Advanced Features: Type Classes and Relations

Pierre Castéran

Suzhou, Paris, 2011

1/1

In this lecture, we present shortly two quite new and useful features of the
Coq system :

@ Type classes are a nice way to formalize (mathematical) structures,

o User defined relations, and rewriting non-Leibniz “equalities” (i.e. for
instance, equivalences).

2/1

In this lecture, we present shortly two quite new and useful features of the

Coq system :
@ Type classes are a nice way to formalize (mathematical) structures,
o User defined relations, and rewriting non-Leibniz “equalities” (i.e. for
instance, equivalences).
@ More details are given in Cog's reference manual,
@ A tutorial will be available soon.
@ We hope you will replay the proofs, enjoy, and try to use these

features.

3/1

In this lecture, we present shortly two quite new and useful features of the

Coq system :
@ Type classes are a nice way to formalize (mathematical) structures,

o User defined relations, and rewriting non-Leibniz “equalities” (i.e. for
instance, equivalences).

More details are given in Coq's reference manual,

A tutorial will be available soon.

We hope you will replay the proofs, enjoy, and try to use these
features.

Demo files :
Power_Mono.v, Monoid.v, EMonoid.v, Trace_Monoid.v.
The file Monoid_op_classes.v is given for advanced experiments only.

4/1

A simple example : computing a"

The following definition is very naive, but obviously correct.

Fixpoint power (a:Z)(n:nat) :=
match n with O%nat => 1
| Sp=> a * power a p
end.

Compute power 2 40.
= 1099511627776
Z

5/1

A simple example : computing a"

The following definition is very naive, but obviously correct.

Fixpoint power (a:Z)(n:nat) :=
match n with O%nat => 1
| Sp=> a * power a p
end.

Compute power 2 40.
= 1099511627776
Z

Thus, the function power can be considered as a specification for more
efficient algorithms. J

6/1

The binary exponentiation algorithm

Let's define an auxiliary function . ..

Function binary_power_mult (acc x:Z) (n:nat)
{measure (fun i=>i) n} : Z
(x acc * (power x n) *) :=
match n with O%nat => acc
| => if Even.even_odd_dec n
then binary_power_mult
acc (x * x) (div2 n)
else binary_power_mult
(acc * x) (x * x) (div2 n)
end.
intros;apply 1lt_div2; auto with arith.
intros;apply lt_div2; auto with arith.
Defined.

7/1

...and the main function.

Definition binary_power (x:Z)(n:nat) :=
binary_power_mult 1 x n.

Compute binary_power 2 40.
1099511627776: Z

...and the main function.

Definition binary_power (x:Z)(n:nat) :=
binary_power_mult 1 x n.

Compute binary_power 2 40.
1099511627776: Z

@ Is binary_power correct (w.r.t. power)?

...and the main function. J

Definition binary_power (x:Z)(n:nat) :=
binary_power_mult 1 x n.

Compute binary_power 2 40.
1099511627776: Z

@ Is binary_power correct (w.r.t. power)?

@ Is it worth proving this correctness only for powers of integers?

10/1

...and the main function.)

Definition binary_power (x:Z)(n:nat) :=
binary_power_mult 1 x n.

Compute binary_power 2 40.
1099511627776: Z

@ Is binary_power correct (w.r.t. power)?

@ Is it worth proving this correctness only for powers of integers?

@ And prove it again for powers of real numbers, matrices ?

1/1

...and the main function.)

Definition binary_power (x:Z)(n:nat) :=
binary_power_mult 1 x n.

Compute binary_power 2 40.
1099511627776: Z

@ Is binary_power correct (w.r.t. power)?

@ Is it worth proving this correctness only for powers of integers?

