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In this lecture, we present shortly two quite new and useful features of the
Coq system :

Type classes are a nice way to formalize (mathematical) structures,

User defined relations, and rewriting non-Leibniz “equalities” (i.e. for
instance, equivalences).

More details are given in Coq’s reference manual,

A tutorial will be available soon.

We hope you will replay the proofs, enjoy, and try to use these
features.

Demo files :
Power_Mono.v, Monoid.v, EMonoid.v, Trace_Monoid.v.
The file Monoid_op_classes.v is given for advanced experiments only.
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A simple example : computing an

The following definition is very näıve, but obviously correct.

Fixpoint power (a:Z)(n:nat) :=

match n with 0%nat => 1

| S p => a * power a p

end.

Compute power 2 40.

= 1099511627776
: Z

Thus, the function power can be considered as a specification for more
efficient algorithms.
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The binary exponentiation algorithm

Let’s define an auxiliary function . . .

Function binary_power_mult (acc x:Z)(n:nat)

{measure (fun i=>i) n} : Z

(* acc * (power x n) *) :=

match n with 0%nat => acc

| _ => if Even.even_odd_dec n

then binary_power_mult

acc (x * x) (div2 n)

else binary_power_mult

(acc * x) (x * x) (div2 n)

end.

intros;apply lt_div2; auto with arith.

intros;apply lt_div2; auto with arith.

Defined.
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. . .and the main function.

Definition binary_power (x:Z)(n:nat) :=

binary_power_mult 1 x n.

Compute binary_power 2 40.

1099511627776: Z

Is binary_power correct (w.r.t. power) ?

Is it worth proving this correctness only for powers of integers ?

And prove it again for powers of real numbers, matrices ? NO !
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Monoids

We aim to prove the equivalence between power and binary_power for
any structure consisting of a binary associative operation that admits a
neutral element

Definition

A monoid is a mathematical structure composed of :

A carrier A

A binary, associative operation ◦ on A

A neutral element 1 ∈ A for ◦
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Class Monoid {A:Type}(dot : A -> A -> A)(unit : A)

: Type := {

dot_assoc : forall x y z:A,

dot x (dot y z)= dot (dot x y) z;

unit_left : forall x, dot unit x = x;

unit_right : forall x, dot x unit = x }.

In fact such a class is stored as a record, parameterized with A, dot and
unit. Just try Print monoid.
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An alternative ?

Class Monoid’ : Type := {

carrier: Type;

dot : carrier -> carrier -> carrier;

one : carrier;

dot_assoc : forall x y z:carrier, dot x (dot y z)=

dot (dot x y) z;

one_left : forall x, dot one x = x;

one_right : forall x, dot x one = x}.

No !

Bas Spitters and Eelis van der Weegen,
Type classes for mathematics in type theory,
CoRR, abs/1102.1323, 2011.

In short, it would be clumsy to express “two monoids on the same carrier”.
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Defining power in any monoid

Generalizable Variables A dot one.

Fixpoint power ‘{M :Monoid A dot one}(a:A)(n:nat) :=

match n with 0%nat => one

| S p => dot a (power a p)

end.

Lemma power_of_unit ‘{M :Monoid A dot one} :

forall n:nat, power one n = one.

Proof.

induction n as [| p Hp];simpl;

[|rewrite Hp;simpl;rewrite unit_left];trivial.

Qed.

18 / 1



Building an instance of the class Monoid

Require Import ZArith.

Open Scope Z_scope.

Instance ZMult : Monoid Zmult 1.

split.

3 subgoals
============================
forall x y z : Z, x * (y * z) = x * y * z

subgoal 2 is:
forall x : Z, 1 * x = x
subgoal 3 is:
forall x : Z, x * 1 = x
Qed.

Each subgoal has been solved by intros ;ring.
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Instance Resolution

About power.

power :
forall (A : Type) (dot : A -> A -> A) (one : A),
Monoid dot one -> A -> nat -> A

Arguments A, dot, one, M are implicit and maximally inserted

Compute power 2 100.

= 1267650600228229401496703205376 : Z

Set Printing Implicit.

Check power 2 100.

@power Z Zmult 1 ZMult 2 100 : Z
Unset Printing Implicit.

The instance ZMult is inferred from the type of 2.
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2× 2 Matrices on any Ring

Require Import Ring.

Section matrices.

Variables (A:Type)

(zero one : A)

(plus mult minus : A -> A -> A)

(sym : A -> A).

Notation "0" := zero.

Notation "1" := one.

Notation "x + y" := (plus x y).

Notation "x * y " := (mult x y).

Variable rt :

ring_theory zero one plus mult minus sym (@eq A).

Add Ring Aring : rt.
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Structure M2 : Type := {c00 : A; c01 : A;

c10 : A; c11 : A}.

