
Proofs about programs

Yves Bertot

Proofs about computation

I Reason about functional correctness

I State properties about computation results
I Show consistency between several computations

I Use the same tactics as for usual logical connectives

I Add tactics to control computations and observation of data

I Follow the structure of functions
I Proving is akin to symbolic debugging
I A proof is a guarantee that all cases have been covered

Controlling execution

I Replace formulas containing function with other formulas

I Manually with direct Coq control:
I change f1 with f2
I Really checks that f1 and f2 are the same modulo computation

I Manually with indirect control
I replace f1 with f2
I Produces a side goal with the equality f1 = f2

I Unfold recursive functions, keeping readable output
I simpl, simpl f

I Sometimes computes too much (so the output is not so
readable!)

I Simply expand de�nitions
I unfold f, unfold f at 2

Reason on other functions

I Each function comes with theorems about it

I In this course, sometimes called companion theorems

I Usable directly through apply when the goal's conclusion �ts

I Otherwise, can be brought in the context using assert

assert (H : th a b c H').

I Can be moved from the context to the goal using revert.

Example reasoning on functions

Parameters (f g : nat -> nat) (P Q R : nat -> nat -> Prop).

Axiom Pf : forall x, P x (f x).

Axiom Qg : forall y, Q y (g y).

Axiom PQR : forall x y z, P x y -> Q y z -> R x z.

Definition h (x:nat) := g (f x).

Lemma exfgh: forall x, R x (h x).

intros x; apply PQR with (y:= f x).

x : nat

============================

P x (f x)

apply Pf.

Example (continued)

x : nat

============================

Q (f x) (h x)

change (h x) with (g (f x)).

x : nat

============================

Q (f x) (g (f x))

apply Qg.

Proof completed.

Qed.

Reasoning about pattern-matching constructs

I Pattern-matching typically describes alternative behaviors

I Reason by covering all cases

I case is the basic constructs
I generates one goal per constructor
I the expression is replaced by constructor-values, in the

conclusion
I the argument to S becomes a universally quanti�ed variable

I destruct is more advanced and covers the context
I like case, but nesting is authorized
I the context is also modi�ed

I case_eq remembers in which case we are
I the context is not modi�ed (as in case)
I remembering can be crucial

Example on cases

Definition pred (x:nat) :=

match x with 0 => x | S p => p end.

Lemma S_pred : forall x, x <> 0 -> S (pred x) = x.

intros x; unfold pred.

x : nat

============================

x <> 0 ->

S match x with | 0 => x | S p => p end = x

Example on cases (continued)

case x.

2 subgoals

x : nat

============================

0 <> 0 -> 1 = 0

subgoal 2 is:

forall n : nat, S n <> 0 -> S n = S n

intros n0; case n0.

============================

0 = 0

reflexivity.

intros; reflexivity.

Qed.

Example on cases (continued)

case x.

2 subgoals

x : nat

============================

0 <> 0 -> 1 = 0

subgoal 2 is:

forall n : nat, S n <> 0 -> S n = S n

intros n0; case n0.

============================

0 = 0

reflexivity.

intros; reflexivity.

Qed.

Example using companion theorems

Require Import Arith.

Check beq_nat_true.

beq_nat_true:

forall x y : nat, beq_nat x y = true -> x = y

Definition pre2 (x : nat) :=

if beq_nat x 0 then 1 else pred x.

Lemma pre2pred : forall x, x <> 0 -> pre2 x = pred x.

intros x; unfold pre2.

x : nat

============================

x <> 0 ->

(if beq_nat x 0 then 1 else pred x) = pred x

Companion theorems (continued)

case_eq (beq_nat x 0).

2 subgoals

x : nat

============================

beq_nat x 0 = true -> x <> 0 -> 1 = pred x

subgoal 2 is:

beq_nat x 0 = false -> x <> 0 -> pred x = pred x

intros test; assert (x0 := beq_nat_true _ _ test).

test : beq_nat x 0 = true

x0 : x = 0

============================

x <> 0 -> 1 = pred x

intros xn0; case xn0; exact x0.

intros; reflexivity.

Qed.

How to �nd Companion theorems

I SearchAbout is your friend

I In general Search commands are your friends
I Search: use a predicate name

Search le.
I SearchRewrite: use patterns of expressions

searchRewrite (_ + 0).
I SearchPattern: use a pattern of a theorem's conclusion

(type Prop, usually)
SearchPattern (_ * _ <= _ * _).

