
Recursive functions in Coq

Benjamin Grégoire

November 2011

Recursive datatypes

I Datatypes are described by several cases: the constructors
I Each constructor is presented as a function

I Output type: the datatype
I Inputs: they correpond to several fields
I Some inputs are in the datatype: recursion
I Usually one constructor has no inputs in the datatype (i.e.

base cases)
I Programming function with the datatype as input

I Use Match ... with ... end
I As many cases as there are constructors
I One pattern variable for each non parameter constructor

argument

An example of recursive datatype

I An example of datatype used to describe a programming
language

Inductive btree : Type :=
| Empty : btree
| Node : btree -> btree -> btree.

An example of recursive function

Fixpoint get_subtree
(l:list bool) (t:btree) {struct t} : btree :=

match t, l with
| Empty, _ => Empty
| Node _ _, nil => t
| Node tl tr, b :: l’ =>

if b then get_subtree l’ tl else get_subtree l’ tr
end.

I Note the recursive calls made on tl and tr
I The recursive call should be done on strict sub-term
I This ensure the termination of recursive functions

Why termination is important

An Ocaml function:

let rec loop x = loop x;;
val f : ’a -> ’b = <fun>

Why termination is important

Assume we can do such a definition in Coq:

Fixpoint loop (x:?) : ? := loop x.

Why termination is important

Now add type information for x:

Fixpoint loop (x:nat) : ? := loop x.

Why termination is important

Now add type information for the result (assume B:Type):

Fixpoint loop (x:nat) : B := loop x.

I The function loop has type nat -> B
I We have used B but we can use any type

Why termination is important

Use False instead of B:

Fixpoint loop (x:nat) : False := loop x.

I Now the function loop has type nat -> False
I Did you see the problem?

Why termination is important

Use False instead of bool:

Fixpoint loop (x:nat) : False := loop x.

I Now the function loop has type nat -> False
I Did you see the problem?
I What is the type of loop 0 ?

Why termination is important

Use False instead of bool:

Fixpoint loop (x:nat) : False := loop x.

I Now the function loop has type nat -> False
I Did you see the problem?
I What is the type of loop 0 ?

loop 0 : False
I We can proof False without hypothesis, the logical system is

incoherent (everything is provable)

The termination of recursive functions is one of the component
which ensure the logical consistency of Coq
We should live with it . . .

An example of recursive function: fact

Recursive call should be made on strict sub-term:

Fixpoint fact n :=
match n with
| O => 1
| S n’ => n * fact n’
end.

Definition fact’ :=
fix fact1 n :=

match n with
| O => 1
| S n’ => n * fact1 n’
end.

An example of recursive function: div2

Recursive call can be done on not immediate sub-terms:

Fixpoint div2 n :=
match n with
| S (S n’) => S (div2 n’)
| _ => 0
end.

A sub-term of strict sub-term is a strict sub-term

More general recursive calls

I It is possible to have recursive calls on results of functions
I All cases must return a strict sub-term
I strict sub-terms may be obtained by apply functions on strict

sub-terms
I Only constraint is that functions must return sub-terms

not necessarily strict.
I Checked by looking at all cases

Example of function that returns a sub-term

Definition pred (n : nat) :=
match n with
| O => n
| S p => p
end.

I in case O value is n, a (non-strict) sub-term of n
I in case S p value is n a sub-term of n

Recursive function using pred

Fixpoint div2’ (n : nat) :=
match n with

O => O
| S p => S (div2’ (pred p))
end.

The same trick can be played with minus which returns a sub-term
of its first argument, to define euclidian division

Mutual recursion

It is possible to define function by mutual recursion:

Fixpoint even n :=
match n with
| O => true
| S n’ => odd n’
end

with odd n :=
match n with
| O => false
| S n’ => even n’
end.

