
Inductive properties (2)

Inductive properties (2)

Assia Mahboubi, Pierre Castéran, Yves Bertot
Paris, Beijing, Bordeaux, Suzhou

16 novembre 2011

1 / 1

Inductive properties (2)

Inversion Techniques

Inversion Techniques

Let us consider the following theorem.

Lemma le_n_0 : forall n:nat, n <= 0 -> n = 0.

Proof.

intros n H; induction H.

two subgoals :

n : nat
============================
n = n

reflexivity.

2 / 1

Inductive properties (2)

Inversion Techniques

1 subgoal

n : nat
m : nat
H : n <= m
IHle : n = m (* P m *)
============================
n = S m (* P (S m) *)

Abort.

The induction H tactic call applied the induction principle le ind
with P := fun m : nat ⇒n = m.

3 / 1

Inductive properties (2)

Inversion Techniques

How did we solve this problem in good old times ?
We could prove the following “inversion lemma” (a kind of
reciprocal of the constructors).

Lemma le_inv : forall n p: nat,

n <= p ->

n = p \/ exists q:nat, p = S q /\ n <= q.

Proof.

intros n p H; destruct H.

2 subgoals

n : nat
============================
n = n \/ (exists q : nat, n = S q /\ n <= q)

left;reflexivity.

4 / 1

Inductive properties (2)

Inversion Techniques

1 subgoal

n : nat
m : nat
H : n <= m
============================
n = S m \/ (exists q : nat, S m = S q /\ n <= q)

right; exists m;split;trivial.

Qed.

Note that le inv is an expression of the minimality of le, with
explicit equalities that can be used with injection and discriminate.

5 / 1

Inductive properties (2)

Inversion Techniques

Let’s come back to our initial lemma

Lemma le_n_0_old_times : forall n:nat, n <= 0 -> n = 0.

Proof.

intros n H;

destruct (le_inv _ _ H) as [H0 | [q [Hq Hq0]]].

2 subgoals

n : nat
H : n <= 0
H0 : n = 0
============================
n = 0

...
assumption.

6 / 1

Inductive properties (2)

Inversion Techniques

1 subgoal
n : nat
H : n <= 0
q : nat
Hq : 0 = S q
Hq0 : n <= q
============================
n = 0
discriminate Hq.

Qed.

7 / 1

Inductive properties (2)

Inversion Techniques

The inversion tactic

The inversion tactic derives all the necessary conditions to an
inductive hypothesis. If no condition can realize this hypothesis,
the goal is proved by ex falso quod libet. See also : inversion clear

Lemma foo : ~(1 <= 0).

Proof.

intro h;inversion h.

Qed.

8 / 1

Inductive properties (2)

Inversion Techniques

The inversion tactic

The inversion tactic derives all the necessary conditions to an
inductive hypothesis. If no condition can realize this hypothesis,
the goal is proved by ex falso quod libet. See also : inversion clear

Lemma foo : ~(1 <= 0).

Proof.

intro h;inversion h.

Qed.

9 / 1

Inductive properties (2)

Inversion Techniques

Lemma le_n_0 : forall n, n <= 0 -> n = 0.

Proof.

intros n H;inversion H.

1 subgoal

n : nat
H : n <= 0
H0 : n = 0
============================
0 = 0

trivial.

Qed.

10 / 1

Inductive properties (2)

Inversion Techniques

Lemma le_Sn_Sp_inv: forall n p, S n <= S p -> n <= p.

Proof.

intros n p H; inversion H.

2 subgoals

n : nat
p : nat
H : S n <= S p
H1 : n = p
============================
p <= p

...
constructor.

11 / 1

Inductive properties (2)

Inversion Techniques

1 subgoal

n : nat
p : nat
H : S n <= S p
m : nat
H1 : S n <= p
H0 : m = p
============================
n <= p

Require Import Le.

apply le_trans with (S n); repeat constructor; assumption.

Qed.