Definition Id2 : M2 := Build_M2 1 0 0 1.

Definition M2_mult (m m’:M2) : M2 :=

Build_M2 (c00 m * c00 m’ + c01 m * c10 m’)

(c00 m * c01 m’ + c01 m * c11 m’)

(c10 m * c00 m’ + c11 m * c10 m’)

(c10 m * c01 m’ + c11 m * c11 m’).

Global Instance M2_Monoid : Monoid M2_mult Id2.

...

Defined.

End matrices.
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Compute power (Build_M2 1 1 1 0) 40.

= {|
c00 := 165580141;
c01 := 102334155;
c10 := 102334155;
c11 := 63245986 |}

: M2 Z

Definition fibonacci (n:nat) :=

c00 (power (Build_M2 1 1 1 0) n).

Compute fibonacci 20.

= 10946
: Z
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A generic proof of correctness of binary_power

We are now able to prove the equivalence of power and binary_power in
any monoid.

Note

We give only the structure of the proof. The complete development will be
distributed (for coq8.3pl2 )
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Let us consider an arbitrary monoid

Section About_power.

Require Import Arith.

Context ‘(M:Monoid A dot one ).

Ltac monoid_rw :=

rewrite (@one_left A dot one M) ||

rewrite (@one_right A dot one M)||

rewrite (@dot_assoc A dot one M).

Ltac monoid_simpl := repeat monoid_rw.

Local Infix "*" := dot.

Local Infix "**" := power (at level 30, no associativity).
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Within this context, we prove some useful lemmas

Lemma power_x_plus : forall x n p,

x ** (n + p) = x ** n * x ** p.

Proof.

induction n;simpl.

intros; monoid_simpl;trivial.

intro p;rewrite (IHn p). monoid_simpl;trivial.

Qed.

Lemma power_of_power : forall x n p,

(x ** n) ** p = x ** (p * n).

Proof.

induction p;simpl;

[| rewrite power_x_plus; rewrite IHp]; trivial.

Qed.
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Lemma binary_power_mult_ok :

forall n a x, binary_power_mult M a x n = a * x ** n.

...

Lemma binary_power_ok : forall x n,

binary_power (x:A)(n:nat) = x ** n.

Proof.

intros n x;unfold binary_power;

rewrite binary_power_mult_ok;

monoid_simpl;auto.

Qed.

End About_power.
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Subclasses

Class Abelian_Monoid ‘(M:Monoid ):= {

dot_comm : forall x y, (dot x y = dot y x)}.

Instance ZMult_Abelian : Abelian_Monoid ZMult.

split.

exact Zmult_comm.

Defined.
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Section Power_of_dot.

Context ‘{M: Monoid A} {AM:Abelian_Monoid M}.

Theorem power_of_mult : forall n x y,

power (dot x y) n = dot (power x n) (power y n).

Proof.

induction n;simpl.

rewrite one_left;auto.

intros; rewrite IHn; repeat rewrite dot_assoc.

rewrite <- (dot_assoc x y (power x n));

rewrite (dot_comm y (power x n)).

repeat rewrite dot_assoc;trivial.

Qed.
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More about class types

Download Coq’s latest development version,

Read Papers by Matthieu Sozeau on the implementation

Bas Spitters, Eelis van der Weegen : Type Classes for Mathematics in
Type Theory

It is possible to define and export notations for operations on type classes.
See Monoid_op_classes.v

power_of_mult :

forall (A : Type) (dot : monoid_binop A) (one : A)

(M : Monoid dot one),

Abelian_Monoid M ->

forall (n : nat) (x y : A),

(x * y)%M ** n = (x ** n * y ** n)%M
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Introduction to Setoids

Let us recall how rewrite works.

This tactic uses eq rect,

without other hypotheses, the proposition x = y can only be proven
through eq_refl

eq_rect

: forall (A : Type) (x : A) (P : A -> Type),

P x -> forall y : A, x = y -> P y

Inductive eq (A : Type) (x : A) : A -> Prop :=

| eq_refl : x = x

We would like to use rewrite with relations weaker (easier to prove) than
x = y .
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An example : Trace Monoids

The following intruction sequences are equivalent but not equal.

x = y+1;

y = z * z;

for(int i=0;i<n;i++)

x +=z

if (y >= 0) then

System.out.println("y=" + y +" x =" + x);

x = y+1;

for(int i=0;i<n;i++)

x +=z;

y = z * z;

System.out.println("y=" + y+ " x =" + x);
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Trace monoids a.k.a. free partially commutative monoids are models
of concurrent programming.

They describe which actions are independent, i.e. can commute.

