Recursive functions in Coq

Benjamin Grégoire

November 2011

Recursive datatypes

» Datatypes are described by several cases: the constructors
» Each constructor is presented as a function

Output type: the datatype

Inputs: they correpond to several fields

Some inputs are in the datatype: recursion

Usually one constructor has no inputs in the datatype (i.e.
base cases)

» Programming function with the datatype as input
» Use Match ... with ... end
» As many cases as there are constructors

» One pattern variable for each non parameter constructor
argument

v

vV vy

An example of recursive datatype

» An example of datatype used to describe a programming
language

Inductive btree : Type :=
| Empty : btree
| Node : btree -> btree -> btree.

An example of recursive function

Fixpoint get_subtree
(1:1ist bool) (t:btree) {struct t} : btree :=

match t, 1 with
| Empty, _ => Empty
| Node _ _, nil => t
| Node t1 tr, b :: 1° =>
if b then get_subtree 1’ tl else get_subtree 1’ tr

end.

» Note the recursive calls made on t1 and tr
» The recursive call should be done on strict sub-term

» This ensure the termination of recursive functions

Why termination is important

An Ocaml function:

let rec loop x

val f

’a -> ’b

loop x;;
<fun>

Why termination is important

Assume we can do such a definition in Coq:

Fixpoint loop (x:7) : ? := loop x.

Why termination is important

Now add type information for x:

Fixpoint loop (x:nat) : 7 := loop X.

Why termination is important

Now add type information for the result (assume B:Type):

Fixpoint loop (x:nat) : B := loop x.

» The function loop has type nat -> B

» We have used B but we can use any type

Why termination is important

Use False instead of B:

Fixpoint loop (x:nat) : False := loop x.

» Now the function loop has type nat -> False

» Did you see the problem?

Why termination is important

Use False instead of bool:
Fixpoint loop (x:nat) : False := loop x.
» Now the function loop has type nat -> False

» Did you see the problem?
» What is the type of 1loop 07

Why termination is important

Use False instead of bool:

Fixpoint loop (x:nat) : False := loop x.

v

Now the function loop has type nat -> False

v

Did you see the problem?
What is the type of loop 0 7
loop 0 : False

We can proof False without hypothesis, the logical system is
incoherent (everything is provable)

v

v

The termination of recursive functions is one of the component
which ensure the logical consistency of Coq
We should live with it . ..

An example of recursive function: fact

Recursive call should be made on strict sub-term:

Fixpoint fact n
match n with
| 0 =>1

| Sn’> =>n *x fact n’
end.

Definition fact’

fix factl n :=
match n with
| 0=>1

| S n’> =>n % factl n’
end.

An example of recursive function: div2

Recursive call can be done on not immediate sub-terms:

Fixpoint div2 n :=
match n with
| S (8 n’) =>8 (div2 n’)
| _=>0
end.

A sub-term of strict sub-term is a strict sub-term

More general recursive calls

» |t is possible to have recursive calls on results of functions

» All cases must return a strict sub-term
» strict sub-terms may be obtained by apply functions on strict
sub-terms
» Only constraint is that functions must return sub-terms

not necessarily strict.
» Checked by looking at all cases

Example of function that returns a sub-term

Definition pred (n : nat) :=
match n with
| 0=> n
| Sp=>p
end.

> in case 0 value is n, a (non-strict) sub-term of n

» in case S p value is n a sub-term of n

Recursive function using pred

Fixpoint div2’ (n : nat) :=
match n with

0=>0
| S p=>8 (div2’ (pred p))
end.

The same trick can be played with minus which returns a sub-term
of its first argument, to define euclidian division

Mutual recursion

It is possible to define function by mutual recursion:
Fixpoint even n
match n with
| 0 => true

| S n’ => odd n’
end

with odd n :=

match n with
| 0 => false

| S n’ => even n’
end.

