
Inductive properties

Inductive properties

Assia Mahboubi

10 juin 2010

Inductive properties

We have already seen how to define new datatypes by the mean of
inductive types.
During this session, we shall present how Coq’s type system allows
us to define specifications using inductive declarations.

Inductive properties

First examples

Inductive predicates

“The friend of my friend is my friend” : who’s friend with whom?

Variable People : Type.
Inductive is_friend_of : People -> People -> Prop :=

|I_am_my_own_friend : forall x, is_friend_of x x
|No_hypocrisy : forall x y,

is_friend_of x y -> is_friend_of y x
|Proverb : forall x y z,

is_friend_of x y -> is_friend_of y z ->
is_friend_of x z.

Inductive properties

First examples

Inductive predicates

“The friend of my friend is my friend” : who’s friend with whom?

Variable People : Type.
Inductive is_friend_of : People -> People -> Prop :=
|I_am_my_own_friend :

forall x, is_friend_of x x
|No_hypocrisy : forall x y,

is_friend_of x y -> is_friend_of y x
|Proverb : forall x y z,

is_friend_of x y -> is_friend_of y z ->
is_friend_of x z.

Inductive properties

First examples

Inductive predicates

“The friend of my friend is my friend” : who’s friend with whom?

Variable People : Type.
Inductive is_friend_of : People -> People -> Prop :=
|I_am_my_own_friend : forall x, is_friend_of x x

|No_hypocrisy : forall x y,
is_friend_of x y -> is_friend_of y x

|Proverb : forall x y z,
is_friend_of x y -> is_friend_of y z ->
is_friend_of x z.

Inductive properties

First examples

Inductive predicates

“The friend of my friend is my friend” : who’s friend with whom?

Variable People : Type.
Inductive is_friend_of : People -> People -> Prop :=
|I_am_my_own_friend : forall x, is_friend_of x x
|No_hypocrisy :

forall x y,
is_friend_of x y -> is_friend_of y x

|Proverb : forall x y z,
is_friend_of x y -> is_friend_of y z ->
is_friend_of x z.

Inductive properties

First examples

Inductive predicates

“The friend of my friend is my friend” : who’s friend with whom?

Variable People : Type.
Inductive is_friend_of : People -> People -> Prop :=
|I_am_my_own_friend : forall x, is_friend_of x x
|No_hypocrisy : forall x y,

is_friend_of x y -> is_friend_of y x

|Proverb : forall x y z,
is_friend_of x y -> is_friend_of y z ->
is_friend_of x z.

Inductive properties

First examples

Inductive predicates

“The friend of my friend is my friend” : who’s friend with whom?

Variable People : Type.
Inductive is_friend_of : People -> People -> Prop :=
|I_am_my_own_friend : forall x, is_friend_of x x
|No_hypocrisy : forall x y,

is_friend_of x y -> is_friend_of y x
|Proverb :

forall x y z,
is_friend_of x y -> is_friend_of y z ->
is_friend_of x z.

Inductive properties

First examples

Inductive predicates

“The friend of my friend is my friend” : who’s friend with whom?

Variable People : Type.
Inductive is_friend_of : People -> People -> Prop :=
|I_am_my_own_friend : forall x, is_friend_of x x
|No_hypocrisy : forall x y,

is_friend_of x y -> is_friend_of y x
|Proverb : forall x y z,

is_friend_of x y -> is_friend_of y z ->
is_friend_of x z.

Inductive properties

First examples

Inductive predicates

Variable MrCat MrDog : People.
Hypothesis not_friends : ~(is_friend_of MrCat MrDog).

Lemma no_common_friend : forall p : People,
is_friend_of p MrDog -> ~(is_friend_of p MrCat).

Proof.
intros p hpMrDog hpMrCat.
apply not_friends.
apply Proverb with p.
apply No_hypocrisy.
trivial.

trivial.
Qed.

Inductive properties

First examples

Inductive predicates

The same construction is useful to define closures.
Here is the transitive closure of a relation :

Definition relation (A : Type) := A -> A -> Prop.

Variables (A : Type)(R : relation A).

Inductive clos_trans : relation A :=
| t_step : forall x y : A, R x y -> clos_trans x y
| t_trans : forall x y z : A,
clos_trans R x y -> clos_trans y z

-> clos_trans x z.

Inductive properties

First examples

Inductive predicates

Reason by induction on these inductive predicates.

Hypothesis Rtrans : forall x y z, R x y -> R y z -> R x z.