12 / 1

Inductive properties (2)

Comparison with other kinds of predicate definitions

Comparison with other kinds of predicate definitions
Let us consider le again. Several other definitions can be given for
this mathematical concept.

First, we could use the plus function.

Definition Le (n p : nat) : Prop :=

exists q:nat, q + n = p.

We can also give a recursive predicate :

Fixpoint LE (n p: nat): Prop :=

match n, p with 0, _ => True

| S _, 0 => False

| S n’, S p’ => LE n’ p’

end.

Both definitions are equivalent to Coq’s le (exercise).

13 / 1

Inductive properties (2)

Comparison with other kinds of predicate definitions

Comparison with other kinds of predicate definitions
Let us consider le again. Several other definitions can be given for
this mathematical concept.
First, we could use the plus function.

Definition Le (n p : nat) : Prop :=

exists q:nat, q + n = p.

We can also give a recursive predicate :

Fixpoint LE (n p: nat): Prop :=

match n, p with 0, _ => True

| S _, 0 => False

| S n’, S p’ => LE n’ p’

end.

Both definitions are equivalent to Coq’s le (exercise).

14 / 1

Inductive properties (2)

Comparison with other kinds of predicate definitions

Comparison with other kinds of predicate definitions
Let us consider le again. Several other definitions can be given for
this mathematical concept.
First, we could use the plus function.

Definition Le (n p : nat) : Prop :=

exists q:nat, q + n = p.

We can also give a recursive predicate :

Fixpoint LE (n p: nat): Prop :=

match n, p with 0, _ => True

| S _, 0 => False

| S n’, S p’ => LE n’ p’

end.

Both definitions are equivalent to Coq’s le (exercise).
15 / 1

Inductive properties (2)

Comparison with other kinds of predicate definitions

Predicates and boolean functions

Let us consider the following function :

Fixpoint leb n m : bool :=

match n, m with

|0, _ => true

|S i, S j => leb i j

| _, _ => false

end.

16 / 1

Inductive properties (2)

Comparison with other kinds of predicate definitions

le or leb ?

Compute leb 5 45.

= true : bool

Lemma L5_45 : 5 <= 45.

Proof.

repeat constructor.

Qed.

Just try Print L5 45. !

17 / 1

Inductive properties (2)

Comparison with other kinds of predicate definitions

le or leb ?

Compute leb 5 45.

= true : bool

Lemma L5_45 : 5 <= 45.

Proof.

repeat constructor.

Qed.

Just try Print L5 45. !

18 / 1

Inductive properties (2)

Comparison with other kinds of predicate definitions

We can build a bridge between both aspects by proving the
following theorems :

Lemma le_leb_iff : forall n p, n <= p <-> leb n p = true.

Lemma lt_leb_iff : forall n p, n < p <-> leb p n = false.

(* Proofs left as exercise *)

19 / 1

Inductive properties (2)

Comparison with other kinds of predicate definitions

Lemma L: 0 <= 47.

Proof.

rewrite le_leb_iff.

1 subgoal

============================
leb 0 47 = true

reflexivity.

Qed.

20 / 1

Inductive properties (2)

Comparison with other kinds of predicate definitions

Lemma leb_Sn_n : forall n p, leb n (n + p)= true.

Proof.

intros n p;rewrite <- le_leb_iff.

1 subgoal

n : nat
p : nat
============================
n <= n + p
SearchPattern (_ <= _ + _).

apply le_plus_l;auto.

Qed.

21 / 1

Inductive properties (2)

A Polymorphic example

A more abstract example

Section transitive_closures.

Definition relation (A : Type) := A -> A -> Prop.

Variables (A : Type)(R : relation A).

(* the transitive closure of R is the least

relation ... *)

Inductive clos_trans : relation A :=

(* ... that contains R *)

| t_step : forall x y : A, R x y -> clos_trans x y

(* ... and is transitive *)

| t_trans : forall x y z : A,

clos_trans x y -> clos_trans y z

-> clos_trans x z.

