
Coq: What, Why, How?

Coq: What, Why, How?

Who: Benjamin Grégoire

When: November 2011



Coq: What, Why, How?

I What is Coq ?
I A programming language
I A proof development tool

I Why do we use Coq ?
I To develop software without errors (CompCert)
I To develop mathematical proofs (Four Colors Theorem)
I To use the computer to verify that all details are right

I How does one use Coq ?
I Describe four components : the data, the operations, the

properties, the proofs
I The topic of this week-long course.



Coq: What, Why, How?

Describing the data

Describing the data

I Case-based
I show all possible cases for the data
I a finite number of different cases (bool,disjoint sum)

I Structured
I each case has all the components needed in the data

(product)

I Sometimes recursive
I recognize repetition to tame infinite datatypes (list)

I Theoretical foundation : algebraic datatypes, term algebras,
cartesian products, disjoint sums, least and greatest fixed
points



Coq: What, Why, How?

Describing the operations

Describing the operations

I Functional programming : each operation is described as a
function

I Map inputs to outputs, do not modify

I Programmation guided by the cases from data-types
I Avoid undefined values

I all cases must be covered
I guaranteed termination of computations

I safer programming



Coq: What, Why, How?

Describing the properties

Describing the properties

I A predefined language for logic : and, or, forall, exists
I Possibility to express consistency between several functions

I example whenever f (x) is true, g(x) is a prime number

I A general scheme to define new predicates : inductive
predicates

I example the set of even numbers is the least set E so that
0 ∈ E and x ∈ E ⇒ x + 2 ∈ E

I foundation : least fixed points



Coq: What, Why, How?

Proving properties of programs

Proving properties of programs

I Decompose a logical formula into simpler ones

I Goal oriented approach, backward reasoning

I Consider a goal P(a),

I Suppose there is a theorem ∀x ,Q(x) ∧ R(x)⇒ P(x)

I By choosing to apply this theorem, get two new goals : Q(a)
and R(a)

I The system makes sure no condition is overlooked

I A collection for tools specialized for a variety of situations

I Handle equalities (rewriting), induction, numeric computation,
function definitions, etc...



Coq: What, Why, How?

A commented example on sorting

A commented example on sorting : the data

Inductive listZ : Type :=

nilZ | consZ (hd : Z) (tl : list Z).

Notation "hd :: tl" := (consZ hd tl).



Coq: What, Why, How?

A commented example on sorting

The operations

Fixpoint insert (x : Z) (l : listZ) :=

match l with

| nilZ => x::nilZ

| hd::tl =>

if Zle_bool x hd then x::l else hd::insert x tl

end.

Fixpoint sort l :=

match l with

| nilZ => nilZ

| hd::tl => insert hd (sort tl)

end.



Coq: What, Why, How?

A commented example on sorting

The properties

I Have a property sorted to express that a list is sorted

I Have a property permutation l1 l2

Definition permutation l1 l2 :=

forall x, count x l1 = count x l2.

I assuming the existence of a function count



Coq: What, Why, How?

A commented example on sorting

Proving the properties

Two categories of statements :
I General theory about the properties (statements that do not

mention the algorithm being proved)
I ∀x y l, sorted (x::y::l) ⇒ x ≤ y
I transitive(permutation)

I Specific theory about the properties being proved
I ∀x l, sorted l ⇒ sorted(insert x l)
I ∀x l, permutation (x::l) (insert x l)



Coq: What, Why, How?

First steps in Coq

First steps in Coq



Coq: What, Why, How?

First steps in Coq

First steps in Coq
Write a comment “open parenthesis-star”, “star-close parenthesis”

(* This is a comment *)

Give a name to an expression

Definition three := 3.

three is defined

Verify that an expression is well-formed

Check three.

three : nat

Compute a value

Eval compute in three.

= 3 : nat



Coq: What, Why, How?

First steps in Coq

Defining functions

Expressions that depend on a variable

Definition add3 (x : nat) := x + 3.

add3 is defined



Coq: What, Why, How?

First steps in Coq

The type of values

The command Check is used to verify that an expression is
well-formed

I It returns the type of this expression

I The type says in which context the expression can be used

Check 2 + 3.

2 + 3 : nat

Check 3.

3 : nat

Check (2 + 3) + 3.

(2 + 3) + 3 : nat



Coq: What, Why, How?

First steps in Coq

The type of functions

The value add3 is not a natural number

Check add3.

add3 : nat -> nat

The value add3 is a function

I It expects a natural number as input

I It outputs a natural number

Check add3 + 3.

