Cog Summer School, Session 2 :
Basic programming with numbers and lists

Pierre Letouzey

Predefined data structures

> “Predefined” types are actually declared to Coq at load time !:

Inductive bool := true | false.

!see Init/Datatypes.v

Predefined data structures

> “Predefined” types are actually declared to Coq at load time !:

Inductive bool := true | false.

Inductive nat := 0 : nat | S : nat -> nat.

!see Init/Datatypes.v

Predefined data structures

> “Predefined” types are actually declared to Coq at load time !:

Inductive bool := true | false.
Inductive nat := 0 : nat | S : nat -> nat.
Inductive list A :=

| nil : list A
| cons : A -> list A -> list A.

» Nota: a::bis a notation for (cons a b).

!see Init/Datatypes.v

Pattern matching

» We can analyse an expression and handle all possible cases:

Definition negb b :=
match b with

| true => false

| false => true
end.

Pattern matching

» We can analyse an expression and handle all possible cases:

Definition negb b :=
match b with

| true => false

| false => true
end.

» Most common situation: one pattern for each constructor.

Pattern matching

» We can analyse an expression and handle all possible cases:

Definition negb b :=
match b with

| true => false

| false => true
end.

» Most common situation: one pattern for each constructor.

» NB: for bool, an alternative syntactic sugar is
if b then false else true.

Pattern matching

» Similarly, for numbers:

Definition pred x :=
match x with

| S x? => x?

| 0=>0
end.

Pattern matching

» Similarly, for numbers:

Definition pred x :=
match x with
| S x? => x?
| 0=>0
end.

Definition iszero x :=
match x with
| 0 => true
| S _ => false
end.

More complex pattern matching

» We can use deeper patterns, combined matchings, as well as
wildcards:

Definition istwo x :=
match x with
[S (S 0) => true
| _ => false
end.

More complex pattern matching

» We can use deeper patterns, combined matchings, as well as
wildcards:

Definition istwo x :=
match x with
[S (S 0) => true
| _ => false
end.

Definition andb bl b2 :=
match bl, b2 with
| true, true => true
| _, _ => false
end.

More complex pattern matching

» We can use deeper patterns, combined matchings, as well as
wildcards:

Definition istwo x :=
match x with
[S (S 0) => true
| _ => false
end.

Definition andb bl b2 :=
match bl, b2 with

| true, true => true

| _, _ => false
end.

» These matchings are not atomic, but rather expansed
internally into nested matchings (use Print to see how many).

Recursion

» When using Fixpoint instead of Definition, recursive
sub-calls are allowed (at least some of them).
Fixpoint div2 n :=
match n with
| S (S n’) == S (div2 n?)
| _=>0
end.

Recursion

» When using Fixpoint instead of Definition, recursive
sub-calls are allowed (at least some of them).
Fixpoint div2 n :=
match n with
| S (8 n’) == 8 (div2 n?)
| _=>0
end.
» Here, n’ is indeed a structural sub-term of the inductive
argument n.

Recursion

» When using Fixpoint instead of Definition, recursive
sub-calls are allowed (at least some of them).
Fixpoint div2 n :=
match n with
| S (8 n’) == 8 (div2 n?)
| _=>0
end.
» Here, n’ is indeed a structural sub-term of the inductive
argument n.

» This way, termination of computations is (syntactically)
ensured.

Recursion

» When using Fixpoint instead of Definition, recursive
sub-calls are allowed (at least some of them).
Fixpoint div2 n :=
match n with
| S (8 n’) == 8 (div2 n?)
| _=>0
end.
» Here, n’ is indeed a structural sub-term of the inductive
argument n.

» This way, termination of computations is (syntactically)
ensured.

» Example of rejected recursive functions:

Recursion

» When using Fixpoint instead of Definition, recursive
sub-calls are allowed (at least some of them).
Fixpoint div2 n :=
match n with
| S (S n’) =>8 (div2 n?)
| - =>0
end.
» Here, n’ is indeed a structural sub-term of the inductive
argument n.
» This way, termination of computations is (syntactically)
ensured.

» Example of rejected recursive functions:

Fixpoint loop n := loop (S n).

Recursion

» When using Fixpoint instead of Definition, recursive
sub-calls are allowed (at least some of them).
Fixpoint div2 n :=
match n with
| S (8 n’) == 8 (div2 n?)
| _=>0
end.
» Here, n’ is indeed a structural sub-term of the inductive
argument n.

» This way, termination of computations is (syntactically)
ensured.

» Example of rejected recursive functions:

Fixpoint loop n :
Fixpoint div2_ko

loop (S n).
n :=
if leb n 1 then 0 else S (div2_ko (n-2)).

