
Coq Summer School, Session 2 :

Basic programming with numbers and lists

Pierre Letouzey



Prede�ned data structures

I �Prede�ned� types are actually declared to Coq at load time 1:

Inductive bool := true | false.

Inductive nat := O : nat | S : nat -> nat.

Inductive list A :=

| nil : list A

| cons : A -> list A -> list A.

I Nota: a::b is a notation for (cons a b).

1see Init/Datatypes.v



Prede�ned data structures

I �Prede�ned� types are actually declared to Coq at load time 1:

Inductive bool := true | false.

Inductive nat := O : nat | S : nat -> nat.

Inductive list A :=

| nil : list A

| cons : A -> list A -> list A.

I Nota: a::b is a notation for (cons a b).

1see Init/Datatypes.v



Prede�ned data structures

I �Prede�ned� types are actually declared to Coq at load time 1:

Inductive bool := true | false.

Inductive nat := O : nat | S : nat -> nat.

Inductive list A :=

| nil : list A

| cons : A -> list A -> list A.

I Nota: a::b is a notation for (cons a b).

1see Init/Datatypes.v



Pattern matching

I We can analyse an expression and handle all possible cases:

Definition negb b :=

match b with

| true => false

| false => true

end.

I Most common situation: one pattern for each constructor.

I NB: for bool, an alternative syntactic sugar is

if b then false else true.



Pattern matching

I We can analyse an expression and handle all possible cases:

Definition negb b :=

match b with

| true => false

| false => true

end.

I Most common situation: one pattern for each constructor.

I NB: for bool, an alternative syntactic sugar is

if b then false else true.



Pattern matching

I We can analyse an expression and handle all possible cases:

Definition negb b :=

match b with

| true => false

| false => true

end.

I Most common situation: one pattern for each constructor.

I NB: for bool, an alternative syntactic sugar is

if b then false else true.



Pattern matching

I Similarly, for numbers:

Definition pred x :=

match x with

| S x' => x'

| O => O

end.

Definition iszero x :=

match x with

| O => true

| S _ => false

end.



Pattern matching

I Similarly, for numbers:

Definition pred x :=

match x with

| S x' => x'

| O => O

end.

Definition iszero x :=

match x with

| O => true

| S _ => false

end.



More complex pattern matching

I We can use deeper patterns, combined matchings, as well as

wildcards:

Definition istwo x :=

match x with

| S (S O) => true

| _ => false

end.

Definition andb b1 b2 :=

match b1, b2 with

| true, true => true

| _, _ => false

end.

I These matchings are not atomic, but rather expansed

internally into nested matchings (use Print to see how many).



More complex pattern matching

I We can use deeper patterns, combined matchings, as well as

wildcards:

Definition istwo x :=

match x with

| S (S O) => true

| _ => false

end.

Definition andb b1 b2 :=

match b1, b2 with

| true, true => true

| _, _ => false

end.

I These matchings are not atomic, but rather expansed

internally into nested matchings (use Print to see how many).



More complex pattern matching

I We can use deeper patterns, combined matchings, as well as

wildcards:

Definition istwo x :=

match x with

| S (S O) => true

| _ => false

end.

Definition andb b1 b2 :=

match b1, b2 with

| true, true => true

| _, _ => false

end.

I These matchings are not atomic, but rather expansed

internally into nested matchings (use Print to see how many).



Recursion

I When using Fixpoint instead of Definition, recursive

sub-calls are allowed (at least some of them).

Fixpoint div2 n :=

match n with

| S (S n') => S (div2 n')

| _ => O

end.

I Here, n' is indeed a structural sub-term of the inductive

argument n.

I This way, termination of computations is (syntactically)

ensured.

I Example of rejected recursive functions:

Fixpoint loop n := loop (S n).

Fixpoint div2_ko n :=

if leb n 1 then 0 else S (div2_ko (n-2)).



Recursion

I When using Fixpoint instead of Definition, recursive

sub-calls are allowed (at least some of them).

Fixpoint div2 n :=

match n with

| S (S n') => S (div2 n')

| _ => O

end.

I Here, n' is indeed a structural sub-term of the inductive

argument n.

I This way, termination of computations is (syntactically)

ensured.

I Example of rejected recursive functions:

Fixpoint loop n := loop (S n).

Fixpoint div2_ko n :=

if leb n 1 then 0 else S (div2_ko (n-2)).



Recursion

I When using Fixpoint instead of Definition, recursive

sub-calls are allowed (at least some of them).

Fixpoint div2 n :=

match n with

| S (S n') => S (div2 n')

| _ => O

end.

I Here, n' is indeed a structural sub-term of the inductive

argument n.

I This way, termination of computations is (syntactically)

ensured.

