
Inductive properties

Inductive properties

Assia Mahboubi, Pierre Castéran, Yves Bertot
Paris, Beijing, Bordeaux, Suzhou

16 novembre 2011

Inductive properties

We have already seen how to define new datatypes by the mean of
inductive types.
During this session, we shall present how Coq’s type system allows
us to define specifications using inductive declarations.

Inductive properties

Simple definition

Simple inductive definitions

Inductive even : nat -> Prop :=

| even0 : even 0

| evenS : forall p:nat, even p -> even (S (S p)).

I The first line expresses that we are defining a predicate

I The second and third lines give ways to prove instances of this
predicate

I even0 and evenS can be used like theorems
I They are called constructors

I even, even0, evenS and even_ind are defined by this
definition

Inductive properties

Simple definition

Using constructors as theorems

Check evenS.

evenS : forall p : nat, even p -> even (S (S p))

Lemma four_even : even 4.

apply evenS.

=======================
even 2

apply evenS.

=======================
even 0

apply even0

Proof completed

Inductive properties

Meaning

Meaning of constructors

I The arrow in constructors is an implication

I Goal-directed proof works by backward chaining
I the operational meaning in proofs walks the arrow backwards

I Unlike the symbol => in function definitions
I premises of constructors should be “simpler” than conclusions

Inductive properties

Meaning

Meaning of the inductive definition

I Not just any relation so that the constructors are verified

I The smallest one

I For all other predicate P so that formulas similar to
constructors hold, the inductive predicate implies P

forall P : nat -> Prop,

(P 0) -> (* as in even0 *)
(forall n : nat, P n -> P (S (S n))) -> (* as in evenS *)
forall k : nat, even k -> P k

I This is expressed by even_ind

Inductive properties

Meaning

Minimality and induction principle

I The induction principle can be derived from minimality
I Tip : proving P n /\ even n using minimality give induction

I For every true statement of even n, there exists a proof done
solely with constructors

I The induction principle can be use to establish consequences
from the inductive predicate

Inductive properties

proofs by induction

Example proof with induction principle

Lemma even_double :

forall n, even n -> exists k, n = 2 * k.

intros n H.

=========================
exists k, 0 = 2 * k

induction H.

I Patterned after constructors

I Induction hypotheses for premises that are instances of the
inductive predicate

Inductive properties

proofs by induction

Goals of proof by induction

===========================
exists k : nat, 0 = 2 * k

n : nat
IHeven : exists k : nat, n = 2 * k
===========================
exists k : nat, S (S n) = 2 * k

(* rest of proof left as an exercise. *)

I hypothesis H was even n

I three copies of exist k, n = 2 * n have been generated
I n has been replaced by 0, n, and S (S n)
I values taken from the constructors of even

Inductive properties

Parameters in inductive predicates

A relation already used in previous lectures

The ≤ relation on nat is defined by the means of an inductive
predicate :

Inductive le (n : nat) : nat -> Prop :=

| le_n : le n n

| le_S : forall m : nat, le n m -> le n (S m)

The proposition (le n m) is denoted by n <= m.
n is called a parameter of the previous definition.
It is used in a stable manner throughout the definition : every
occurrence of le has n as first argument

Inductive properties

Parameters in inductive predicates

Reasoning with inductive predicates
Use constructors as introduction rules.

Lemma le_n_plus_pn : forall n p: nat, n <= p + n.

Proof.

induction p;simpl.

2 subgoals

n : nat
============================
n <= n

subgoal 2 is:
n <= S (p + n)
constructor 1.

Inductive properties

Parameters in inductive predicates

1 subgoal

n : nat
p : nat
IHp : n <= p + n
============================
n <= S (p + n)
constructor 2;assumption.

Qed.

Inductive properties

Parameters in inductive predicates

The induction principle for le

le_ind

: forall (n : nat) (P : nat -> Prop),

P n ->

(forall m : nat, n <= m -> P m -> P (S m)) ->

forall p : nat, n <= p -> P p

In order to prove that for every p ≥ n,P p, prove :

I P n

I for any m ≥ n, if P m holds, then P (S m) holds.

Inductive properties

Parameters in inductive predicates

Use induction or destruct as elimination tactics.

Lemma le_plus : forall n m, n <= m ->

exists p:nat, p+n = m

(* P m *).

Proof.

intros n m H.

1 subgoal
n : nat
m : nat
H : n <= m
============================
exists p : nat, p + n = m

induction H.

Inductive properties

Parameters in inductive predicates

2 subgoals

n : nat
============================
exists p : nat, p + n = n
(* P n *)

subgoal 2 is:
exists p : nat, p + n = S m
exists 0;trivial.

