
Inductive data types

Inductive data types

Assia Mahboubi

16 novembre 2011



Inductive data types

In this class, we shall present how Coq’s type system allows us to
define data types using inductive declarations.



Inductive data types

Generalities

Inductive declarations

An arbitrary type as assumed by :

Variable T : Type.

gives no a priori information on the nature, the number, or the
properties of its inhabitants.



Inductive data types

Generalities

Inductive declarations

An inductive type declaration explains how the inhabitants of the
type are built, by giving names to each construction rule :

Print bool.

Inductive bool : Set := true : bool | false : bool.

Print nat.

Inductive nat : Set := O : nat | S : nat -> nat.

Each such rule is called a constructor.
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Inductive data types

Generalities

Inductive declarations in Coq

Inductive types in Coq can be seen as the generalization of similar
type constructions in more common programming languages.

They are in fact an extremely rich way of defining data-types,
operators, connectives, specifications,...

They are at the core of powerful programming and reasoning
techniques.



Inductive data types

Enumerated types

Enumerated types

Enumerated types are types which list and name exhaustively their
inhabitants.

Inductive bool : Set := true : bool | false : bool.

Inductive color:Type :=

| white | black | yellow | cyan | magenta

| red | blue | green.

Check cyan.

cyan : color

Labels refer to distinct elements.
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Inductive data types

Enumerated types

Enumerated types : program by case analysis
Inspect the enumerated type inhabitants and assign values :

Definition my_negb (b : bool) :=

match b with true => false | false => true.

Definition is_prevert_animal (x : prevert_enum) : bool :=

match x with

| dozen_of_oysters => true

| an_other_racoon => true

| _ => false

end.

Eval compute in (is_prevert_animal one_stone).

= false

: bool
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Inductive data types

Enumerated types

Enumerated types : reason by case analysis

Inspect the enumerated type inhabitants and build proofs :

Lemma bool_case : forall b : bool, b = true ∨ b = false.

Proof.

intro b.

case b.

left; reflexivity.

right; reflexivity.

Qed.



Inductive data types

Enumerated types

Enumerated types : reason by case analysis
Inspect the enumerated type inhabitants and build proofs :

Lemma is_prevert_animalP : forall x : prevert_enum,

is_prevert_animal x = true ->

x = dozen_of_oysters ∨ x = an_other_racoon.

Proof.

(* Case analysis + computation *)

intro x; case x; simpl; intro e.

(* In the three first cases: e: false = true *)

discriminate e.

discriminate e.

discriminate e.

(* Now: e: true = true *)

left; reflexivity.

right; reflexivity.

Qed.



Inductive data types

Enumerated types

Enumerated types : reason by case analysis

Two important tactics, not specific to enumerated types :

I simpl : makes computation progress (pattern matching
applied to a term starting with a constructor)

I discriminate : allows to use the fact that constructors are
distincts :

I discriminate H : closes a goal featuring a hypothesis H like
(H : true = false) ;

I discriminate : closes a goal like (O <> S n).



Inductive data types

Recursive types

Recursive types

Inductive nat : Set :=

| O : nat

| S : nat -> nat.

Inductive list (A : Type) :=

| nil : list A

| cons : A -> list A -> list A.

Base case constructors do not feature self-reference to the type.
Recursive case constructors do.
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Inductive data types

Recursive types

Recursive types

Let us craft new inductive types :

Inductive natBinTree : Set :=

| Leaf : nat -> natBinTree

| Node : nat -> natBinTree -> natBinTree -> natBinTree

Inductive term : Set :=

|Zero : term

|One : term

|Plus : term -> term -> term

|Mult : term -> term -> term.

An inhabitant of a recursive type is built from a finite number of
constructor applications.
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Inductive data types

Recursive types

Recursive types : program by case analysis

We have already seen some examples of such pattern matching :

Definition isNotTwo x :=

match x with

| S (S O) => false

| _ => true

end.

Definition is_single_nBT (t : natBinTree) :=

match t with

|Leaf _ => true

|_ => false

end.
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Inductive data types

Recursive types

Recursive types : proofs by case analysis

Lemma is_single_nBTP : forall t,

is_single_nBT t = true -> exists n : nat, t = Leaf n.

Proof.

(* We use the possibility to destruct the tree

while introducing *)

intros [ nleaf | nnode t1 t2] h.

(* First case: we use the available label *)

exists nleaf.

reflexivity.

(* Second case: the test evaluates to false *)

simpl in h.

discriminate.

Qed.
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Inductive data types

Recursive types

Recursive types

Constructors are injective :

Lemma inj_leaf : forall x y, Leaf x = Leaf y -> x = y.

