then there exists Q' such that $Q \parallel \overline{x}\langle y \rangle \Longrightarrow Q'$ and $P' \approx_a Q'$.

Remark: P' is the outcome of the interaction of P with the context $- || \overline{x} \langle y \rangle$. Clause 2. allows Q to interact with the same context, but does not force this interaction.

Honda, Tokoro - 1992

$$\overline{x}\langle y \rangle \xrightarrow{\overline{x}\langle y \rangle} \mathbf{0} \qquad x(u) \cdot P \xrightarrow{x(y)} P\{\frac{y}{u}\} \qquad \mathbf{0} \xrightarrow{x(y)} \overline{x}\langle y \rangle$$

$$\frac{P \xrightarrow{\overline{x}\langle y \rangle} P' \quad x \neq y}{(\nu y)P \xrightarrow{(\nu y)\overline{x}\langle y \rangle} P'} \qquad \frac{P \xrightarrow{\alpha} P' \quad y \notin \alpha}{(\nu y)P \xrightarrow{\alpha} (\nu y)P'}$$

$$\frac{P \xrightarrow{\overline{x}\langle y \rangle} P' \quad Q \xrightarrow{x(y)} Q'}{P \parallel Q \xrightarrow{\tau} P' \parallel Q'} \qquad \frac{P \xrightarrow{\overline{x}\langle (y) \rangle} P' \quad Q \xrightarrow{x(y)} Q' \quad y \notin \operatorname{fn}(Q)}{P \parallel Q \xrightarrow{\tau} (\nu y)(P' \parallel Q')}$$

$$\frac{P \xrightarrow{\alpha} P' \quad \operatorname{bn}(\alpha) \cap \operatorname{fn}(Q) = \emptyset}{P \parallel Q \xrightarrow{\alpha} P' \parallel Q} \qquad \frac{P \equiv P' \quad P' \xrightarrow{\alpha} Q' \quad Q' \equiv Q}{P \xrightarrow{\alpha} Q}$$

Honda, Tokoro explained

Ideas:

- modify the LTS so that it precisely identifies the interactions that a term can have with its environment;
- rely on a standard weak bisimulation.

Amazing results: asynchrounous bisimilarity in ACS style, bisimilarity on top of HT LTS, and barbed congruence coincide.²

²ahem, modulo some technical details.

Properties of asynchronous bisimilarity in ACS style

• Bisimilarity is a congruence;

it is preserved also by input prefix, while it is not in the synchronous case;

- bisimilarity is an equivalence relation (transitivity is non-trivial);
- bisimilarity is *sound* with respect to reduction barbed congruence;
- bisimilarity is *complete* with respect to barbed congruence.³

³for this the calculus must be equipped with a matching operator.

Some proofs about ACS bisimilarity... on asynchronous CCS

Syntax:

$$P ::= \mathbf{0} \mid a.P \mid \overline{a} \mid P \mid P \mid (\boldsymbol{\nu}a)P$$

Reduction semantics:

$$a.P \parallel \overline{a} \twoheadrightarrow P \qquad \qquad \frac{P \equiv P' \twoheadrightarrow Q' \equiv Q}{P \twoheadrightarrow Q}$$

where \equiv is defined as:

 $P \parallel Q \equiv Q \parallel P \qquad (P \parallel Q) \parallel R \equiv P \parallel (Q \parallel R)$ $(\nu a)P \parallel Q \equiv (\nu a)(P \parallel Q) \text{ if } a \notin \operatorname{fn}(Q)$

•

Background: LTS and weak bisimilarity for asynchronous CCS

$a.P \xrightarrow{a} P$	$\overline{a} \stackrel{\overline{a}}{\longrightarrow} 0$	$\frac{P \xrightarrow{a} P' Q \xrightarrow{\overline{a}} Q'}{P \parallel Q \xrightarrow{\tau} P' \parallel Q'}$
$\frac{P \stackrel{\ell}{\longrightarrow} P'}{P \parallel Q \stackrel{\ell}{\longrightarrow} P' \parallel Q}$	$\frac{P \stackrel{\ell}{\longrightarrow} P' a \not\in \operatorname{fn}(\ell)}{(\boldsymbol{\nu}a)P \stackrel{\ell}{\longrightarrow} (\boldsymbol{\nu}a)P'}$	symmetric rules omitted.

Definition: Asynchronous weak bisimilarity, denoted \approx , is the largest symmetric relation such that whenever $P \approx Q$ and

- $P \xrightarrow{\ell} P'$, $\ell \in \{\tau, \overline{a}\}$, there exists Q' such that $Q \stackrel{\hat{\ell}}{\Longrightarrow} Q'$ and $P' \approx Q'$;
- $P \xrightarrow{a} P'$, there exists Q' such that $Q \parallel \overline{a} \Longrightarrow Q'$ and $P' \approx Q'$.