Inductive properties

Parameters in inductive predicates

1 subgoal

n : nat
m : nat
H : n <= m
IHle : exists p : nat, p + n = m (* P m *)
============================
exists p : nat, p + n = S m (* P (S m) *)

destruct IHle as [q Hq]; exists (S q);

simpl;rewrite Hq;trivial.

Qed.

Inductive properties

Parameters in inductive predicates

Lemma le_trans :

forall n p q, n <= p -> p <= q -> n <= q.

Proof.

We recognize the scheme :

p <= q -> P q where P q is n <= q.

Thus, the base case is n <= p and the inductive step is

forall q, p <= q -> n <= q -> n <= S q.

Inductive properties

Parameters in inductive predicates

Lemma le_trans :

forall n p q, n <= p -> p <= q -> n <= q.

Proof.

We recognize the scheme :

p <= q -> P q where P q is n <= q.

Thus, the base case is n <= p and the inductive step is

forall q, p <= q -> n <= q -> n <= S q.

Inductive properties

Parameters in inductive predicates

intros n p q H H0;induction H0.

2 subgoals

n : nat
p : nat
H : n <= p
============================
n <= p . . .
assumption.

Inductive properties

Parameters in inductive predicates

1 subgoal

n : nat
p : nat
H : n <= p
m : nat
H0 : p <= m
IHle : n <= m
============================
n <= S m

constructor;assumption.

Qed.

The tactic constructor tries to make the goal progress by applying
a constructor. Constructors are tried in the order of the inductive
type definition.

Inductive properties

Parameters in inductive predicates

Lemma le_Sn_Sp_inv: forall n p, S n <= S p -> n <= p.

intros n p H;inversion H.

2 subgoals

n : nat
p : nat
H : S n <= S p
H1 : n = p
============================
p <= p . . .

constructor.

Inductive properties

Parameters in inductive predicates

1 subgoal

n : nat
p : nat
H : S n <= S p
m : nat
H1 : S n <= p
H0 : m = p
============================
n <= p

apply le_trans with (S n);

[repeat constructor|assumption].

Inductive properties

Constructing induction principles

Constructing induction principles

Inductive le (n : nat) : nat -> Prop :=

le_n : le n n

| le_S : forall m, le n m -> le n (S m).

I Parameterless arity : nat -> Prop

I Parameter-bound predicate : le n

I quantify over parameters, then a predicate with parameterless
arity
forall n : nat, forall P : nat -> Prop,

I Process each constructor, add an epilogue

Inductive properties

Constructing induction principles

Process each constructor

I Abstract over the parameter-bound predicate
I for le_n : le n n

fun X : nat -> Prop => X n
I for le_S : forall n, le n m -> le n (S m)

fun X => forall n, X m -> X (S m)

I Duplicate instances of X in premises, with a new variable
I for le_n : le n n

fun X Y : nat -> Prop => X n
I for le_S : forall n, le n m -> le n (S m)

fun X Y => forall n, Y m -> X m -> X (S m)

I Instanciate X with P, Y with le n (the parameter-bound
predicate)

Inductive properties

Constructing induction principles

Adding an epilogue

I Express that every object that satisfies the parameter-bound
predicate also satisfies the property P

I forall m:nat, le n m -> P m

Inductive properties

Logical connectives

Logical connectives as inductive definitions

Most logical connectives are defined using inductive types :

I Conjunction /\

I Disjunction \/

I Existential quantification ∃
I Equality

I Truth and False

Notable exceptions : implication, negation.

Let us revisit the 3rd and 4th lectures.

Inductive properties

Logical connectives

Logical connectives : conjunction

Conjunction is a pair :

Inductive and (A B : Prop) : Prop :=

conj : A -> B -> and A B.

and_ind : forall A B P : Prop,

(A -> B -> P) -> and A B -> P

I Term (and A B) is denoted (A /\ B).

I Prove a conjunction goal with the split tactic (generates
two subgoals).

I Use a conjunction hypothesis with the destruct as [...]

tactic.

Inductive properties

Logical connectives

Logical connectives : disjunction

Disjunction is a two constructors inductive :

Inductive or (A B : Prop) : Prop :=

|or_introl : A -> or A B | or_intror : B -> or A B.

I Term (or A B) is denoted(A \/ B).

I Prove a disjunction with the left, right tactics (choose the
side to prove).

I Use a conjunction hypothesis with the case or
destruct as [...|...] tactics.

Inductive properties

Logical connectives

Logical connectives : existential quantification

Existential quantification is a pair :

Inductive ex (A : Type) (P : A -> Prop) : Prop :=

ex_intro : forall x : A, P x -> ex P.