Lexicographic order

Sometimes termination functions is ensured by a lexicographic order
on arguments (Ocaml):

let rec merge 11 12 =
match 11, 12 with
| O, _ -> 12
| _, O -> 11
| x1::11°, x2::12° ->
if x1 <= x2 then
x1 :: merge 11’ 12
else
x2 :: merge 11 12°;;

There is two recursive call merge 11’ 12 and merge 11 12’

Solution in Coq: internal recursion

Coq also makes it possible to describe anonymous recursive function
Sometimes necessary to use them for difficult recursion patterns

Fixpoint merge (11 12:1list nat) : list nat :=
match 11, 12 with
| nil, _ => 12 | _, nil => 11
| x1::11°, x2::12° =>
if leb x1 x2 then x1::merge 11’ 12

else
x2 :: (fix merge_aux (12:1list nat) :=
match 12 with
| nil => 11
| x2::12° =>

if leb x1 x2 then x1::merge 11’ 12
else x2:: merge_aux 12’
end) 12’
end.

The style is a little bit boring (use the Section instead)

Another solution (Hugo Herbelin)

Fixpoint merge 11 12 :=
let fix merge_aux 12 :=
match 11, 12 with
| nil, _ => 12
| _, nil => 11
| x1::11°, x2::12° =>
if leb x1 x2 then x1::merge 11’ 12
else x2::merge_aux 12’
end
in merge_aux 12.

Compute merge (2::3::5::7::nil) (3::4::10::nil).
=2 ::3::3::4 ::5::7 ::10 :: nil
: list nat

More general recursion

v

Constraint of structural recursion too cumbersome

» Sometimes a characteristic decreases, but structural recursion
is not available

v

General solution provided by well-founded recursion

v

Intermediate solution provided by the command Function

Example using Function: fact on Z

Integers have a more complex structure than natural numbers

Inductive positive : Set :=
| xH : positive (x encoding of 1 *)
| x0 : positive -> positive (* encoding of 2xp *)
| xI : positive -> positive. (* encoding of 2xp+1 *)

Inductive Z : Set :=
| Z0: Z | Zpos: positive -> Z | Zneg: positive -> Z.

» x — 1 is not a structural sub-term of x
» for instance 3 is Zpos (xI xH) and 2 is Zpos (x0 xH)

» Makes more efficient computation possible

Example using Function: fact on Z

Require Import Recdef.

Function factZ (x : Z) {measure Zabs_nat x} :=
if Zle_bool x O then 1 else x * fact (x - 1).
1 subgoal

forall x : Z, Zle_bool x O = false ->
(Zabs_nat (x - 1) < Zabs_nat x)%nat

Now, we prove explicitely that something decreases

Merge again

Definition slen (p:list nat * list nat) :=
length (fst p) + length (snd p).

Function Merge (p:list nat * list nat)
{ measure slen p } : list nat :=
match p with
| (nil, 12) => 12
| (11, nil) => 11
| ((x1::11°) as 11, (x2::12°) as 12) =>
if leb x1 x2 then x1::Merge (11’,12)
else x2::Merge (11,12°)
end.
(* Two goals)

Defined.

Compute Merge (2::3::5::7::nil, 3::4::10::nil).

Well-founded Relations

Dotted lines represent any number of elementary relationships

Minimal elements are accessible

Elements whose all predecessors are accessible become accessible

Some time later . ..

Well founded relation in Coq

A relation is well founded if all elements are accessible.

Inductive Acc (A:Type) (R:A->A->Prop) (x:A4) : Prop :=
Acc_intro :
(forall y : A, Ry x -> Acc R y) -> Acc R x.

Definition well_founded (A:Type) (R:A->A->Prop) :=
forall a, Acc R a.

It is possible to define functions by recursion on the accessibility
proof of an element (Function is based on this)

Proving that some relation is well-founded

Coq's Standard Library provides us with some useful examples of
well-founded relations :

» The predicate 1t over nat (but you can use measure instead)

» The predicate Zuf ¢, which is the restriction of < to the
interval [c, oo of Z.

More example : logl0

Function logl0 (n : Z) {wf (Zwf 1) n} : Z :=
if Z1t_bool n 10 then O else 1 + logl0 (n / 10).
Proof.
(* first goal *)
intros n Hleb.
unfold Zwf.
generalize (Zlt_cases n 10) (Z_div_1lt n 10);rewrite Hleb.
omega.
(x Second goal *)
apply Zwf_well_founded.
Defined.
(* Compute loglO 2. : you can wait for a answer ... *)

log10 can also be defined using measure

Function loglO (n : Z) {measure Zabs_nat n} : Z :=
if Z1t_bool n 10 then O else 1 + logl0 (n / 10).
Proof.
(* first goal *)
intros n Hleb.
unfold Zwf;generalize (Zlt_cases n 10); rewrite Hleb;intr
apply Zabs_nat_lt.
split.
apply Z_div_pos;omega.
apply Zdiv_1t_upper_bound;omega.
Defined.