Lemma trans_clos_trans : forall a1 a2,
clos_trans a1 a2 -> R a1 a2.

Proof.
intros a1 a2 h.
induction h.
exact H.

apply Rtrans with y.
assumption.

assumption.
Qed.

Inductive properties

First examples

A relation already used in previous lectures

The ≤ relation on nat is defined by the means of an inductive
predicate :

Print le.
Inductive le (n : nat) : nat -> Prop :=

le_n : n <= n
| le_S : forall m : nat, le n m -> le n (S m)

The term (le n m) is denoted by n <= m.

Inductive properties

First examples

Inductive definitions and functions

The le predicate can be seen as the inductive description of the
boolean test :

Fixpoint leb n m : bool :=
match n, m with
|0, 0 => true
|0, S _ => true
|S _, 0 => false
|S n, S m => leb n m
end.

Functional an inductive predicates have respective assets and
drawbacks that should be evaluated at formalization time.

As usual, the choice of data structures matters !

Inductive properties

First examples

Inductive definitions and functions

However, it is sometimes very difficult to represent a function f :
A -> B as a Coq function, for instance because of the :

I Undecidability (or hard proof) of termination

I Undecidability of the domain characterization

This situation often arises when studying the semantic of
programming languages.

In that case, describing functions as inductive relations is really
efficient.

Inductive properties

New tactics

The constructor tactic

Lemma le_trans : forall x y z,
x <= y -> y <= z -> x <= z.

Proof.
move=> x y z hxy hyz.
induction hyz.
assumption.

constructor.
assumption.
Qed.

It tries to make the goal progress by applying a constructor.
Constructors are tried in the order of the inductive type definition.

Inductive properties

New tactics

The inversion tactic

How to prove that :

Lemma foo : ~(1 <= 0).

Proof.
intro h.
inversion h.
Qed.

The inversion tactic derives all the necessary conditions to an
inductive hypothesis. If no condition can realize this hypothesis,
the goal is proved by ex falso quod libet.

Inductive properties

New tactics

The inversion tactic

How to prove that :

Lemma foo : ~(1 <= 0).
Proof.
intro h.
inversion h.
Qed.

The inversion tactic derives all the necessary conditions to an
inductive hypothesis. If no condition can realize this hypothesis,
the goal is proved by ex falso quod libet.

Inductive properties

Road-map

What you think is not what you get

Be careful at definition time, you might otherwise soon be stuck.

Inductive alter_clos_trans :
(relation A) -> (relation A) :=

| alt_t_step : forall (R : relation A) x y,
R x y -> alter_clos_trans R x y

| alt_t_trans : forall (R : relation A) x y z,
alter_clos_trans R x y -> alter_clos_trans R y z

-> alter_clos_trans R x z.

What about the proof of :

Lemma alter_trans_clos_trans : forall a1 a2,
alter_clos_trans R a1 a2 -> R a1 a2.

Well, it does not behave as nicely as expected.

Inductive properties

Road-map

What you think is not what you get

Be careful at definition time, you might otherwise soon be stuck.

Inductive alter_clos_trans :
(relation A) -> (relation A) :=

| alt_t_step : forall (R : relation A) x y,
R x y -> alter_clos_trans R x y

| alt_t_trans : forall (R : relation A) x y z,
alter_clos_trans R x y -> alter_clos_trans R y z

-> alter_clos_trans R x z.

What about the proof of :

Lemma alter_trans_clos_trans : forall a1 a2,
alter_clos_trans R a1 a2 -> R a1 a2.

Well, it does not behave as nicely as expected.

Inductive properties

Road-map

What you think is not what you get

Be careful at definition time, you might otherwise soon be stuck.

Inductive alter_clos_trans :
(relation A) -> (relation A) :=

| alt_t_step : forall (R : relation A) x y,
R x y -> alter_clos_trans R x y

| alt_t_trans : forall (R : relation A) x y z,
alter_clos_trans R x y -> alter_clos_trans R y z

-> alter_clos_trans R x z.

What about the proof of :

Lemma alter_trans_clos_trans : forall a1 a2,
alter_clos_trans R a1 a2 -> R a1 a2.

Well, it does not behave as nicely as expected.

Inductive properties

Road-map

What you think is not what you get

One more odd alternative definition :

Inductive alter_le (n : nat) : nat -> Prop :=
| alter_le_n : alter_le n n
| alter_le_S : forall m : nat, alter_le n m -> alter_le n (S m)
| alter_dummy : alter_le n (S n).