Error the term "add3" has type "nat -> nat"

while it is expected to have type "nat"



Coq: What, Why, How?

First steps in Coq

Applying functions
Function application is written only by juxtaposition

I Parentheses are not mandatory

Check add3 2.

add3 2 : nat

Eval compute in add3 2.

= 5 : nat

Check add3 (add3 2).

add3 (add3 2) : nat

Eval compute in add3 (add3 2).

= 8 : nat



Coq: What, Why, How?

First steps in Coq

Functions with several arguments

At definition time, just use several variables

Definition s3 (x y z : nat) := x + y + z.

s3 is defined

Check s3.

s3 : nat -> nat -> nat -> nat

Function with one argument that return a function.

Check s3 2.

s3 2 : nat -> nat -> nat

Check s3 2 1.

s3 2 1 : nat -> nat



Coq: What, Why, How?

First steps in Coq

Anonymous functions

Functions can be built without a name
Construct well-formed expressions containing a variable, with a
header

Check fun (x : nat) => x + 3.

fun x : nat => x + 3 : nat -> nat

This is called an abstraction
The new expression is a function, usable like add3 or s3 2 1



Coq: What, Why, How?

First steps in Coq

Functions are values

I The value add3 2 is a natural number,

I The value s3 2 is a function,

I The value s3 2 1 is a function, like add3

Eval compute in s3 2 1.

= fun z : nat => S (S (S z)) : nat -> nat



Coq: What, Why, How?

First steps in Coq

Function arguments

I Functions can also expect functions as argument (higth order)

Definition rep2 (f : nat -> nat) (x : nat) := f (f x).

rep2 is defined

Check rep2.

rep2 : (nat -> nat) -> nat -> nat

Definition rep2on3 (f : nat -> nat) := rep2 f 3.

Check rep2on3.

rep2on3 : (nat -> nat) -> nat



Coq: What, Why, How?

First steps in Coq

Type verification strategy (function application)

Function application is well-formed if types match :

I Assume a function f has type A -> B

I Assume a value a has type A

I then the expression f a is well-formed and has type B

Check rep2on3. rep2on3 : (nat -> nat) -> nat

Check add3. add3 : nat -> nat

Check rep2 add3. rep2on3 add3 : nat

Check rep2on3 (fun (x : nat) => x + 3). rep2on3 (fun x :

nat => x + 3) : nat



Coq: What, Why, How?

First steps in Coq

Type verification strategy (abstraction)

An anonymous function is well-formed if the body is well formed

I add the assumption that the variable has the input type

I add the argument type in the result

I Example, verify : fun x : nat => x + 3

I x + 3 is well-formed when x has type nat, and has type nat

I Result : fun x : nat => x + 3 has type nat -> nat



Coq: What, Why, How?

Defined datatypes and notations

A few datatypes

I An introduction to some of the pre-defined parts of Coq

I Grouping objects together : tuples

I Natural numbers and the basic operations

I Boolean values and the basic tests on numbers



Coq: What, Why, How?

Defined datatypes and notations

Putting data together

I Grouping several pieces of data : tuples,

I fetching individual components : pattern-matching,

Check (3,4).

(3, 4) : nat * nat

Check

fun v : nat * nat =>

match v with (x, y) => x + y end.

fun v : nat * nat => let (x, y) := v in x + y

: nat * nat -> nat



Coq: What, Why, How?

Defined datatypes and notations

Numbers

As in programming languages, several types to represent numbers

I natural numbers (non-negative), relative integers,
more efficient reprentations

I Need to load the corresponding libraries

I Same notations for several types of numbers : need to choose
a scope

I By default : natural numbers
I Good properties to learn about proofs
I Not adapted for efficient computation



Coq: What, Why, How?

Defined datatypes and notations

Focus on natural numbers

Require Import Arith.

Open Scope nat_scope.

Check 3.

3 : nat

Check S.

S : nat -> nat

Check S 3.

4 : nat

Check 3 * 3.

3 * 3 : nat



Coq: What, Why, How?

Defined datatypes and notations

Boolean values

I Values true and false

I Usable in if .. then .. else .. statements

I comparison function provided for numbers

I To find them : use the command Search bool

I Or SearchPattern (nat -> nat -> bool)


	Describing the data
	Describing the operations
	Describing the properties
	Proving properties of programs
	A commented example on sorting
	First steps in Coq
	Defined datatypes and notations