Proving properties on recursive functions

Usually a property on a recursive function can be proved using an
induction on the recursive argument.

Sometime we need some generalization before starting the
induction (see the example div2_1le).

Proof techniques for recursive function

v

Specific reasoning tool for each function

v

Usable like an induction principle
» Requires a special induction tactic

» Cases correspond to behavior cases of function

v

Hypotheses are provided for each test performed

v

Induction hypotheses are provided for recursive calls

Example of functional induction

Fixpoint fact x :=
match x with 0 => 1 | S p => x * fact p end.

Functional Scheme fact_ind := Induction for fact Sort Prop.

Check fact_ind.

forall P : nat -> nat -> Prop,
(forall x : nat, x =0 ->P 0 1) ->
(forall x p : nat,

Sp->Pp (fact p) -> P (S p) (x * fact p)) ->
forall x : nat, P x (fact x)

X

Second example of functional induction

Fixpoint div2 x :=
match x with S (S p) => S (div2 p) | _ => 0 end.

Functional Scheme div2_ind := Induction for div2 Sort Prop.
Lemma div2t2le : forall x, div2 x * 2 <= Xx.

intros x; functional induction div2 x.
3 subgoals

0 x2<=0

subgoal 2 is:

0x2<=1

subgoal 3 is:

S (div2 p) * 2 <= S (S p)

Proof techniques for mutual fixpoints

Properties on mutual fixpoints should be generally proved
simultaneously
Example:

forall n, even n = true -> exists p, n = 2%p
forall n, odd n = true -> exists p, n = 2%p + 1

Solution 1: prove both in one shot

Lemma even_odd_ok : forall n,
(even n = true -> exists p, n = 2*p) /\
(odd n = true -> exists p, n = 2%p + 1).

Use the lemma to prove the two disjoint lemmas:

Lemma even_ok :
forall n, even n = true -> exists p, n = 2%p.

Lemma odd_ok :
forall n, odd n = true -> exists p, n = 2%p + 1.

Solution 2: use mutual lemmas

Lemma even_ok :

forall n, even n = true -> exists p, n = 2%p
with odd_ok :

forall n, odd n = true -> exists p, n = 2%p + 1.

This a way to define a mutual fixpoint in proof mode

Prove for function defined using Function

Among the few lemmas that are generated by Function, the
lemma logl0_equation has the following statement, which
expresses the intention of the original definition :

logl0_equation
: forall n : Z,
logl0 n = (if Zlt_bool n 10
then O
else 1 + logl0 (n / 10))

Goal loglO 103=2.
repeat (rewrite loglO_equation;simpl).

Goal loglO 103=2.
repeat (rewrite loglO_equation;simpl).
1 subgoal

Functional Scheme

A functional scheme for function defined using Function is also
automatically generated (no need to use Functional Scheme)

Check Merge_ind.

So, you can use functional induction ...

Proofs about uncurrified functions

Lemma Merge_count : forall x 11 12,
count x (Merge (11, 12)) = count x 11 + count x 12.

» Induction principles work for variables, no composite
expressions

» All references to sub-components must be explicit references
to the argument

» Two solutions to make references explicit (see the proofs)

> use projectors
» add equalities

Generating its own induction principle

Sometime, the generated induction principle is not what you need.

Inductive tree (A:Type) :=
| Node : A -> list (tree A) -> tree A.

Check tree_ind.

tree_ind
: forall (A : Type) (P : tree A -> Prop),

(forall (a : A) (1 : list (tree A)), P (Node A a 1))

forall t : tree A, P t

You have to build your own induction principle

my_tree_ind : forall (A : Type)
(P : tree A -> Prop) (Pl : list (tree A) -> Prop),

(forall al, P11 -> P (Node _ a 1)) ->

P1 nil ->
(forall t 1, Pt ->P1 1 ->P1 (t :: 1)) ->

forall t, P t

The proof is in the file (my_tree_ind)