@ And prove it again for powers of real numbers, matrices ? NO l

12/1

Monoids

We aim to prove the equivalence between power and binary_power for

any structure consisting of a binary associative operation that admits a
neutral element

13/1

Monoids

We aim to prove the equivalence between power and binary_power for

any structure consisting of a binary associative operation that admits a
neutral element

Definition

A monoid is a mathematical structure composed of :
@ A carrier A
@ A binary, associative operation o on A

@ A neutral element 1 € A for o

14/1

Class Monoid {A:Type}(dot : A -> A -> A) (unit : A)
: Type := {
dot_assoc : forall x y z:A,
dot x (dot y z)= dot (dot x y) z;
unit_left : forall x, dot unit x = Xx;
unit_right : forall x, dot x unit = x }.

In fact such a class is stored as a record, parameterized with A, dot and
unit. Just try Print monoid.

15/1

An alternative ?

Class Monoid’ : Type := {

carrier: Type;

dot : carrier -> carrier -> carrier;

one : carrier;

dot_assoc : forall x y z:carrier, dot x (dot y z)=
dot (dot x y) z;

one_left : forall x, dot one x = x;

one_right : forall x, dot x one = x}.

16/1

An alternative ?

Class Monoid’ : Type := {

carrier: Type;

dot : carrier -> carrier -> carrier;

one : carrier;

dot_assoc : forall x y z:carrier, dot x (dot y z)=
dot (dot x y) z;

one_left : forall x, dot one x = x;

one_right : forall x, dot x one = x}.

No !

@ Bas Spitters and Eelis van der Weegen,
Type classes for mathematics in type theory,
CoRR, abs/1102.1323, 2011.

In short, it would be clumsy to express “two monoids on the same carrier”.

v

17/1

Defining power in any monoid

Generalizable Variables A dot one.

Fixpoint power ‘{M :Monoid A dot one}(a:A)(n:nat) :=
match n with O%nat => one

| S p =>dot a (power a p)
end.

Lemma power_of_unit ‘{M :Monoid A dot one}
forall n:nat, power one n = one.
Proof.

induction n as [| p Hp];simpl;
[lrewrite Hp;simpl;rewrite unit_left];trivial.
Qed.

18/1

Building an instance of the class Monoid

Require Import ZArith.
Open Scope Z_scope.

Instance ZMult : Monoid Zmult 1.
split.
3 subgoals

forallxyz:Z x*(y*z) =x*y*z

subgoal 2 is:
forall x : Z, 1 * x = x
subgoal 3 is:
forall x : Z, x ¥ 1 = x
Qed.

Each subgoal has been solved by intros ;ring. J

19/1

Instance Resolution

About power.

power :

forall (A : Type) (dot : A -> A -> A) (one : A),
Monoid dot one -> A -> nat -> A

Arguments A, dot, one, M are implicit and maximally inserted

20/1

Instance Resolution

About power.
power :

forall (A : Type) (dot : A -> A -> A) (one : A),
Monoid dot one -> A -> nat -> A

Arguments A, dot, one, M are implicit and maximally inserted

Compute power 2 100.
= 1267650600228229401496703205376 : Z

21/1

Instance Resolution

About power.

power :

forall (A : Type) (dot : A-> A -> A) (one : A),
Monoid dot one -> A -> nat -> A

Arguments A, dot, one, M are implicit and maximally inserted

Compute power 2 100.
= 1267650600228229401496703205376 : £

Set Printing Implicit.

Check power 2 100.

©@power Z Zmult 1 ZMult 2 100 : Z
Unset Printing Implicit.

The instance ZMult is inferred from the type of 2.

7771

2 x 2 Matrices on any Ring
Require Import Ring.

Section matrices.

Variables (A:Type)
(zero one : A)
(plus mult minus : A -> A -> A)
(sym : A -> A).

Notation "O" := zero.
Notation "1" := onme.
Notation "x + y" := (plus x y).
Notation "x * y " := (mult x y).

Variable rt
ring_theory =zero one plus mult minus sym (Qeq A).
Add Ring Aring : rt.

23/1

Structure M2 : Type

Definition Id2

: M2

Definition M2_mult
Build_M2 (c00 m *

(cO0 m
(c10 m
(c10 m

* % ¥

Global Instance M2

Defined.