Recursive functions and induction

I When a function is recursive, calls are usually made on direct

subterms

I Companion theorems do not already exist

I Induction hypotheses make up for the missing theorems

I The structure of the proof is imposed by the data-type

A trick to control recursion

I Add one-step unfolding theorems to recursive functions

I Associate any de�nition

Fixpoint f x1 ...xn := body

with a theorem

forall x1 ...xn, f x1 ...xn := body

I Use rewrite instead of change, replace, or simpl

I More concise than replace or change

I Better control than simpl

I unfold is not well-suited for recursive functions

Example proof on a recursive function

Fixpoint add n m :=

match n with 0 => m | S p => add p (S m) end.

Lemma addnS : forall n m, add n (S m) = S (add n m).

induction n.

2 subgoals

============================

forall m : nat, add 0 (S m) = S (add 0 m)

subgoal 2 is:

forall m : nat, add (S n) (S m) = S (add (S n) m)

intros m; simpl.

============================

S m = S m

reflexivity.

Example proof on a recursive function

Fixpoint add n m :=

match n with 0 => m | S p => add p (S m) end.

Lemma addnS : forall n m, add n (S m) = S (add n m).

induction n.

2 subgoals

============================

forall m : nat, add 0 (S m) = S (add 0 m)

subgoal 2 is:

forall m : nat, add (S n) (S m) = S (add (S n) m)

intros m; simpl.

============================

S m = S m

reflexivity.

Recursive function (continued)

n : nat

IHn : forall m : nat, add n (S m) = S (add n m)

============================

forall m : nat, add (S n) (S m) = S (add (S n) m)

intros m; simpl.

============================

add n (S (S m)) = S (add n (S m))

apply IHn.

Proof completed.

Qed.

Functional schemes

I The tactic induction assumes a simple form of recursion
I direct pattern-matching on the main variable
I recursive calls on direct subterms

I Coq recursion allows deeper recursive calls

I Need for specialized induction principles

I Provided by Functional Scheme.
I Exhibits the true pattern-matching structure from the function
I Provides induction hypotheses suited for recursive calls.

Example functional scheme

Fixpoint div2 (x : nat) : nat :=

match x with S (S p) => S (div2 p) | _ => 0 end.

Functional Scheme div2_ind :=

Induction for div2 Sort Prop.

Lemma div2_le : forall x, div2 x <= x.

intros x; induction x using div2_ind.

3 subgoals

0 <= 0

0 <= 1

S (div2 p) <= S (S p)

Functional scheme (continued)

e : x = S n

p : nat

e0 : n = S p

IHn : div2 p <= p

============================

S (div2 p) <= S (S p)

info auto with arith.

== simple apply le_S; simple apply gt_le_S;

change (div2 p < S p);

simple apply le_lt_n_Sm; exact IHn.

Proof completed.

Qed.

Proofs on functions on lists

I Tactics case, destruct, case_eq also work
I values a and tl in a::tl are universally quanti�ed in case

and case_eq, added to the context in destruct

I Induction on lists works like induction on natural numbers

I nil plays the same role as 0: base case of proofs by induction

I a::tl plays the same role as S
I Induction hypothesis on tl
I Fits with recursive calls on tl

Example proof on lists

Require Import List.

Print rev.

fun A : Type => fix rev (l : list A) : list A :=

match l with

| nil => nil

| x :: l' => rev l' ++ x :: nil

end : forall A : Type, list A -> list A

Fixpoint rev_app (A : Type)(l1 l2 : list A) : list A :=

match l1 with

nil => l2

| a::tl => rev_app A tl (a::l2)

end.

Implicit Arguments rev_app.

Example proof on lists (continued)

Lemma rev_appP : forall A (l1 : list A),

rev_app l1 nil = rev l1.

intros A l1.

A : Type

l1 : list A

===========================

rev_app l1 nil := rev l1

assert (tmp: forall l2, rev_app l1 l2 = rev l1 ++ l2);

[| rewrite tmp, <- app_nil_end; reflexivity].

Example proof on lists (continued)

forall l2 : list A, rev_app l1 l2 = rev l1 ++ l2

induction l1; intros l2.

2 subgoals

A : Type

l2 : list A

============================

rev_app nil l2 = rev nil ++ l2

subgoal 2 is:

rev_app (a :: l1) l2 = rev (a :: l1) ++ l2

simpl; reflexivity.

proof on lists (continued)

IHl1 : forall l2 : list A, rev_app l1 l2 = rev l1 ++ l2

l2 : list A

============================

rev_app (a :: l1) l2 = rev (a :: l1) ++ l2

simpl.

rev_app l1 (a :: l2) = (rev l1 ++ a :: nil) ++ l2

SearchRewrite ((_ ++ _) ++ _).

app_ass:

forall A (l m n:list A), (l ++ m) ++ n = l ++ m ++ n

rewrite app_ass; apply IHl1.

Proof completed.

Qed.