Lexicographic order

Sometimes termination functions is ensured by a lexicographic order
on arguments (Ocaml):

let rec merge l1 l2 =
match l1, l2 with
| [], _ -> l2
| _, [] -> l1
| x1::l1’, x2::l2’ ->

if x1 <= x2 then
x1 :: merge l1’ l2

else
x2 :: merge l1 l2’;;

There is two recursive call merge l1’ l2 and merge l1 l2’

Solution in Coq: internal recursion
Coq also makes it possible to describe anonymous recursive function
Sometimes necessary to use them for difficult recursion patterns

Fixpoint merge (l1 l2:list nat) : list nat :=
match l1, l2 with
| nil, _ => l2 | _, nil => l1
| x1::l1’, x2::l2’ =>

if leb x1 x2 then x1::merge l1’ l2
else

x2 :: (fix merge_aux (l2:list nat) :=
match l2 with
| nil => l1
| x2::l2’ =>

if leb x1 x2 then x1::merge l1’ l2
else x2:: merge_aux l2’

end) l2’
end.

The style is a little bit boring (use the Section instead)

Another solution (Hugo Herbelin)

Fixpoint merge l1 l2 :=
let fix merge_aux l2 :=
match l1, l2 with
| nil, _ => l2
| _, nil => l1
| x1::l1’, x2::l2’ =>

if leb x1 x2 then x1::merge l1’ l2
else x2::merge_aux l2’

end
in merge_aux l2.

Compute merge (2::3::5::7::nil) (3::4::10::nil).
= 2 :: 3 :: 3 :: 4 :: 5 :: 7 :: 10 :: nil

: list nat

More general recursion

I Constraint of structural recursion too cumbersome
I Sometimes a characteristic decreases, but structural recursion

is not available
I General solution provided by well-founded recursion
I Intermediate solution provided by the command Function

Example using Function: fact on Z

Integers have a more complex structure than natural numbers

Inductive positive : Set :=
| xH : positive (* encoding of 1 *)
| xO : positive -> positive (* encoding of 2*p *)
| xI : positive -> positive. (* encoding of 2*p+1 *)

Inductive Z : Set :=
| Z0: Z | Zpos: positive -> Z | Zneg: positive -> Z.

I x − 1 is not a structural sub-term of x
I for instance 3 is Zpos (xI xH) and 2 is Zpos (xO xH)
I Makes more efficient computation possible

Example using Function: fact on Z

Require Import Recdef.

Function factZ (x : Z) {measure Zabs_nat x} :=
if Zle_bool x 0 then 1 else x * fact (x - 1).

1 subgoal
============================
forall x : Z, Zle_bool x 0 = false ->
(Zabs_nat (x - 1) < Zabs_nat x)%nat

Now, we prove explicitely that something decreases

Merge again
Definition slen (p:list nat * list nat) :=

length (fst p) + length (snd p).

Function Merge (p:list nat * list nat)
{ measure slen p } : list nat :=

match p with
| (nil, l2) => l2
| (l1, nil) => l1
| ((x1::l1’) as l1, (x2::l2’) as l2) =>

if leb x1 x2 then x1::Merge (l1’,l2)
else x2::Merge (l1,l2’)

end.
(* Two goals *)
...
Defined.

Compute Merge (2::3::5::7::nil, 3::4::10::nil).

Well-founded Relations

Dotted lines represent any number of elementary relationships

Minimal elements are accessible

Elements whose all predecessors are accessible become accessible

. . .

Some time later . . .

Well founded relation in Coq

A relation is well founded if all elements are accessible.

Inductive Acc (A:Type) (R:A->A->Prop) (x:A) : Prop :=
Acc_intro :

(forall y : A, R y x -> Acc R y) -> Acc R x.

Definition well_founded (A:Type) (R:A->A->Prop) :=
forall a, Acc R a.

It is possible to define functions by recursion on the accessibility
proof of an element (Function is based on this)

Proving that some relation is well-founded

Coq’s Standard Library provides us with some useful examples of
well-founded relations :

I The predicate lt over nat (but you can use measure instead)
I The predicate Zwf c , which is the restriction of < to the

interval [c ,∞[of Z.

More example : log10

Function log10 (n : Z) {wf (Zwf 1) n} : Z :=
if Zlt_bool n 10 then 0 else 1 + log10 (n / 10).

Proof.
(* first goal *)
intros n Hleb.
unfold Zwf.
generalize (Zlt_cases n 10) (Z_div_lt n 10);rewrite Hleb.
omega.
(* Second goal *)
apply Zwf_well_founded.

Defined.
(* Compute log10 2. : you can wait for a answer ... *)

log10 can also be defined using measure

Function log10 (n : Z) {measure Zabs_nat n} : Z :=
if Zlt_bool n 10 then 0 else 1 + log10 (n / 10).

