
Making proofs in Coq

Yves Bertot



Goal directed proof

I In theory, proving is the same as programming
I In practice, intermediate statements are more relevant than

proof constructs
I Procedural approach

1. State an initial statement
2. Apply a command that decomposes a statement into easier

ones
3. repeat step 2

I Sometimes step 2 does not produce new statements
I When no more subgoals, the proof must be saved using Qed.
I Proof scripts record only the commands that have been applied
I Difficult reading, script management is needed



Start a proof

I Lemma name : formula.
======
formula

I The name must be new
I The formula must be well-formed
I Other keywords can be used

I Theorem, Fact, Example



Decomposing a logical formula

I Example: A /\ B
I We want to prove A and B as one formula
I But logically, it is enough to prove A and B separately
I To go from A /\ B to A and B requires a logical step
I This example was about a conclusion, we can have similar

problems when A /\ B appears as an hypothesis



Hypotheses and conclusion

I During a proof, Coq displays goals
I Each goal contains a conclusion: the formula to prove
I Each goal also contains a context made of hypotheses

I Each hypothesis has a name and a statement

I Example
H1 : x <= y
H2 : y <= z
====================
x <= z



Using the context

I Hypotheses are meant to be used to prove the current goal
I When an hypothesis H matches the goal exactly, use exact H.
I You can also use assumption.
I H : A

=============
A
exact H.
the goal is solved!

I Exact matching may involve computation
I H : P 3

=============
P (2 + 1)
assumption.
the goal is solved!



Tactics for universal quantification (in conclusion)

I How do we prove forall x:T, A x ?
I Reason on an arbitrary member of type T
I Arbitrary: we don’t know anything about it, it is new

I Tactic : intros
I ===============

forall x : T, A x
intros y.
y : T
===============

A y
I y must not be in the context (it must be fresh)
I usually, we use directly the name x (here changed for

illustration purporse)



Implication (in conclusion)

I How do we prove that A -> B holds?
I We assume we know A, and then we look at just B

I Add A to the known facts (the context)
I intro H (the name H must be fresh)



Universal quantification (in hypotheses)

I How to use forall x : T, A x -> B x?
I In particular if we have to prove B e
I H : forall x : T, A x -> B x

===============
B e
apply H.
H : forall x : T, A x -> B x
===============
A e

I Coq guesses that H is used on e
I Beware! apply handles all universal quantifications and

implications in one round
I Guess values of universally quantified variables
I Create a new goal for every premise of an implication



Missing universally quantified variables

I The guess work is done by matching the theorem’s conclusion
with the goal’s conclusion

I Hopefully, all universally quantified variable can be determined
I missing variables can be given by the user
I Example

Require Import ZArith. Open Scope Z_scope.
Check Zle_trans.
Zle_trans :

forall x y z : Z, x <= y -> y <= z -> x <= z.
I This theorem can be used in apply (like any hypothesis)
I The variable y does not occur in the theorem’s conclusion.



Giving missing variables

I Zle_trans :
forall x y z : Z, x <= y -> y <= z -> x <= z.

I First syntax: by name
apply Zle_trans with (y:= formula)

I Second syntax: by hypothesis
H : x <= 3
===============
x <= 10
apply Zle_trans with (1:=H).
H : x <= 3
===============
3 <= 10

I Third syntax: by application
apply (Zle_trans x 3) or apply (Zle_trans _ 3)

I Universally quantified theorems can be used like functions!



Implications (in hypotheses)

I A particular case of apply
I No variable needs guessing
I as many new goals as there are premises
I A particular case: when no implication (no premise), apply

works, but exact is more explicit



using implications and quantifications without the conclusion

I Add explicitely consequences using assert
I H : A -> B

Ha : A
===============
C
assert (H’: B).
=================
B
apply H.
=================
A

I A second goal has an hypothesis H’ stating B



Theorems as functions

I Implication and quantification theorems may be used as
functions

I H : A -> B
G : forall x : T, D x
Ha : A
e :T
===============
C
assert (H’ := H Ha).
H’ : B
===============
C
assert (G’ := G e)
G’ : D e
===============
C



Conjunction

I Prove A /\ B
split

I Use H : A /\ B
destruct H as [H1 H2] or case H

I creates two hypotheses H1 : A and H2 : B
I the names H1 and H2 have to be fresh