Some other recursive functions over nat

Fixpoint plus n m :=
match n with

| 0=>m

| Sn”>=>8 (plus n’ m)
end.

Some other recursive functions over nat

Fixpoint plus n m :=
match n with

| 0 =>m
| Sn”>=>8 (plus n’ m)
end.
Fixpoint minus n m := match n, m with

| Sn’, Sm’ => minus n’ m’
=>n

I, -

end.

Some other recursive functions over nat

Fixpoint plus n m :=
match n with

| 0=>m
| Sn”>=>8 (plus n’ m)

end.

Fixpoint minus n m := match n, m with
| Sn’, Sm’ => minus n’ m’
| _, _=>n

end.

Fixpoint beq_nat n m := match n, m with

| Sn’, Sm’ => beq_nat n’ m’
| 0, 0 => true
| _, _ => false

end.

Recursion over lists

» With recursive functions over lists, the main novelty is
polymorphism :

Fixpoint length A (1 : list A) :=
match 1 with

| nil => 0

| _ :: 1% => S (length 1°)
end.

Recursion over lists

» With recursive functions over lists, the main novelty is
polymorphism :

Fixpoint length A (1 : list A) :=
match 1 with

| nil => 0

| _ :: 1% => S (length 1°)
end.

Fixpoint app A (11 12 : list A) : list A :=
match 11 with

| nil => 12

| a :: 117 => a :: (app 11’ 12)
end.

Recursion over lists

» With recursive functions over lists, the main novelty is
polymorphism :

Fixpoint length A (1 : list A) :=
match 1 with

| nil => 0

| _ :: 1% => S (length 1°)
end.

Fixpoint app A (11 12 : list A) : list A :=
match 11 with
| nil => 12
| a :: 117 => a :: (app 11’ 12)
end.
» NB: (app 11 12) is noted 11++12.

Recursion over lists

» With recursive functions over lists, the main novelty is
polymorphism :

Fixpoint length A (1 : list A) :=
match 1 with

| nil => 0

| _ :: 1% => S (length 1°)
end.

Fixpoint app A (11 12 : list A) : list A :=
match 11 with
| nil => 12
| a :: 117 => a :: (app 11’ 12)
end.
» NB: (app 11 12) is noted 11++12.

» NB: we use here Implicit Arguments to avoid writing type
parameters such as A again and again when applying functions.

Fold on the right

» With fold_right, computation starts at the end of the list:
fold_right f init (a::b::nil) = (f a (f b init))

Fold on the right

» With fold_right, computation starts at the end of the list:
fold_right f init (a::b::nil) = (f a (f b init))
» The code:

Fixpoint fold_right A B (f:B->A->A)(init:A)(1l:1list B)
A :=

match 1 with
| nil => init
| x :: 1> =>f x (fold_right f init 1°)

end.

Fold on the right

» With fold_right, computation starts at the end of the list:
fold_right f init (a::b::nil) = (f a (f b init))
» The code:

Fixpoint fold_right A B (f:B->A->A)(init:A)(1l:1list B)
A :=

match 1 with
| nil => init
| x :: 1> =>f x (fold_right f init 1°)

end.

Eval vm_compute in fold_right plus O (1::2::3::nil).
==> (1+(2+(3+0))) ==> 6

Fold on the right

» With fold_right, computation starts at the end of the list:
fold_right f init (a::b::nil) = (f a (f b init))
» The code:

Fixpoint fold_right A B (f:B->A->A)(init:A)(1l:1list B)
A :=

match 1 with
| nil => init
| x :: 1> =>f x (fold_right f init 1°)

end.

Eval vm_compute in fold_right plus O (1::2::3::nil).
==> (1+(2+(3+0))) ==> 6

Eval vm_compute in
fold_right (fun x 1 => x::1) nil (1::2::3::nil).
==> 1::2::3::nil

Fold on the left

» With fold_left, computation starts at the top of the list:
fold_left f (a::b::nil) init = (£ (f init a) b)

Fold on the left

» With fold_left, computation starts at the top of the list:
fold_left f (a::b::nil) init = (f (£ init a) b)
» The code:

Fixpoint fold_left A B (f£:A->B->A)(1:1ist B)(init:A)
A=

match 1 with
| nil => init
[x :: 17 => fold_left £ 1’ (f init x)

end.

Fold on the left

» With fold_left, computation starts at the top of the list:
fold_left f (a::b::nil) init = (f (£ init a) b)
» The code:

Fixpoint fold_left A B (f£:A->B->A)(1:1ist B)(init:A)
A=

match 1 with
| nil => init
[x :: 17 => fold_left £ 1’ (f init x)

end.