Proof.
(* first goal *)
intros n Hleb.
unfold Zwf;generalize (Zlt_cases n 10); rewrite Hleb;intros Hle.
apply Zabs_nat_lt.
split.
apply Z_div_pos;omega.
apply Zdiv_lt_upper_bound;omega.

Defined.

Proving properties on recursive functions

Usually a property on a recursive function can be proved using an
induction on the recursive argument.

Sometime we need some generalization before starting the
induction (see the example div2_le).

Proof techniques for recursive function

I Specific reasoning tool for each function
I Usable like an induction principle

I Requires a special induction tactic

I Cases correspond to behavior cases of function
I Hypotheses are provided for each test performed
I Induction hypotheses are provided for recursive calls

Example of functional induction

Fixpoint fact x :=
match x with O => 1 | S p => x * fact p end.

Functional Scheme fact_ind := Induction for fact Sort Prop.

Check fact_ind.
forall P : nat -> nat -> Prop,
(forall x : nat, x = 0 -> P 0 1) ->
(forall x p : nat,

x = S p -> P p (fact p) -> P (S p) (x * fact p)) ->
forall x : nat, P x (fact x)

Second example of functional induction

Fixpoint div2 x :=
match x with S (S p) => S (div2 p) | _ => 0 end.

Functional Scheme div2_ind := Induction for div2 Sort Prop.

Lemma div2t2le : forall x, div2 x * 2 <= x.
intros x; functional induction div2 x.
3 subgoals

============================
0 * 2 <= 0

subgoal 2 is:
0 * 2 <= 1

subgoal 3 is:
S (div2 p) * 2 <= S (S p)

Proof techniques for mutual fixpoints

Properties on mutual fixpoints should be generally proved
simultaneously.
Example:

forall n, even n = true -> exists p, n = 2*p
forall n, odd n = true -> exists p, n = 2*p + 1

Solution 1: prove both in one shot

Lemma even_odd_ok : forall n,
(even n = true -> exists p, n = 2*p) /\
(odd n = true -> exists p, n = 2*p + 1).

Use the lemma to prove the two disjoint lemmas:

Lemma even_ok :
forall n, even n = true -> exists p, n = 2*p.

Lemma odd_ok :
forall n, odd n = true -> exists p, n = 2*p + 1.

Solution 2: use mutual lemmas

Lemma even_ok :
forall n, even n = true -> exists p, n = 2*p

with odd_ok :
forall n, odd n = true -> exists p, n = 2*p + 1.

This a way to define a mutual fixpoint in proof mode

Prove for function defined using Function

Among the few lemmas that are generated by Function, the
lemma log10_equation has the following statement, which
expresses the intention of the original definition :

log10_equation
: forall n : Z,

log10 n = (if Zlt_bool n 10
then 0
else 1 + log10 (n / 10))

Goal log10 103=2.
repeat (rewrite log10_equation;simpl).

1 subgoal

============================
2 = 2

trivial.
Qed.

Goal log10 103=2.
repeat (rewrite log10_equation;simpl).
1 subgoal

============================
2 = 2

trivial.
Qed.

Functional Scheme

A functional scheme for function defined using Function is also
automatically generated (no need to use Functional Scheme)

Check Merge_ind.

So, you can use functional induction . . .

Proofs about uncurrified functions

Lemma Merge_count : forall x l1 l2,
count x (Merge (l1, l2)) = count x l1 + count x l2.

I Induction principles work for variables, no composite
expressions

I All references to sub-components must be explicit references
to the argument

I Two solutions to make references explicit (see the proofs)
I use projectors
I add equalities

Generating its own induction principle

Sometime, the generated induction principle is not what you need.

Inductive tree (A:Type) :=
| Node : A -> list (tree A) -> tree A.

Check tree_ind.

tree_ind
: forall (A : Type) (P : tree A -> Prop),

(forall (a : A) (l : list (tree A)), P (Node A a l)) ->
forall t : tree A, P t

You have to build your own induction principle

my_tree_ind : forall (A : Type)
(P : tree A -> Prop) (Pl : list (tree A) -> Prop),
(forall a l, Pl l -> P (Node _ a l)) ->
Pl nil ->
(forall t l, P t -> Pl l -> Pl (t :: l)) ->
forall t, P t

The proof is in the file (my_tree_ind)