I The term ex A (fun x => P x) is denoted exists x, P x.

I Prove an existential goal with the exists tactic.

I Use an existential hypothesis with the destruct as [...]

tactic.

Inductive properties

Logical connectives

Equality

The built-in (predefined) equality relation in Coq is a parametric
inductive type :

Inductive eq (A : Type) (x : A) : A -> Prop :=

refl_equal : eq A x x.

I Term eq A x y is denoted (x = y)

I The induction principle is :

eq_ind : forall (A : Type) (x : A) (P : A -> Prop),

P x -> forall y : A, x = y -> P y

Inductive properties

Logical connectives

Equality

I Use an equality hypothesis with the rewrite [<-] tactic
(uses eq_ind)

I Remember equality is computation compliant !

Goal 2 + 2 = 4. apply refl_equal. Qed.

Because + is a program.

I Prove trivial equalities (modulo computation) using the
reflexivity tactic.

Inductive properties

Logical connectives

Truth

The “truth” is a proposition that can be proved under any
assumption, in any context. Hence it should not require any
argument or parameter.

Inductive True : Prop := I : True.

Its induction principle is :

True_ind : forall P : Prop, P -> True -> P

which is not of much help...

Inductive properties

Logical connectives

Falsehood

Falsehood should be a proposition of which no proof can be built
(in empty context).
In Coq, this is encoded by an inductive type with no constructor :

Inductive False : Prop :=

coming with the induction principle :

False_ind : forall P : Prop, False -> P

often referred to as ex falso quod libet.

I To prove a False goal, often apply a negation hypothesis.

I To use a H : False hypothesis, use destruct H.

Inductive properties

Properties of a toy programming language

A toy programming language

Inductive properties

Properties of a toy programming language

A type for the variables

Inductive toy_Var : Set := X | Y | Z.

Note : If you wanted an infinite number of variables, you would
have written :

Inductive toy_Var : Set := toy_Var (label : nat).

or

Require Import String.

Inductive toy_Var : Set := toy_Var (name: string).

Inductive properties

Properties of a toy programming language

Expressions

We associate a constructor to each way of building an expression :

I integer constants

I variables

I application of a binary operation

Inductive toy_Op := toy_plus | toy_mult.

Inductive toy_Exp := const (i:nat) |

variable (v:toy_Var) |

toy_op (op:toy_Op) (e1 e2: toy_Exp)

Inductive properties

Properties of a toy programming language

Statements

Inductive toy_Statement :=

| (* x = e *)

assign (v:toy_Var)(e:toy_Exp)

| (* s ; s1 *)

sequence (s s1: toy_Statement)

| (* for i := e to n do s *)

simple_loop (e:toy_Expr)(s : toy_Statement).

Inductive properties

Properties of a toy programming language

Definition factorial_Z_program :=

sequence (assign X (const 0))

(sequence

(assign Y (const 1))

(simple_loop (variable Z)

(sequence

(assign X

(toy_op toy_plus (variable X) (const 1)))

(assign Y

(toy_op toy_mult (variable Y) (variable X)))))).

Inductive properties

Properties of a toy programming language

We can define the predicate “the variable v appears in the
expression e” :

Inductive Occurs (v:toy_Var): toy_Exp -> Prop :=

|Occ_var : Occurs v (variable v)

|Occ_op1 : forall op e1 e2, Occurs v e1 ->

Occurs v (toy_op op e1 e2)

|Occ_op2 : forall op e1 e2, Occurs v e2 ->

Occurs v (toy_op op e1 e2).

Constructors are displayed in red.

Inductive properties

Properties of a toy programming language

Likewise, “The variable v may be modified by an execution of the
statement s”.

Inductive Assigned_in (v:toy_Var): toy_Statement->Prop :=

| Assigned_assign : forall e, Assigned_in v (assign v e)

| Assigned_seq1 : forall s1 s2,

Assigned_in v s1 ->

Assigned_in v (sequence s1 s2)

| Assigned_seq2 : forall s1 s2,

Assigned_in v s2 ->

Assigned_in v (sequence s1 s2)

| Assigned_loop : forall e s,

Assigned_in v s ->

Assigned_in v (simple_loop e s).

Inductive properties

Properties of a toy programming language

For proving that some given variable is assigned in some given
statement, just apply (a finite number of times) the constructors.

Lemma Y_assigned : Assigned_in Y factorial_Z_program.

Proof.

unfold factorial_Z_program.

constructor 3 (* apply Assigned_seq2 *).

constructor 2 (* apply Assigned_seq1 *) .

constructor 1 (* apply Assigned_assign *).

Qed.