What about the proof of :

Lemma alter_le_trans : forall x y z,
alter_le x y -> alter_le y z -> alter_le z z.

Well, it does not behave as nicely as expected.

Inductive properties

Road-map

What you think is not what you get

One more odd alternative definition :

Inductive alter_le (n : nat) : nat -> Prop :=
| alter_le_n : alter_le n n
| alter_le_S : forall m : nat, alter_le n m -> alter_le n (S m)
| alter_dummy : alter_le n (S n).

What about the proof of :

Lemma alter_le_trans : forall x y z,
alter_le x y -> alter_le y z -> alter_le z z.

Well, it does not behave as nicely as expected.

Inductive properties

Road-map

What you think is not what you get

One more odd alternative definition :

Inductive alter_le (n : nat) : nat -> Prop :=
| alter_le_n : alter_le n n
| alter_le_S : forall m : nat, alter_le n m -> alter_le n (S m)
| alter_dummy : alter_le n (S n).

What about the proof of :

Lemma alter_le_trans : forall x y z,
alter_le x y -> alter_le y z -> alter_le z z.

Well, it does not behave as nicely as expected.

Inductive properties

Road-map

Advice for crafting useful inductive definitions

I Constructors are“axioms” : they should be intuitively true...

I Constructors should as often as possible deal with mutually
exclusive cases, to ease proofs by induction ;

I When an argument always appears with the same value, make
it a parameter

I Test your predicate on negative and positive cases !

Inductive properties

Logical connectives

Logical connectives as inductive definitions

Most logical connectives are defined using inductive types :

I Conjunction ∧
I Disjunction ∨
I Existential quantification ∃
I Equality

I Truth and False

Notable exceptions : implication, negation.

Let us revisit the 4th lecture.

Inductive properties

Logical connectives

Logical connectives : conjunction

Conjunction is a pair :

Inductive and (A B : Prop) := conj : A -> B -> and A B.

I Term (and A B) is denoted (A ∧ B).

I Prove a conjunction goal with the split tactic (generates
two subgoals).

I Use a conjunction hypothesis with the destruct as [...]
tactic.

Inductive properties

Logical connectives

Logical connectives : disjunction

Disjunction is a two constructors inductive :

Inductive or (A B : Prop) : Prop :=
|or_introl : A -> or A B | or_intror : B -> or A B.

I Term (or A B) is denoted(A ∨ B).

I Prove a disjunction with the left, right tactics (choose the
side to prove).

I Use a conjunction hypothesis with the case or
destruct as [...|...] tactics.

Inductive properties

Logical connectives

Logical connectives : existential quantification

Existential quantification is a pair :

Inductive ex (A : Type) (P : A -> Prop) : Prop :=
ex_intro : forall x : A, P x -> ex P.

I Term (ex_intro A P x Px) is denoted exists x, P x.

I Prove an existential goal with the exists tactic.

I Use an existential hypothesis with the destruct as [...]
tactic.

Inductive properties

Logical connectives

Equality

The built-in (predefined) equality relation in Coq is a parametric
inductive type :

Inductive eq (A : Type) (x : A) : A -> Prop :=
refl_equal : eq A x x.

I Term eq A x y is denoted (x = y)

I The induction principle is :

eq_ind : forall (A : Type) (x : A) (P : A -> Prop),
P x -> forall y : A, x = y -> P y

Inductive properties

Logical connectives

Equality

I Use an equality hypothesis with the rewrite [<-] tactic
(uses eq_ind)

I Remember equality is computation compliant !

Goal 2 + 2 = 4. apply refl_equal. Qed.

Beacuse + is a program.

I Prove trivial equalities (modulo computation) using the
reflexivity tactic.

Inductive properties

Logical connectives

Truth

The“truth” is a proposition that can be proved under any
assumption, in any context. Hence it should not require any
argument or parameter.

Inductive True : Prop := I : True.

Its induction principle is :

True_ind : forall P : Prop, P -> True -> P

which is not of much help...

Inductive properties

Logical connectives

Falsehood

Falsehood should be a proposition of which no proof can be built
(in empty context).
In Coq, this is encoded by an inductive type with no constructor :

Inductive False : Prop :=

coming with the induction principle :

False_ind : forall P : Prop, False -> P

often referred to as ex falso quod libet.

I To prove a False goal, often apply a negation hypothesis.

I To use a (H : False) hypothesis, use elim H.

Inductive properties

Boolean tests, inductive specifications

Specifying programs with inductive predicates

Programs are computational objects.