Proof.

intros x y hLxLy.

injection hLxLy.

trivial.

Qed.



Inductive data types

Recursive types

Recursive types : structural induction

Let us go back to the definition of natural numbers :

Inductive nat : Set := O : nat | S : nat -> nat.

The Inductive keyword means that at definition time, this system
geneates an induction principle :

nat_ind

: forall P : nat -> Prop,

P 0 ->

(forall n : nat, P n -> P (S n)) ->

forall n : nat, P n
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Inductive data types

Recursive types

Recursive types : structural induction

To prove that for P : term -> Prop, the theorem forall t :

term, P t holds, it is sufficient to :

I Prove that the property holds for the base cases :
I (P Zero)
I (P One)

I Prove that the property is transmitted inductively :

I forall t1 t2 : term,

P t1 -> P t2 -> P (Plus t1 t2)
I forall t1 t2 : term,

P t1 -> P t2 -> P (Mult t1 t2)

The type term is the smallest type containing Zero and One, and
closed under Plus and Mult.
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Inductive data types

Recursive types

Recursive types : structural induction

The induction principles generated at definition time by the system
allow to :

I Program by recursion (Fixpoint)

I Prove by induction (induction)



Inductive data types

Recursive types

Recursive types : program by structural induction

We can compute some information on the size of a term :

Fixpoint height (t : natBinTree) : nat :=

match t with

|Leaf _ => 0

|Node _ t1 t2 => Max.max (height t1) (height t2) + 1

end.

Fixpoint size (t : natBinTree) : nat :=

match t with

|Leaf _ => 1

|Node _ t1 t2 => (size t1) + (size t2) + 1

end.
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Inductive data types

Recursive types

Recursive types : program by structural induction
We can access some information contained in a term :

Require Import List.

Fixpoint label_at_occ (dflt : nat)

(t : natBinTree)(u : list bool) :=

match u, t with

|nil, _ =>

(match t with Leaf n => n | Node n _ _ => n end)

|b :: tl, t =>

match t with

|Leaf _ => dflt

| Node _ t1 t2 =>

if b then label_at_occ t2 tl dflt

else label_at_occ t1 tl dflt

end

end.



Inductive data types

Recursive types

Recursive types : proofs by structural induction
We have already seen induction at work on nats and lists.
Here its goes on binary trees :

Lemma le_height_size : forall t : natBinTree,

height t <= size t.

Proof.

induction t; simpl.

auto.

apply plus_le_compat_r.

apply max_case.

apply (le_trans _ _ _ IHt1).

apply le_plus_l.

apply (le_trans _ _ _ IHt2).

apply le_plus_r.

Qed.



Inductive data types

They are also inductive types !

Option types

A polymorphic (like list) non recursive type :

Print option.

Inductive option (A : Type) : Type :=

Some : A -> option A | None : option A

Use it to lift a type to a copy of this type but with a default value :

Fixpoint olast (A : Type)(l : list A) : option A :=

match l with

|nil => None

|a :: nil => Some a

|a :: l => olast A l

end.
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Inductive data types

They are also inductive types !

Pairs & co
A polymorphic (like list) pair construction :

Print pair.

Inductive prod (A B : Type) : Type :=

pair : A -> B -> A * B

The notation A * B denotes (prod A B).
The notation (x, y) denotes (pair x y) (implicit argument).

Check (2, 4). : nat * nat

Check (true, 2 :: nil). : bool * (list nat)

Fetching the components :

Eval compute in (fst (0, true)).

= 0 : nat

Eval compute in (snd (0, true)).

= true : bool
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Inductive data types

They are also inductive types !

Pairs & co

Pairs can be nested :

Check (0, 1, true).

: nat * nat * bool

Eval compute in (fst (0, 1, true)).

= (0, 1)

: nat * nat

This can also be adapted to polymorphic n-tuples :

Inductive triple (T1 T2 T3 : Type) :=

Triple T1 -> T2 -> T3 -> triple T1 T2 T3.



Inductive data types

They are also inductive types !

Record types

A record type bundles pieces of data you wish to gather in a single
type.

Record admin_person := MkAdmin {

id_number : nat;

date_of_birth : nat * nat * nat;

place_of_birth : nat;

gender : bool}

They are also inductive types with a single constructor !



Inductive data types

They are also inductive types !

Record types
You can access to the fields :

Variable t : admin_person.

Check (id_number t).

: nat

Check id_number.

fun a : admin_person =>

let (id_number, _, _, _) := a in id_number

: admin_person -> nat

In proofs, you can break an element of record type with tactics
case/destruct.

Warning : this is pure functional programming...


	Generalities
	Enumerated types
	Recursive types
	Recursive types
	They are also inductive types!