I Example of rejected recursive functions:

Fixpoint loop n := loop (S n).

Fixpoint div2_ko n :=

if leb n 1 then 0 else S (div2_ko (n-2)).



Recursion

I When using Fixpoint instead of Definition, recursive

sub-calls are allowed (at least some of them).

Fixpoint div2 n :=

match n with

| S (S n') => S (div2 n')

| _ => O

end.

I Here, n' is indeed a structural sub-term of the inductive

argument n.

I This way, termination of computations is (syntactically)

ensured.

I Example of rejected recursive functions:

Fixpoint loop n := loop (S n).

Fixpoint div2_ko n :=

if leb n 1 then 0 else S (div2_ko (n-2)).



Recursion

I When using Fixpoint instead of Definition, recursive

sub-calls are allowed (at least some of them).

Fixpoint div2 n :=

match n with

| S (S n') => S (div2 n')

| _ => O

end.

I Here, n' is indeed a structural sub-term of the inductive

argument n.

I This way, termination of computations is (syntactically)

ensured.

I Example of rejected recursive functions:

Fixpoint loop n := loop (S n).

Fixpoint div2_ko n :=

if leb n 1 then 0 else S (div2_ko (n-2)).



Recursion

I When using Fixpoint instead of Definition, recursive

sub-calls are allowed (at least some of them).

Fixpoint div2 n :=

match n with

| S (S n') => S (div2 n')

| _ => O

end.

I Here, n' is indeed a structural sub-term of the inductive

argument n.

I This way, termination of computations is (syntactically)

ensured.

I Example of rejected recursive functions:

Fixpoint loop n := loop (S n).

Fixpoint div2_ko n :=

if leb n 1 then 0 else S (div2_ko (n-2)).



Some other recursive functions over nat

Fixpoint plus n m :=

match n with

| O => m

| S n' => S (plus n' m)

end.

Fixpoint minus n m := match n, m with

| S n', S m' => minus n' m'

| _, _ => n

end.

Fixpoint beq_nat n m := match n, m with

| S n', S m' => beq_nat n' m'

| O, O => true

| _, _ => false

end.



Some other recursive functions over nat

Fixpoint plus n m :=

match n with

| O => m

| S n' => S (plus n' m)

end.

Fixpoint minus n m := match n, m with

| S n', S m' => minus n' m'

| _, _ => n

end.

Fixpoint beq_nat n m := match n, m with

| S n', S m' => beq_nat n' m'

| O, O => true

| _, _ => false

end.



Some other recursive functions over nat

Fixpoint plus n m :=

match n with

| O => m

| S n' => S (plus n' m)

end.

Fixpoint minus n m := match n, m with

| S n', S m' => minus n' m'

| _, _ => n

end.

Fixpoint beq_nat n m := match n, m with

| S n', S m' => beq_nat n' m'

| O, O => true

| _, _ => false

end.



Recursion over lists

I With recursive functions over lists, the main novelty is

polymorphism :

Fixpoint length A (l : list A) :=

match l with

| nil => O

| _ :: l' => S (length l')

end.

Fixpoint app A (l1 l2 : list A) : list A :=

match l1 with

| nil => l2

| a :: l1' => a :: (app l1' l2)

end.

I NB: (app l1 l2) is noted l1++l2.

I NB: we use here Implicit Arguments to avoid writing type

parameters such as A again and again when applying functions.



Recursion over lists

I With recursive functions over lists, the main novelty is

polymorphism :

Fixpoint length A (l : list A) :=

match l with

| nil => O

| _ :: l' => S (length l')

end.

Fixpoint app A (l1 l2 : list A) : list A :=

match l1 with

| nil => l2

| a :: l1' => a :: (app l1' l2)

end.

I NB: (app l1 l2) is noted l1++l2.

I NB: we use here Implicit Arguments to avoid writing type

parameters such as A again and again when applying functions.



Recursion over lists

I With recursive functions over lists, the main novelty is

polymorphism :

Fixpoint length A (l : list A) :=

match l with

| nil => O

| _ :: l' => S (length l')

end.

Fixpoint app A (l1 l2 : list A) : list A :=

match l1 with

| nil => l2

| a :: l1' => a :: (app l1' l2)

end.

I NB: (app l1 l2) is noted l1++l2.

I NB: we use here Implicit Arguments to avoid writing type

parameters such as A again and again when applying functions.



Recursion over lists

I With recursive functions over lists, the main novelty is

polymorphism :

Fixpoint length A (l : list A) :=

match l with

| nil => O

| _ :: l' => S (length l')

end.

Fixpoint app A (l1 l2 : list A) : list A :=

match l1 with

| nil => l2

| a :: l1' => a :: (app l1' l2)

end.

I NB: (app l1 l2) is noted l1++l2.