Sketch of the proof of transitivity of \approx

Let $\mathcal{R} = \{(P, R) : P \approx Q \approx R\}$. We show that $\mathcal{R} \subseteq \approx$.

• Suppose that $P \mathcal{R} R$ because $P \approx Q \approx R$, and that $P \xrightarrow{a} P'$.

The definition of \approx ensures that there exists Q' such that $Q \parallel \overline{a} \Longrightarrow Q'$ and $P' \approx Q'$.

Since \approx is a congruence and $Q \approx R$, it holds that $Q \parallel \overline{a} \approx R \parallel \overline{a}$.

A simple corollary of the definition of the bisimilarity ensures that there exists R' such that $R \parallel \overline{a} \Longrightarrow R'$ and $Q' \approx R'$.

Then $P' \mathcal{R} R'$ by construction of \mathcal{R} .

• The other cases are standard.

Remark the unusual use of the congruence of the bisimilarity.

Sketch of the proof of completeness

We show that $\simeq \subseteq \approx$.

• Suppose that $P \simeq Q$ and that $P \xrightarrow{a} P'$.

We must conclude that there exists Q' such that $Q \parallel \overline{a} \Longrightarrow Q'$ and $P' \simeq Q'$.

Since \simeq is a congruence, it holds that $P \parallel \overline{a} \simeq Q \parallel \overline{a}$.

Since $P \xrightarrow{a} P'$, it holds that $P \parallel \overline{a} \xrightarrow{\tau} P'$.

Since $P \parallel \overline{a} \simeq Q \parallel \overline{a}$, the definition of \simeq ensures that there exists Q' such that $Q \parallel \overline{a} \Longrightarrow Q'$ and $P' \simeq Q'$, as desired.

• The other cases are analogous to the completeness proof in synchronous CCS.

The difficulty of the completeness proof is to construct contexts that observe the actions of a process. The case $P \xrightarrow{a} P'$ is straightforward because "there is nothing to observe".

Some references

Kohei Honda, Mario Tokoro: *An Object Calculus for Asynchronous Communication*. ECOOP 1991.

Kohei Honda, Mario Tokoro, *On asynchronous communication semantics*. Object-Based Concurrent Computing 1991.

Gerard Boudol, Asynchrony and the pi-calculus. INRIA Research Report, 1992.

Roberto Amadio, Ilaria Castellani, Davide Sangiorgi, *On bisimulations for the asynchronous pi-calculus*. Theor. Comput. Sci. 195(2), 1998.

Distribution, action at distance, and mobility

The parallel composition operator of CCS and pi-calculus does not specify whether the concurrent threads are running on the same machine, or on different machines connected by a network.

Some phenomena typical of distributed systems require a finer model, that explicitly keeps track of the spatial distribution of the processes.

We will briefly sketch two models that have been proposed: *DPI* (Hennessy and Riely, 1998) and *Mobile Ambients* (Cardelli and Gordon, 1998).

The aim of this section is to get a glimpse of more complex process languages, and to rediscover the idea of "transitions in an LTS characterise the interactions a term can have with a context" in this setting.

DPI, design choices

- add explicit locations to pi-calculus processes: $\ell \llbracket P \rrbracket$;
- locations are identified by their name: $\ell \llbracket P \rrbracket \parallel \ell \llbracket Q \rrbracket \equiv \ell \llbracket P \parallel Q \rrbracket$;
- communication is local to a location:

$$\ell[\![\overline{x}\langle y\rangle.P]\!] \mid \mid \ell[\![x(u).Q]\!] \twoheadrightarrow \ell[\![P]\!] \mid \mid \ell[\![Q\{^{y}\!/_{\!u}\}]\!];$$

• add explicit migration: $\ell \llbracket \text{goto } k.P \rrbracket \rightarrow k \llbracket P \rrbracket$.

We also include the restriction and match operators, subject to the usual pi-calculus semantics.

Behavioural equivalence for DPI

Again, we apply the standard recipe:

• define the suitable contexts:

$$C[-] ::= - | C[-] || \ell \llbracket P \rrbracket | (\boldsymbol{\nu} n) C[-].$$

• define the observation:

$$M \downarrow x @ \ell \text{ iff } P \equiv (\boldsymbol{\nu} \tilde{n})(\ell \llbracket x(u) . P' \rrbracket || P'') \text{ for } x, \ell \notin \tilde{n} .$$

Can we characterise this equivalence with a labelled bisimulation?