End matrices.

{c00 : A; «cO1 : A;
cl0 : A; cl11 : A}.
Build_ M2 1 0 0 1.

(m m’:M2) : M2

c00
c01
c00
c01

m)
m)
m)
m)

_Monoid :

+ cO0l m
+ cOl m
+ cllm
+ cllm

Monoid

cl0 m’
cll m’
cl0 m’
cll m’

N

M2_mult Id2.

24/1

Compute power (Build_M2 1 1 1 0) 40.
={l
c00 := 165580141,
c01 := 102334155;
c10 := 102334155;
cll := 63245986 |}
M2 7

25/1

Compute power (Build_M2 1 1 1 0) 40.
={]
c00 := 165580141;
c01 := 102334155;
cl10 := 102334155;
cll := 63245986 |}
M2 27

Definition fibonacci (n:nat)
c00 (power (Build_M2 1 1 1 0) n).

Compute fibonacci 20.

= 10946
Z

26/1

A generic proof of correctness of binary_power

We are now able to prove the equivalence of power and binary_power in
any monoid.

27/1

A generic proof of correctness of binary_power

We are now able to prove the equivalence of power and binary_power in
any monoid.

Note

We give only the structure of the proof. The complete development will be
distributed (for cog8.3pl2)

v

28/1

Let us consider an arbitrary monoid J

Section About_power.

Require Import Arith.
Context ‘(M:Monoid A dot one).

29/1

Let us consider an arbitrary monoid

Section About_power.

Require Import Arith.
Context ‘(M:Monoid A dot one).

Ltac monoid_rw :=
rewrite (@one_left A dot one M) ||
rewrite (@one_right A dot one M) ||
rewrite (@dot_assoc A dot one M).

Ltac monoid_simpl := repeat monoid_rw.

Local Infix "*" := dot.

Local Infix "s*" := power (at level 30, no associativity).

30/1

Within this context, we prove some useful lemmas J

Lemma power_x_plus : forall x n p,

x ¥k (n+p) = x **xn *x X ** p.
Proof.

induction n;simpl.

intros; monoid_simpl;trivial.

intro p;rewrite (IHn p). monoid_simpl;trivial.
Qed.

31/1

Within this context, we prove some useful lemmas J

Lemma power_x_plus : forall x n p,

x ¥k (n+p) = x **xn *x X ** p.
Proof.

induction n;simpl.

intros; monoid_simpl;trivial.

intro p;rewrite (IHn p). monoid_simpl;trivial.
Qed.

Lemma power_of_power : forall x n p,
(x #**x n) *x p =x ** (p * n).
Proof.
induction p;simpl;
[| rewrite power_x_plus; rewrite IHp]; trivial.
Qed.

32/1

Lemma binary_power_mult_ok :
forall n a x, binary_power_ mult M a xn = a * x ** n.

Lemma binary_power_ok : forall x n,
binary_power (x:A)(n:nat) = x ** n.
Proof.
intros n x;unfold binary_power;
rewrite binary_power_mult_ok;
monoid_simpl;auto.
Qed.

End About_power.

33/1

Subclasses

Class Abelian_Monoid ‘(M:Monoid):= {
dot_comm : forall x y, (dot x y =dot y x)}.

Instance ZMult_Abelian : Abelian_Monoid ZMult.
split.

exact Zmult_comm.
Defined.

34/1

Section Power_of_dot.
Context ‘{M: Monoid A} {AM:Abelian_Monoid M}.

Theorem power_of_mult : forall n x vy,
power (dot x y) n = dot (power x n) (power y n).
Proof.
induction n;simpl.
rewrite one_left;auto.
intros; rewrite IHn; repeat rewrite dot_assoc.
rewrite <- (dot_assoc x y (power x n));
rewrite (dot_comm y (power x n)).
repeat rewrite dot_assoc;trivial.
Qed.