I NB: we use here Implicit Arguments to avoid writing type

parameters such as A again and again when applying functions.



Fold on the right

I With fold_right, computation starts at the end of the list:

fold_right f init (a::b::nil) = (f a (f b init))

I The code:

Fixpoint fold_right A B (f:B->A->A)(init:A)(l:list B)

: A :=

match l with

| nil => init

| x :: l' => f x (fold_right f init l')

end.

Eval vm_compute in fold_right plus 0 (1::2::3::nil).

==> (1+(2+(3+0))) ==> 6

Eval vm_compute in

fold_right (fun x l => x::l) nil (1::2::3::nil).

==> 1::2::3::nil



Fold on the right

I With fold_right, computation starts at the end of the list:

fold_right f init (a::b::nil) = (f a (f b init))

I The code:

Fixpoint fold_right A B (f:B->A->A)(init:A)(l:list B)

: A :=

match l with

| nil => init

| x :: l' => f x (fold_right f init l')

end.

Eval vm_compute in fold_right plus 0 (1::2::3::nil).

==> (1+(2+(3+0))) ==> 6

Eval vm_compute in

fold_right (fun x l => x::l) nil (1::2::3::nil).

==> 1::2::3::nil



Fold on the right

I With fold_right, computation starts at the end of the list:

fold_right f init (a::b::nil) = (f a (f b init))

I The code:

Fixpoint fold_right A B (f:B->A->A)(init:A)(l:list B)

: A :=

match l with

| nil => init

| x :: l' => f x (fold_right f init l')

end.

Eval vm_compute in fold_right plus 0 (1::2::3::nil).

==> (1+(2+(3+0))) ==> 6

Eval vm_compute in

fold_right (fun x l => x::l) nil (1::2::3::nil).

==> 1::2::3::nil



Fold on the right

I With fold_right, computation starts at the end of the list:

fold_right f init (a::b::nil) = (f a (f b init))

I The code:

Fixpoint fold_right A B (f:B->A->A)(init:A)(l:list B)

: A :=

match l with

| nil => init

| x :: l' => f x (fold_right f init l')

end.

Eval vm_compute in fold_right plus 0 (1::2::3::nil).

==> (1+(2+(3+0))) ==> 6

Eval vm_compute in

fold_right (fun x l => x::l) nil (1::2::3::nil).

==> 1::2::3::nil



Fold on the left

I With fold_left, computation starts at the top of the list:

fold_left f (a::b::nil) init = (f (f init a) b)

I The code:

Fixpoint fold_left A B (f:A->B->A)(l:list B)(init:A)

: A :=

match l with

| nil => init

| x :: l' => fold_left f l' (f init x)

end.

Eval vm_compute in fold_left plus (1::2::3::nil) 0.

==> (((0+1)+2)+3) ==> 6

Eval vm_compute in

fold_left (fun l x => x::l) nil (1::2::3::nil).

==> 3::2::1::nil



Fold on the left

I With fold_left, computation starts at the top of the list:

fold_left f (a::b::nil) init = (f (f init a) b)

I The code:

Fixpoint fold_left A B (f:A->B->A)(l:list B)(init:A)

: A :=

match l with

| nil => init

| x :: l' => fold_left f l' (f init x)

end.

Eval vm_compute in fold_left plus (1::2::3::nil) 0.

==> (((0+1)+2)+3) ==> 6

Eval vm_compute in

fold_left (fun l x => x::l) nil (1::2::3::nil).

==> 3::2::1::nil



Fold on the left

I With fold_left, computation starts at the top of the list:

fold_left f (a::b::nil) init = (f (f init a) b)

I The code:

Fixpoint fold_left A B (f:A->B->A)(l:list B)(init:A)

: A :=

match l with

| nil => init

| x :: l' => fold_left f l' (f init x)

end.

Eval vm_compute in fold_left plus (1::2::3::nil) 0.

==> (((0+1)+2)+3) ==> 6

Eval vm_compute in

fold_left (fun l x => x::l) nil (1::2::3::nil).

==> 3::2::1::nil



Fold on the left

I With fold_left, computation starts at the top of the list:

fold_left f (a::b::nil) init = (f (f init a) b)

I The code:

Fixpoint fold_left A B (f:A->B->A)(l:list B)(init:A)

: A :=

match l with

| nil => init

| x :: l' => fold_left f l' (f init x)

end.

Eval vm_compute in fold_left plus (1::2::3::nil) 0.

==> (((0+1)+2)+3) ==> 6

Eval vm_compute in

fold_left (fun l x => x::l) nil (1::2::3::nil).

==> 3::2::1::nil



A complete example: mergesort

I Part I: splitting a list in two

I Part II: merging two sorted lists into one

I Part III: iterating the process...