22 / 1

Inductive properties (2)

A Polymorphic example

If some relation R is transitive, then its transitive closure is
included in R :

Hypothesis Rtrans :

forall x y z, R x y -> R y z -> R x z.

Lemma trans_clos_trans : forall a1 a2,

clos_trans a1 a2 -> R a1 a2.

Proof.

intros a1 a2 H; induction H.

2 subgoals
x : A
y : A
H : R x y
============================
R x y . . .

exact H.
23 / 1

Inductive properties (2)

A Polymorphic example

x : A
y : A
z : A
H : clos trans x y
H0 : clos trans y z
IHclos trans1 : R x y
IHclos trans2 : R y z
============================
R x z

apply Rtrans with y; assumption.

Qed.

24 / 1

Inductive properties (2)

A Polymorphic example

End transitive_closures.

Check trans_clos_trans.

trans clos trans
: forall (A : Type) (R : relation A),

(forall x y z : A, R x y -> R y z -> R x z) ->
forall a1 a2 : A, clos trans A R a1 a2 -> R a1 a2

Implicit Arguments clos_trans [A].

Implicit Arguments trans_clos_trans [A].

Check (trans_clos_trans le le_trans).

trans clos trans nat le le trans
: forall a1 a2 : nat, clos trans le a1 a2 -> a1 <= a2

25 / 1

Inductive properties (2)

A Polymorphic example

End transitive_closures.

Check trans_clos_trans.

trans clos trans
: forall (A : Type) (R : relation A),

(forall x y z : A, R x y -> R y z -> R x z) ->
forall a1 a2 : A, clos trans A R a1 a2 -> R a1 a2

Implicit Arguments clos_trans [A].

Implicit Arguments trans_clos_trans [A].

Check (trans_clos_trans le le_trans).

trans clos trans nat le le trans
: forall a1 a2 : nat, clos trans le a1 a2 -> a1 <= a2

26 / 1

Inductive properties (2)

Inductive definitions and functions

Inductive definitions and functions

It is sometimes very difficult to represent a function f : A -> B

as a Coq function, for instance because of the :

I Undecidability (or hard proof) of termination

I Undecidability of the domain characterization

This situation often arises when studying the semantic of
programming languages.

In that case, describing functions as inductive relations is really
efficient.

27 / 1

Inductive properties (2)

Inductive definitions and functions

Definition odd n := ∼even n.

Inductive syracuse_steps : nat -> nat -> Prop :=

done : syracuse_steps 1 1

|even_case : forall n p,even n ->

syracuse_steps (div2 n) p ->

syracuse_steps n (S p)

|odd_case : forall n p , odd n ->

syracuse_steps (S(n+n+n)) p ->

syracuse_steps n (S p).

Exercise
Prove the proposition syracuse steps 5 6.

28 / 1

Inductive properties (2)

Specifying programs with inductive predicates

Specifying programs with inductive predicates

Programs are computational objects.
Inductive types provide structured specifications.
How to get the best of both worlds ?

By combining programs with inductive specifications.

29 / 1

Inductive properties (2)

Specifying programs with inductive predicates

Specifying programs with inductive predicates

Programs are computational objects.
Inductive types provide structured specifications.
How to get the best of both worlds ?
By combining programs with inductive specifications.

30 / 1

Inductive properties (2)

Specifying programs with inductive predicates

Specifying programs with inductive predicates

Let us consider a datatype for comparison w.r.t. some decidable
total order. This type already exists in the Standard Library.

Inductive Comparison : Type := Lt | Eq | Gt.

We can easily specify whether some value of this type is consistent
with an arithmetic inequality, through a three place predicate.

Inductive compare_spec (n p:nat) : Comparison -> Type :=

| lt_spec : forall Hlt : n < p, compare_spec n p Lt

| eq_spec : forall Heq : n = p, compare_spec n p Eq

| gt_spec : forall Hgt : p < n, compare_spec n p Gt.