For instance, x+=z can commute with y= z*z, but not with x= y+1

In order to simplify our development, we consider three basic actions :
a, b and c, and represents programms as lists of actions.
The lists a::b::a::c::b::a::nil and a::a::b::c::a::b::nil should
be equivalent, but not equal !
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Require Import List

Relation_Operators

Operators_Properties.

Section Partial_Com.

Inductive Act : Set := a | b | c.

Example Diff : a::b::nil <> b::a::nil.

discriminate.

Qed.
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Let us define the relation partial commutation, generated by a and b

(* One transposition of a and b *)

Inductive transpose : list Act -> list Act -> Prop :=

transpose_hd : forall w, transpose(a::b::w) (b::a::w)

|transpose_tl : forall x w u, transpose w u ->

transpose (x::w) (x::u).

We can now consider the reflexive, symmetric and transitive closure of
transpose :

Definition commute := clos_refl_sym_trans _ transpose.

Infix "==" := commute (at level 70):type_scope.
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We now declare commute as an instance of the Equivalence type class :

Instance Commute_E : Equivalence commute.

split;[constructor 2|constructor 3|econstructor 4];eauto.

Qed.

We are now able to use the tactics reflexivity, symmetry, and transitivity
on goals of the form x == y .
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Example ex0 : b::a::nil == a::b::nil.

symmetry.

repeat constructor.

Qed.

Example ex1 : a::b::b::nil == b::b::a::nil.

transitivity (b::a::b::nil).

repeat constructor.

repeat constructor.

Qed.
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Goal forall w, w++(a::b::nil) == w++(b::a::nil).

Proof.

induction w;simpl.

constructor. constructor.

a0 : Act
w : list Act
IHw : w ++ a :: b :: nil == w ++ b :: a :: nil
============================
a0 :: w ++ a :: b :: nil == a0 :: w ++ b :: a :: nil

rewrite IHw.

Error message
Abort.
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We need to prove and register that if u == v then x ::u == x ::v .

Require Import Setoid Morphisms.

Instance cons_commute_Proper (x:Act):

Proper (commute ==> commute) (cons x).

intros l l’ H.

1 subgoal

x : Act
l : list Act
l’ : list Act
H : l == l’
============================
x :: l == x :: l’

. . .
Qed.
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Note that the following statement is also correct :

Instance cons_commute_Proper (x:Act) :

Proper (@eq _ ==> commute ==> commute)

(@cons Act).
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We are now able to use rewrite in contexts formed by the cons operator.

Goal forall u v, u == v -> (a::b::u) == (b::a::v).

Proof.

intros u v H;rewrite H.

constructor;constructor.

Qed.
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We can now consider again our failed attempt.

Goal forall w, w++(a::b::nil) == w++(b::a::nil).

Proof.

induction w;simpl.

constructor. constructor.

1 subgoal

a0 : Act
w : list Act
IHw : w ++ a :: b :: nil == w ++ b :: a :: nil
============================
a0 :: w ++ a :: b :: nil == a0 :: w ++ b :: a :: nil

rewrite IHw; reflexivity.

Qed.
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We want now to use rewrite H on the commute relation in contexts built
with the app function.

Instance append_commute_Proper_1 :

Proper (Logic.eq ==> commute ==> commute) (@app Act).

...

(* usage :

H : v == w

---------------

u ++ v == u ++ w

[setoid_]rewrite H.

*)

Qed.
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Instance append_commute_Proper_2 :

Proper (commute ==> Logic.eq ==> commute) (@app Act).

(* usage :

H : u == v

---------------

u ++ w == v ++ w

[setoid_]rewrite H.

*)

Qed.
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Instance append_Proper :

Proper (commute ==> commute ==> commute) (@app Act).

Proof.

intros x y H z t H0;transitivity (y++z).

rewrite H;reflexivity.

rewrite H0;reflexivity.

Qed.
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Setoids and Monoids

Set Implicit Arguments.

Require Import Morphisms Relations.

Class EMonoid (A:Type)(E_eq :relation A)

(dot : A->A->A)(one : A):={

E_rel :> Equivalence E_eq;

dot_proper :> Proper (E_eq ==> E_eq ==> E_eq) dot;

E_dot_assoc : forall x y z:A, E_eq (dot x (dot y z))

(dot (dot x y) z);

E_one_left : forall x, E_eq (dot one x) x;

E_one_right : forall x, E_eq (dot x one) x}.
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Extract from Demo file Trace_Monoid.v

Instance PCom : EMonoid commute (@List.app Act) nil.

Proof

split.

apply Commute_E.

apply append_Proper.

intros;rewrite <- app_assoc;reflexivity.

simpl;reflexivity.

intros;rewrite app_nil_r;reflexivity.

Qed.
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Conclusion

Type classes and setoids are advanced features that allow to represent
complex objects,

It is important to look again at the examples and exercises, as well as
the Coq documentation.

Suscribe to the coq-club mailing list !
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