35/1

More about class types

@ Download Coq's latest development version,
@ Read Papers by Matthieu Sozeau on the implementation

@ Bas Spitters, Eelis van der Weegen : Type Classes for Mathematics in
Type Theory

36/1

More about class types

@ Download Coq's latest development version,
@ Read Papers by Matthieu Sozeau on the implementation

@ Bas Spitters, Eelis van der Weegen : Type Classes for Mathematics in
Type Theory

It is possible to define and export notations for operations on type classes.
See Monoid_op_classes.v

power_of_mult :
forall (A : Type) (dot : monoid_binop A) (one : A)
(M : Monoid dot omne),
Abelian_Monoid M ->
forall (n : nat) (xy : A),
(x * y)IM *x n = (x **x n *x y ** n)yM

37/1

Introduction to Setoids

Let us recall how rewrite works.

@ This tactic uses eq_rect,

@ without other hypotheses, the proposition x = y can only be proven
through eq_refl

eq_rect

: forall (A : Type) (x : A) (P : A -> Type),
Px ->forally : A, x =y >Py

Inductive eq (A : Type) (x : A) : A -> Prop :=
| eq_refl : x = x

38/1

Introduction to Setoids

Let us recall how rewrite works.
@ This tactic uses eq_rect,

@ without other hypotheses, the proposition x = y can only be proven
through eq_refl

eq_rect

: forall (A : Type) (x : A) (P : A -> Type),
Px ->forally : A, x =y >Py

Inductive eq (A : Type) (x : A) : A -> Prop :=
| eq_refl : x = x

We would like to use rewrite with relations weaker (easier to prove) than
X=y.

39/1

An example : Trace Monoids

The following intruction sequences are equivalent but not equal.

x = y+1;
y =2z * z;
for(int i=0;i<n;i++)
X +=2
if (y >= 0) then
System.out.println("y=" + y +" x =" + x);

x = y+1;
for(int i=0;i<n;i++)
X +=z;
y =2z % z;
System.out.println("y=" + y+ " x =" + x);

40/1

@ Trace monoids a.k.a. free partially commutative monoids are models

of concurrent programming.
@ They describe which actions are independent, i.e. can commute.

@ For instance, x+=z can commute with y= z*z, but not with x= y+1

41/1

@ Trace monoids a.k.a. free partially commutative monoids are models

of concurrent programming.
@ They describe which actions are independent, i.e. can commute.

@ For instance, x+=z can commute with y= z*z, but not with x= y+1

In order to simplify our development, we consider three basic actions :
a, b and ¢, and represents programms as lists of actions.
The lists a::b::a::c::b::a::nil and a::a::b::c::a::b::nil should

be equivalent, but not equal!

42/1

Require Import List
Relation_Operators
Operators_Properties.
Section Partial_Com.
Inductive Act : Set :=a | b | c.
Example Diff : a::b::nil <> b::a::nil.

discriminate.
Qed.

43/1

Let us define the relation partial commutation, generated by a and b

(* One transposition of a and b *)

Inductive transpose : list Act -> list Act -> Prop :=

transpose_hd : forall w, transpose(a::b::w) (b::a::w)

|transpose_tl : forall x w u, transpose w u ->
transpose (x::w) (x::u).

We can now consider the reflexive, symmetric and transitive closure of
transpose :

)

Definition commute := clos_refl_sym_trans _ transpose.

Infix "==" := commute (at level 70):type_scope.

44/1

We now declare commute as an instance of the Equivalence type class : J

Instance Commute_E : Equivalence commute.

split; [constructor 2|constructor 3|econstructor 4];eauto.
Qed.

We are now able to use the tactics reflexivity, symmetry, and transitivity
on goals of the form x ==

45/1

Example ex0O : b::a::nil == a::b::nil.
symmetry.

repeat constructor.

Qed.

46/1

Example ex0O : b::a::nil == a::b::nil.
symmetry.

repeat constructor.

Qed.

Example exl : a::b::b::nil == b::b::a::nil.
transitivity (b::a::b::nil).

repeat constructor.

repeat constructor.