Eval vm_compute in fold_left plus (1::2::3::nil) 0.
==> (((0+1)+2)+3) ==> 6

Fold on the left

» With fold_left, computation starts at the top of the list:
fold_left f (a::b::nil) init = (f (£ init a) b)
» The code:

Fixpoint fold_left A B (f£:A->B->A)(1:1ist B)(init:A)
A=

match 1 with
| nil => init
[x :: 17 => fold_left £ 1’ (f init x)

end.

Eval vm_compute in fold_left plus (1::2::3::nil) 0.
==> (((0+1)+2)+3) ==> 6

Eval vm_compute in
fold_left (fun 1 x => x::1) nil (1::2::3::nil).
==> 3::2::1::nil

A complete example: mergesort

» Part I: splitting a list in two
» Part II: merging two sorted lists into one

» Part Ill: iterating the process...

Mergesort | : splitting

Fixpoint split A (1 : list A) : list A * list A :=

match 1 with

| nil => (nil, nil)

| a::nil => (a::nil, nil)

| a::b::1° => let (11, 12) := split 1’ in (a::11, b::12)
end.

Mergesort | : splitting

Fixpoint split A (1 : list A) : list A * list A :=
match 1 with
| nil => (nil, nil)
| a::nil => (a::nil, nil)
| a::b::1° => let (11, 12) := split 1’ in (a::11, b::12)
end.

Eval vm_compute in split (1::2::3::4::5::nil).
==> (1::3::5::nil, 2::4::nil)

Mergesort Il : merging

» A new syntax construct: fix for local fixpoints

Mergesort Il : merging

> A new syntax construct: fix for local fixpoints
>
Definition merge A (less:A->A->bool)
: list A -> list A -> list A :=
fix merge 11 := match 11 with
| nil => (fun 12 => 12)

| x1::11° =>
(fun 12 => match 12 with
| nil => 11

| x2::12° =>
if less x1 x2 then x1 :: merge 11’ 12
else x2 :: merge 11 12°
end)
end.

Mergesort Il : merging

> A new syntax construct: fix for local fixpoints
>
Definition merge A (less:A->A->bool)
: list A -> list A -> list A :=
fix merge 11 := match 11 with
| nil => (fun 12 => 12)

| x1::11° =>
(fun 12 => match 12 with
| nil => 11

| x2::12° =>
if less x1 x2 then x1 :: merge 11’ 12
else x2 :: merge 11 12°
end)
end.

» No structurally decreasing argument: Rejected!

Mergesort Il : merging

» A new syntax construct: fix for local fixpoints
>
Definition merge A (less:A->A->bool)
: list A -> list A -> list A :=
fix merge 11 := match 11 with
| nil => (fun 12 => 12)

| x1::11° =>
(fix merge_11 12 := match 12 with
| nil => 11
| x2::12° =>

if less x1 x2 then x1 :: merge 11’ 12
else x2 :: merge_11 12’
end)
end.

» Trick of the specialized internal fix: Accepted!

Mergesort Il : iterating

» We need to recursively sort sub-lists produced by split.
No direct solution, we use here a auxiliary counter n,

Mergesort Il : iterating

» We need to recursively sort sub-lists produced by split.
No direct solution, we use here a auxiliary counter n,
>
Definition mergeloop A (less:A->A->bool) :=
fix loop (1l:1ist A) (n:nat) :=
match n with

| 0 => nil
| S n =>match 1 with
| nil => 1
| _::nil => 1
| _ => let (11,12) := split 1 in
merge less (loop 11 n) (loop 12 n)
end

end.

Mergesort Il : iterating

» We need to recursively sort sub-lists produced by split.
No direct solution, we use here a auxiliary counter n,
>
Definition mergeloop A (less:A->A->bool) :=
fix loop (1l:1ist A) (n:nat) :=
match n with

| 0 => nil

| S n =>match 1 with
| nil => 1
| _::nil => 1
| _ => let (11,12) := split 1 in

merge less (loop 11 n) (loop 12 n)
end
end.

» Invariant: n > length 1

Mergesort Il : iterating

» We need to recursively sort sub-lists produced by split.
No direct solution, we use here a auxiliary counter n,

>
Definition mergeloop A (less:A->A->bool) :=
fix loop (1l:1ist A) (n:nat) :=
match n with
| 0 =>nil
| S n =>match 1 with
| nil => 1
| _::nil => 1
| _ => let (11,12) := split 1 in
merge less (loop 11 n) (loop 12 n)
end
end.
» Invariant: n > length 1
>

Definition mergesort A less (l:list A) :=
merceloop less 1 (length 1).