Mergesort I : splitting

Fixpoint split A (l : list A) : list A * list A :=

match l with

| nil => (nil, nil)

| a::nil => (a::nil, nil)

| a::b::l' => let (l1, l2) := split l' in (a::l1, b::l2)

end.

Eval vm_compute in split (1::2::3::4::5::nil).

==> (1::3::5::nil, 2::4::nil)



Mergesort I : splitting

Fixpoint split A (l : list A) : list A * list A :=

match l with

| nil => (nil, nil)

| a::nil => (a::nil, nil)

| a::b::l' => let (l1, l2) := split l' in (a::l1, b::l2)

end.

Eval vm_compute in split (1::2::3::4::5::nil).

==> (1::3::5::nil, 2::4::nil)



Mergesort II : merging

I A new syntax construct: fix for local �xpoints

I

Definition merge A (less:A->A->bool)

: list A -> list A -> list A :=

fix merge l1 := match l1 with

| nil => (fun l2 => l2)

| x1::l1' =>

(fun l2 => match l2 with

| nil => l1

| x2::l2' =>

if less x1 x2 then x1 :: merge l1' l2

else x2 :: merge l1 l2'

end)

end.



Mergesort II : merging

II A new syntax construct: fix for local �xpoints

I

Definition merge A (less:A->A->bool)

: list A -> list A -> list A :=

fix merge l1 := match l1 with

| nil => (fun l2 => l2)

| x1::l1' =>

(fun l2 => match l2 with

| nil => l1

| x2::l2' =>

if less x1 x2 then x1 :: merge l1' l2

else x2 :: merge l1 l2'

end)

end.



Mergesort II : merging

II A new syntax construct: fix for local �xpoints

I

Definition merge A (less:A->A->bool)

: list A -> list A -> list A :=

fix merge l1 := match l1 with

| nil => (fun l2 => l2)

| x1::l1' =>

(fun l2 => match l2 with

| nil => l1

| x2::l2' =>

if less x1 x2 then x1 :: merge l1' l2

else x2 :: merge l1 l2'

end)

end.

I No structurally decreasing argument: Rejected!



Mergesort II : merging

I A new syntax construct: fix for local �xpoints

I

Definition merge A (less:A->A->bool)

: list A -> list A -> list A :=

fix merge l1 := match l1 with

| nil => (fun l2 => l2)

| x1::l1' =>

(fix merge_l1 l2 := match l2 with

| nil => l1

| x2::l2' =>

if less x1 x2 then x1 :: merge l1' l2

else x2 :: merge_l1 l2'

end)

end.

I Trick of the specialized internal �x: Accepted!



Mergesort III : iterating

I We need to recursively sort sub-lists produced by split.

No direct solution, we use here a auxiliary counter n,

I

Definition mergeloop A (less:A->A->bool) :=

fix loop (l:list A) (n:nat) :=

match n with

| O => nil

| S n => match l with

| nil => l

| _::nil => l

| _ => let (l1,l2) := split l in

merge less (loop l1 n) (loop l2 n)

end

end.
I Invariant: n ≥ length l
I

Definition mergesort A less (l:list A) :=

mergeloop less l (length l).



Mergesort III : iterating

I We need to recursively sort sub-lists produced by split.

No direct solution, we use here a auxiliary counter n,
I

Definition mergeloop A (less:A->A->bool) :=

fix loop (l:list A) (n:nat) :=

match n with

| O => nil

| S n => match l with

| nil => l

| _::nil => l

| _ => let (l1,l2) := split l in

merge less (loop l1 n) (loop l2 n)

end

end.

I Invariant: n ≥ length l
I

Definition mergesort A less (l:list A) :=

mergeloop less l (length l).



Mergesort III : iterating

I We need to recursively sort sub-lists produced by split.

No direct solution, we use here a auxiliary counter n,
I

Definition mergeloop A (less:A->A->bool) :=

fix loop (l:list A) (n:nat) :=

match n with

| O => nil

| S n => match l with

| nil => l

| _::nil => l

| _ => let (l1,l2) := split l in

merge less (loop l1 n) (loop l2 n)

end

end.
I Invariant: n ≥ length l

I

Definition mergesort A less (l:list A) :=

mergeloop less l (length l).



Mergesort III : iterating

I We need to recursively sort sub-lists produced by split.

No direct solution, we use here a auxiliary counter n,
I

Definition mergeloop A (less:A->A->bool) :=

fix loop (l:list A) (n:nat) :=

match n with

| O => nil

| S n => match l with

| nil => l

| _::nil => l

| _ => let (l1,l2) := split l in

merge less (loop l1 n) (loop l2 n)

end

end.
I Invariant: n ≥ length l
I

Definition mergesort A less (l:list A) :=

mergeloop less l (length l).