31 / 1

Inductive properties (2)

Specifying programs with inductive predicates

We can specify whether some comparison function is correct :

Definition cmp_correct (cmp : nat -> nat -> Comparison) :=

forall n p, compare_spec n p (cmp n p).

In order to understand specifications like compare_spec, let us
open a section :

Section On_compare_spec.

Variable cmp : nat -> nat -> Comparison.

Hypothesis cmpP : cmp_correct cmp.

32 / 1

Inductive properties (2)

Specifying programs with inductive predicates

How to use compare_spec
Let us consider a goal of the form P n p (cmp n p) where
P : nat→nat→Comparison→Prop.
A call to the tactic destruct (cmpP n p) produces three subgoals :

Hlt : n < p

===============================

P n p Lt

Heq : n = p

==============================

P n p Eq

Hgt : p < n

==============================

P n p Gt

33 / 1

Inductive properties (2)

Specifying programs with inductive predicates

Example

Let us define functions for computing the greatest [lowest] of tho
numbers :

Definition maxn n p :=

match cmp n p with Lt => p | _ => n end.

Definition minn n p :=

match cmp n p with Lt => n | _ => p end.

Proofs of properties of maxn and minn can use this pattern, which
will give values to maxn n p, and generate hypotheses of the form
n < p, n = p, and p < n.

34 / 1

Inductive properties (2)

Specifying programs with inductive predicates

Lemma le_maxn: forall n p, n <= maxn n p.

Proof.

intros n p; unfold maxn;destruct (cmpP n p).

3 subgoals

cmpP : cmp correct cmp
...
Hlt : n < p
============================
n <= p

subgoal 2 is:
n <= n

subgoal 3 is:
n <= n

Ecah one of the three subgoals is solved with auto with arith.
35 / 1

Inductive properties (2)

Specifying programs with inductive predicates

The following proofs use the same pattern :

Lemma maxn_comm : forall n p, maxn n p = maxn p n.

Proof.

intros n p; unfold maxn;

destruct (cmpP n p), (cmpP p n); omega.

Qed.

Lemma maxn_le: forall n p q,

n <= q -> p <= q -> maxn n p <= q.

Proof.

intros n p; unfold maxn; destruct (cmpP n p);

auto with arith.

Qed.

36 / 1

Inductive properties (2)

Specifying programs with inductive predicates

Lemma min_plus_maxn : forall n p,

minn n p + maxn n p = n + p.

Proof.

intros n p; unfold maxn, minn; destruct (cmpP n p);

auto with arith.

Qed.

37 / 1

Inductive properties (2)

Specifying programs with inductive predicates

Definition compare_rev (c:Comparison) :=

match c with

| Lt => Gt

| Eq => Eq

| Gt => Lt

end.

Lemma cmp_rev : forall n p,

cmp n p = compare_rev (cmp p n).

Proof.

intros n p; destruct (cmpP n p);destruct (cmpP p n) ;

trivial;try discriminate;intros; elimtype False; omega.

Qed.

38 / 1

Inductive properties (2)

Specifying programs with inductive predicates

Lemma cmp_antiym : forall n p,

cmp n p = cmp p n -> n = p.

Proof.

intros n p;rewrite cmp_rev;

destruct (cmpP p n);auto ;try discriminate.

Qed.

Notice that all the proofs above use only the specification of a
comparison function and not a concrete definition.

39 / 1

Inductive properties (2)

Specifying programs with inductive predicates

We are now able to provide an implementation of a comparison
function, and prove its correctness :

End On_compare_spec.

Fixpoint compare (n m:nat) : Comparison :=

match n, m with | 0,0 => Eq

| 0, S _ => Lt

| S _, 0 => Gt

| S p, S q => compare p q

end.

40 / 1

Inductive properties (2)

Specifying programs with inductive predicates

Lemma compareP : cmp_correct compare.