Qed.

47 /1

Goal forall w, w++(a::b::nil) == w++(b::a::nil).

Proof.
induction w;simpl.

constructor. constructor.

a0 : Act
w : list Act
IHw :w ++a:b:nil ==w ++ b :a:nil

a0 :w—++axbxnl==a0:w-++b:a:nil

rewrite IHw.
Error message
Abort.

48/1

We need to prove and register that if u == v then x::u == x::v. J

49/1

We need to prove and register that if u == v then x::u == x::v.

Require Import Setoid Morphisms.

Instance cons_commute_Proper (x:Act):
Proper (commute ==> commute) (cons x).

intros 1 1’ H.

1 subgoal

x : Act

| : list Act
I" : list Act
H:l==1I

50/1

Note that the following statement is also correct :

Instance cons_commute_Proper (x:Act)
Proper (@eq _ ==> commute ==> commute)
(@cons Act).

51/1

We are now able to use rewrite in contexts formed by the cons operator.

Goal forall u v, u == v —> (a::b::u) == (b::a::v).
Proof.

intros u v H;rewrite H.

constructor;constructor.
Qed.

52/1

We can now consider again our failed attempt.

Goal forall w, w++(a::b::nil) == w++(b::a::nil).
Proof.

induction w;simpl.

constructor. constructor.

53/1

We can now consider again our failed attempt.

Goal forall w, w++(a::b::nil) == w++(b::a::nil).
Proof.

induction w;simpl.

constructor. constructor.

1 subgoal

a0 : Act
w : list Act
IHw : w ++a b :nil ==w ++ b :: a :: nil

a0 ::w-++a:b:nil==a0:w-++ b :a:nil

54/1

We can now consider again our failed attempt.
Goal forall w, w++(a::b::nil) == w++(b::a::nil)

Proof.
induction w;simpl.
constructor. constructor.

1 subgoal

a0 : Act

w : list Act
IHw : w ++a b :nil ==w ++ b :: a :: nil

a0 ::w++a:b:nil==a0:w-++b:a:nil
rewrite IHw; reflexivity.
Qed.

55/1

We want now to use rewrite H on the commute relation in contexts built
with the app function. J

Instance append_commute_Proper_1

Proper (Logic.eq ==> commute ==> commute) (Qapp Act).
(* usage
H: v==w

v w e

[setoid_]rewrite H.
*)
Qed.

56/1

Instance append_commute_Proper_2

Proper (commute ==> Logic.eq ==> commute) (@app Act).
(* usage
H:u==v

Uttt W o== v bW

[setoid_]rewrite H.
*)
Qed.

57/1

Instance append_Proper :

Proper (commute ==> commute ==> commute) (Qapp Act).
Proof.

intros x y H z t HO;transitivity (y++z).

rewrite H;reflexivity.

rewrite HO;reflexivity.

Qed.

58/1

Setoids and Monoids

Set Implicit Arguments.
Require Import Morphisms Relations.

Class EMonoid (A:Type) (E_eq :relation A)

(dot : A->A->A)(one : A):={
E_rel :> Equivalence E_eq;
dot_proper :> Proper (E_eq ==> E_eq ==> E_eq) dot;
E_dot_assoc : forall x y z:A, E_eq (dot x (dot y 2z))

(dot (dot x y) z);

E_one_left : forall x, E_eq (dot one x) x;
E_one_right : forall x, E_eq (dot x omne) x}.

59/1

Extract from Demo file Trace_Monoid.v

Instance PCom : EMonoid commute (@List.app Act) nil.

Proof

split.

apply Commute_E.
apply append_Proper.

intros;rewrite <- app_assoc;reflexivity.

simpl;reflexivity.
intros;rewrite app_nil_r;reflexivity.
Qed.

60/1

Conclusion

@ Type classes and setoids are advanced features that allow to represent
complex objects,

@ It is important to look again at the examples and exercises, as well as
the Coq documentation.

@ Suscribe to the cog-club mailing list!

61/1