I Behavior intuitive: replace connectives by their meaning
I Name of tactics needs to be remembered...



disjunction

I Prove A \/ B
I Choose to prove A or to prove B

left or right
I Use H : A \/ B

destruct H as [H1 | H2] or case H
I Two goals generated, one where A is given as hypothesis H1,

one where B is given as hypothesis H2
I Need to cover all possibilities

I Some of the tactics have the same name as for conjunction



Short cut for destruct

I In presence of nested logical connectives
I frequent situation destruct H as [H1 H2] followed by

destruct H1 as [H3 | H4]
I Abbreviated as destruct H as [[H3 | H4] H2]

I Two goals, one with H3 and H2, the other with H4 and H2

I Second frequent situation intros H followed by
destruct H as [H1 H2]

I abbreviated as intros [H1 H2].
I Ex. :

Lemma l1 : forall A B C, A /\ (B \/ C) ->
(A /\ B) \/ C.

intros A B C [H1 [H2 | H3]].



Combining tactics

I Use several tactics in one command
I tac1; tac2,

tac2 is used on all goals generated by tac1

I tac;[tac1| ...| tacn],
taci is applied on the i th generated goal



demonstration

Lemma example : forall A B P Q, (A \/ B) /\
(forall x:nat, P x \/ Q x) ->
forall x, (A /\ P x) \/ (A /\ Q x) \/

(B /\ P x) \/ (B /\ Q x).
intros A B P Q H y.
...
H : (A \/ B) /\ (forall x : nat, P x \/ Q x)
y : nat
===============
A /\ P y \/ A /\ Q y \/ B /\ P y \/ B /\ Q y
destruct H as [H1 H2].
...
H1 : A \/ B
H2 : forall x : nat, P x \/ Q x
y : nat
...



demonstration (continued)

...
Q : nat -> Prop
H1 : A \/ B
H2 : forall x : nat, P x \/ Q x
destruct H1 as [Ha | Hb].
2 subgoals ...
Q : nat -> Prop
Ha : A
H2 : forall x : nat, P x \/ Q x
y : nat
=============
A /\ P y \/ A /\ Q y \/ B /\ P y \/ B /\ Q y



demonstration (continued)

destruct (H2 y) as [Hp | Hq].
3 subgoals
...
Ha : A
Hp : P y
=============
A /\ P y \/ A /\ Q y \/ B /\ P y \/ B /\ Q y
left.
...
=============
A /\ P y
split.
4 subgoals
...
=============
A



Demonstration (continued)

...
Ha : A
...
y : nat
Hp : P y
=============
A
exact Ha.
...
=============
P y
assumption.
2 subgoals



Demonstration (continued)

...
Ha : A
...
Hq : Q y
===============
A /\ P y \/ A /\ Q y \/ B /\ P y \/ B /\ Q y
right; left; split.
...
A /\ Q y



Existential quantification

I Prove exists x : T, A x
I You have to find an expression e of the right type

exists e
I and then prove A e

I Use H : exists x : T, A x
I destruct H as [y Hy] or case H.
I moving from the connective “there exists” to the situation

where “there exists” a guy with the right properties



Falsehood and Negation

I False cannot be proved in the empty context
I Use H : False

destruct H or case H
I Anything can be deduced from False
I No new goals

I Prove ˜A
I assume A and show there is a contradiction

intros Ha
I Use H : ˜A

I Do this when you know you can prove A

destruct H or case H



Negation demonstration

Lemma example_neg : forall A B : Prop, A -> ˜A -> B.
intros A B Ha Hn.
Ha : A
Hn : ˜A
=============
B
case Hn.
Ha : A
Hn : ˜A
=============
A



Equality

I Prove x = x
reflexivity

I Use H : forall x y, f x y = g x y
rewrite H, rewrite <- H, rewrite H in H’, etc.

I find occurrences of f ? ? in the goal and replace with the
corresponding instance of g ? ?

I Variables must be guessed, as for apply
I Variable guessing can be tuned by the user

I Other approach to using equalities: injection to be studied
later

I Other approach to proving equalities: ring



Automatic proofs

I auto, tauto, intuition, trivial are worth trying for
statements of propositional logic.

I firstorder is especially suited for proofs that may involve
instantiating universal quantifiers (first-order logic).