Inductive types provide structured specifications.
How to get the best of both world ?
By combining programs with inductive specifications.

Inductive properties

Boolean tests, inductive specifications

Specifying programs with inductive predicates

Programs are computational objects.
Inductive types provide structured specifications.

How to get the best of both world ?
By combining programs with inductive specifications.

Inductive properties

Boolean tests, inductive specifications

Specifying programs with inductive predicates

Programs are computational objects.
Inductive types provide structured specifications.
How to get the best of both world ?

By combining programs with inductive specifications.

Inductive properties

Boolean tests, inductive specifications

Specifying programs with inductive predicates

Programs are computational objects.
Inductive types provide structured specifications.
How to get the best of both world ?
By combining programs with inductive specifications.

Inductive properties

Boolean tests, inductive specifications

Specifying programs with inductive predicates

To program a function maxn, computing the maximum of two nat,
you might consider writing something like :

Definition maxn n m := if (ltb m n) then n else m.

and then prove :

Lemma add_sub_maxn : forall m n, m + (n - m) = maxn m n.

since on natural numbers, n −m = 0 when m > n.

We propose a way to reason comfortably on programs written
using these boolean tests.

Inductive properties

Boolean tests, inductive specifications

Specifying programs with inductive predicates

To program a function maxn, computing the maximum of two nat,
you might consider writing something like :

Definition maxn n m := if (ltb m n) then n else m.

and then prove :

Lemma add_sub_maxn : forall m n, m + (n - m) = maxn m n.

since on natural numbers, n −m = 0 when m > n.

We propose a way to reason comfortably on programs written
using these boolean tests.

Inductive properties

Boolean tests, inductive specifications

Specifying programs with inductive predicates

To program a function maxn, computing the maximum of two nat,
you might consider writing something like :

Definition maxn n m := if (ltb m n) then n else m.

and then prove :

Lemma add_sub_maxn : forall m n, m + (n - m) = maxn m n.

since on natural numbers, n −m = 0 when m > n.

We propose a way to reason comfortably on programs written
using these boolean tests.

Inductive properties

Boolean tests, inductive specifications

Specifying programs with inductive predicates

Here is how the boolean comparison can be programmed :

Fixpoint ltb n m : bool := Fixpoint leb n m : bool :=
match n, m with match n, m with
|0, 0 => false |0, 0 => true
|0, S _ => true |0, S _ => true
|S _, 0 => false |S _, 0 => false
|S n, S m => ltb n m |S n, S m => leb n m

end. end.

They satisfy :

Lemma ltb_lebn : forall n m, ltb n m = negb (leb m n).

which is shown by induction on the first argument.

Inductive properties

Boolean tests, inductive specifications

Specifying programs with inductive predicates

Here is how the boolean comparison can be programmed :

Fixpoint ltb n m : bool := Fixpoint leb n m : bool :=
match n, m with match n, m with
|0, 0 => false |0, 0 => true
|0, S _ => true |0, S _ => true
|S _, 0 => false |S _, 0 => false
|S n, S m => ltb n m |S n, S m => leb n m

end. end.

They satisfy :

Lemma ltb_lebn : forall n m, ltb n m = negb (leb m n).

which is shown by induction on the first argument.

Inductive properties

Boolean tests, inductive specifications

Specifying programs with inductive predicates

We can specify the respective values that ltb and leb can take by
defining the inductive specification :

Inductive leb_xor_gtb (m n : nat): bool -> bool -> Type :=
| LebNotGtb : (leb m n = true) ->

leb_xor_gtb m n true false
| GtbNotLeb : (ltb n m = true) ->

leb_xor_gtb m n false true.

and proving the lemma :

Lemma lebP : forall m n,
leb_xor_gtb m n (leb m n) (ltb n m).

Inductive properties

Boolean tests, inductive specifications

Specifying programs with inductive predicates

Now let us see how this specification is used. The script :

Lemma add_sub_maxn : forall m n, m + (n - m) = maxn m n.
Proof.
intros m n; unfold maxn.

generates the subgoal

m : nat
n : nat
============================
m + (n - m) = (if ltb n m then m else n)

Inductive properties

Boolean tests, inductive specifications

Specifying programs with inductive predicates

Now the tactic :

case (lebP m n); intros h.

generates the two subgoals :

m : nat
n : nat
============================
leb m n = true -> m + (n - m) = n

and :

m : nat
n : nat
============================
ltb n m = true -> m + (n - m) = m

	First examples
	New tactics
	Road-map
	Logical connectives
	Boolean tests, inductive specifications