Proof.

red;induction n;destruct p;simpl;auto;

try (constructor;auto with arith).

destruct (IHn p);constructor;auto with arith.

Qed.

Check maxn_comm _ compareP.

: forall n p : nat, maxn compare n p = maxn compare p n

41 / 1

Inductive properties (2)

Road-map

What you think is not what you get

An odd alternative definition of le :

Inductive alter_le (n : nat) : nat -> Prop :=

| alter_le_n : alter_le n n

| alter_le_S : forall m : nat, alter_le n m ->

alter_le n (S m)

| alter_dummy : alter_le n (S n).

The third constructor is useless ! It may increase the size of the
proofs by induction.

42 / 1

Inductive properties (2)

Road-map

What you think is not what you get

An odd alternative definition of le :

Inductive alter_le (n : nat) : nat -> Prop :=

| alter_le_n : alter_le n n

| alter_le_S : forall m : nat, alter_le n m ->

alter_le n (S m)

| alter_dummy : alter_le n (S n).

The third constructor is useless ! It may increase the size of the
proofs by induction.

43 / 1

Inductive properties (2)

Road-map

Advice for crafting useful inductive definitions

I Constructors are “axioms” : they should be intuitively true...

I Constructors should as often as possible deal with mutually
exclusive cases, to ease proofs by induction ;

I When an argument always appears with the same value, make
it a parameter

I Test your predicate on negative and positive cases !

44 / 1

Inductive properties (2)

A last example : The toy programming language

A last example : The toy programming language

Lemma Assigned_inv1 : forall v w e,

Assigned_in v (assign w e) ->

v=w.

Proof.

intros v w e H; inversion H. ...

Lemma Assigned_inv2 : forall v s1 s2,

Assigned_in v (sequence s1 s2) ->

Assigned_in v s1 \/ Assigned_in v s2.

Proof.

intros v s1 s2 H; inversion H. ...

45 / 1

Inductive properties (2)

A last example : The toy programming language

We can also define a boolean function for testing equality on
variables :

Require Import Bool.

Definition var_eqb (v w : toy_Var) :=

match v,w with X, X => true

| Y, Y => true

| Z, Z => true

| _, _ => false

end.

46 / 1

Inductive properties (2)

A last example : The toy programming language

We define a boolean test for the “assigned” property :

Fixpoint assigned_inb (v:toy_Var)(s:toy_Statement) :=

match s with

| assign w _ => var_eqb v w

| sequence s1 s2 =>

assigned_inb v s1 || assigned_inb v s2

| simple_loop e s => assigned_inb v s

end.

47 / 1

Inductive properties (2)

A last example : The toy programming language

Bridge lemmas

Lemma Assigned_In_OK : forall v s,

Assigned_in v s ->

assigned_inb v s = true.

Proof.

intros v s H;induction H;simpl;...

Lemma Assigned_In_OK_R :

forall v s, assigned_inb v s = true ->

Assigned_in v s.

Proof.

induction s;simpl.

...

48 / 1

Inductive properties (2)

A last example : The toy programming language

A small program

X := 0;

Y := 1;

Do Z times {

X := X + 1;

Y := Y * X

}

49 / 1

Inductive properties (2)

A last example : The toy programming language

Definition factorial_Z_program :=

sequence (assign X (const 0))

(sequence

(assign Y (const 1))

(simple_loop (variable Z)

(sequence

(assign X

(toy_op toy_plus (variable X) (const 1)))

(assign Y

(toy_op toy_mult (variable Y) (variable X)))))).

50 / 1

Inductive properties (2)

A last example : The toy programming language

Lemma Z_unassigned : ∼(Assigned_in Z factorial_Z_program).

Proof.

intro H;assert (H0 := Assigned_In_OK _ _ H).

1 subgoal

H : Assigned in Z factorial Z program
H0 : assigned inb Z factorial Z program = true
============================
False

simpl in H0;discriminate H0.

Qed.

51 / 1