Labelled bisimulation for DPI

$$\frac{P \to P'}{P \xrightarrow{\tau} P'} \qquad \qquad \frac{P \equiv (\boldsymbol{\nu}\tilde{n})(\ell \llbracket x(u).P' \rrbracket \parallel P'') \quad x, \ell \notin \tilde{n}}{P \xrightarrow{x(y)@\ell} (\boldsymbol{\nu}\tilde{n})(\ell \llbracket P' \{ \frac{y}{u} \} \rrbracket \parallel P'')}$$

$$\frac{P \equiv (\boldsymbol{\nu}\tilde{n})(\ell \llbracket \overline{x} \langle y \rangle . P' \rrbracket \parallel P'') \quad x, y, \ell \notin \tilde{n}}{P \xrightarrow{\overline{x} \langle y \rangle @\ell} (\boldsymbol{\nu}\tilde{n})(\ell \llbracket P' \rrbracket \parallel P'')}$$

$$\frac{P \equiv (\boldsymbol{\nu}\tilde{n})(\ell[\![\overline{x}\langle y \rangle . P']\!] \parallel P'') \quad x, \ell \notin \tilde{n} \quad y \in \tilde{n}}{P \xrightarrow{\overline{x}\langle (y) \rangle @\ell} (\boldsymbol{\nu}\tilde{n} \setminus y)(\ell[\![P']\!] \parallel P'')}$$

Labelled bisimulation for DPI, ctd.

The standard bisimulation on top of the LTS below coincides with reduction barbed congruence.

Remark: the LTS is written in an *unconventional* style, which precisely characterises the interactions a term can have with a context.

Questions:

1- every label should correspond to a (minimal) interacting context: can you spell out these contexts?

2- why there are no explicit labels for the "goto" action?

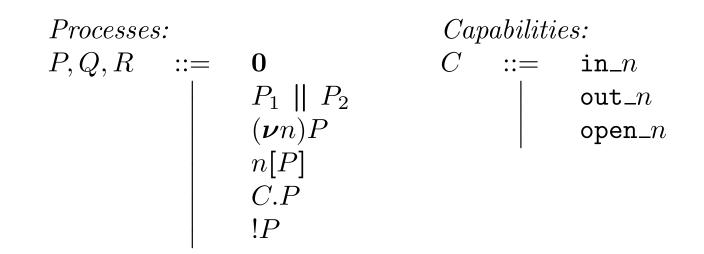
Mobile Ambients, design choices

Objective: build a process language on top of the concepts of barriers (administrative domains, firewalls, ...) and of barrier crossing.

A graphical representation of the syntax and of the reduction semantics of Mobile Ambients can be found here:

http://research.microsoft.com/Users/luca/Slides/ 2000-11-10%20Wide%20Area%20Computation%20(Valladolid).pdf

Mobile Ambients syntax (in ISO 10646)



Mobile Ambients: interaction

• Locations migrate under the control of the processes located at their inside:

$$n[\operatorname{in_}m.P \parallel Q] \parallel m[R] \twoheadrightarrow m[n[P \parallel Q] \parallel R]$$
$$m[n[\operatorname{out_}m.P \parallel Q] \parallel R] \twoheadrightarrow n[P \parallel Q] \parallel m[R]$$

• a location may be opened:

open_
$$n.P \parallel n[Q] \rightarrow P \parallel Q$$

Hint about an LTS for Mobile Ambients

Consider the term $M \equiv (\nu \tilde{m})(k[\text{in}_n P \parallel Q] \parallel R)$ where $k \notin \tilde{m}$. It can interact with the context $n[T] \parallel -$, where T is an arbitrary process, yielding $O \equiv (\nu \tilde{m})(n[T \parallel k[P \parallel Q]] \parallel R)$. This interaction can be captured with a transition $M \xrightarrow{k.\text{enter}_n} O$.

Remark that, contrarily to what happens in CCS and pi-calculus, a bit of the interacting context is still visible in the outcome!

Along these lines (asynchrony is needed too!) it is possible to characterise reduction barbed congruence using a labelled bisimilarity.

References

James Riely, Matthew Hennessy: *Distributed Pprocesses and location failures*. Theoretical Computer Science, 2001. An extended abstract appeard in ICALP 97.

Luca Cardelli, Andrew Gordon: *Mobile Ambients*. Theoretical Computer Science, 2000. An extended abstract appeared in FOSSACS 1998.

Massimo Merro, myself: A behavioral theory for Mobile Ambients. Journal of ACM, 2005.