
Dependently typed functions

Yves Bertot

Functions returning dependent types

I Dependent datatypes

I Partial domains

I Need for dependently typed pattern-matching
I Strong connection with induction principles

I Di�cult programming: rely on tactics

Dependently typed functions

I families of types, indexed by another type A

I Described as functions of type B : A -> Type
I also type A -> Prop

I Functions can return di�erent types for di�erent arguments

I Notation as in logic : f : forall x : A, B x

I Typing implies substitution
I if e has type A, f e is well-formed
I the type is f e : B e

Example of useful dependent types

I arrays of size n, binary words of �xed length

I Logical formulas!
I Universally quanti�ed theorems are functions
I application is instanciation
I Propositions are types, proofs are elements

I Partial functions
I forall x : nat, x <> 0 -> nat

I Many more in the next lesson

Constructing dependently typed functions

Just by applying other dependently functions

Parameters (A : Type) (B C : A -> Type)

(f : forall x : A, B x)

(g : forall x : A, B x -> C x).

Definition h : forall x : A, C x := g x (f x).

But also through dependent pattern matching

Dependently typed pattern matching

I Di�erent computations for di�erent patterns

I Di�erent types for di�erent patterns

I A syntax extension to match ... with ... end

dependent pattern-matching explanation

match e as x return B x with

| p1 => e1
| p2 => e2
end

I The whole expression has type B e
I replace x by e

I Each expression ei must have type B pi

I replace x by pi

Example on predecessor

Check False_rect.

False_rect : forall P : Type, False -> P

Print not.

not = fun A : Prop => A -> False : Prop -> Prop

Check refl_equal.

refl_equal : forall (A : Type) (x : A), x = x

I False_rect expresses that any speci�cation can be ful�lled in

an inconsistent context

I refl_equal is just a plain theorem, it can be used as a

function

Example on predecessor (continued)

Definition pred_safe (x:nat) : x <> 0 -> nat :=

match x as x return x <> 0 -> nat with

0 => fun h : 0 <> 0 =>

False_rect nat (h (refl_equal 0))

| S p => fun h : S p <> 0 => p

end.

I the text in black can be forgotten: the matched expression is a

variable

I False_rect is used to mark �unreachable code�

Example on predecessor (continued)

Definition pred_safe (x:nat) : x <> 0 -> nat :=

match x as x return x <> 0 -> nat with

0 => fun h : 0 <> 0 =>

False_rect nat (h (refl_equal 0))

| S p => fun h : S p <> 0 => p

end.

I the text in black can be forgotten: the matched expression is a

variable

I False_rect is used to mark �unreachable code�

Example on predecessor (continued)

Definition pred_safe (x:nat) : x <> 0 -> nat :=

match x as x return x <> 0 -> nat with

0 => fun h : 0 <> 0 =>

False_rect nat (h (refl_equal 0))

| S p => fun h : S p <> 0 => p

end.

I the text in black can be forgotten: the matched expression is a

variable

I False_rect is used to mark �unreachable code�

Example on predecessor (continued)

Definition pred_safe (x:nat) : x <> 0 -> nat :=

match x as x return x <> 0 -> nat with

0 => fun h : 0 <> 0 =>

False_rect nat (h (refl_equal 0))

| S p => fun h : S p <> 0 => p

end.

I the text in black can be forgotten: the matched expression is a

variable

I False_rect is used to mark �unreachable code�

Dependent recursion

I In recursive de�nitions, dependent pattern-matching is allowed

I Calls to recursive calls are not in the same type

I This gives induction principles

Example dependent recursion

Fixpoint f (x : nat) : B x :=

match x return B x with

0 => V

| S p => E p (f p)

end.

I V must have type (B 0)

I E must have type forall p : nat, B p -> B (S p)

I f has type forall x, B x

Example dependent recursion (continued)

Fixpoint f (B : nat -> Type) (V : B 0)

(E : forall x, B x -> B (S x)) (x : nat) : B x :=

match x return B x with

0 => V

| S p => E p (f p)

end.

Check f.

f : forall B : nat -> Type, B 0 ->

(forall n:nat, B n -> B (S n)) ->

forall x:nat, B x

I The function f is an induction principle

Dependent inductive types

I Families of types can be given inductively

I constructors can have dependent types

I arguments to constructors can be proofs

Bounded numbers and arrays

Inductive bnat (n : nat) : Type :=

cb : forall m, m < n -> bnat n.

Inductive array (n : nat) : Type :=

ca : forall l : list Z, length l = n -> array n.

I More precise than natural numbers

I Can be used to access arrays

I type-checking veri�es that array bounds are respected

Using tactics

I Dependent types are like logical formulas

I Tactics can construct programs like proofs
I intros x corresponds to fun x => ...
I case x corresponds to match x with ...end
I apply f corresponds to f ...

Bounded access in array

Definition access :

forall (m : nat) (l : list Z), m < length l -> Z.

induction m as [| m IHm].

2 subgoals

============================

forall l : list Z, 0 < length l -> Z

subgoal 2 is:

forall l : list Z, S m < length l -> Z

intros [| z tl].

SearchPattern (~_ < 0).

lt_n_O: forall n : nat, ~ n < 0

Bounded access in array (continued)

intros h; case (lt_n_O _ h).

============================

0 < length (z :: tl) -> Z

intros _; exact z.

intros [| z tl] h.

h : S m < length nil

============================

Z

case (lt_n_O _ h).

IHm : forall l : list Z, m < length l -> Z

...

h : S m < length (z :: tl)

============================

Z

Bounded access in array (continued)

apply (IHm tl).

simpl in h.

omega.

Defined.

I Each step is quite easy

I Fear to loose track

Adding dependency to simply typed functions

I if-then-else statements, pattern-matching on boolean

values

I Information gained in each branch, but not apparent in the

context

I Information can be added using arti�cial equality arguments

I replace

if e then e1 else e2 with

match e as b return e = b -> T with

true => fun h : e = true => e1
| false => fun h : e = false => e2
end (refl_equal e)

I Done by tactic case_eq

Example on case_eq

Definition dyn_safe_access :

forall m:nat, nat -> array m -> Z.

intros m n [l len]; case_eq (leb m n).

=======================

leb m n = true -> Z

intros _; exact 0%Z.

=======================

leb m n = false -> Z

intros h; apply (access n m).

len : length l = m

h : leb m n = false

=======================

n < length l

rewrite len; apply leb_complete_conv; exact h.

Bounded access in array (alternative)

Program Fixpoint access' (n : nat) (l:list Z)

: n < length l -> Z :=

match n with

0 =>

match l with nil => _ | z::tl => fun _ => z end

| S p =>

match l with

nil => _

| z::tl => fun _ => access' p tl _

end

end.

I Algorithmic content is explicit

I Pattern matching constructs are uncluttered

Bounded access in arrays (alternative, cont.)

Next Obligation.

H : 0 < 0

============================

Z

case (lt_n_O 0); assumption.

Qed.

Next Obligation.

case (lt_n_O (S p)); assumption.

Qed.

Next Obligation.

omega.

Qed.

Bounded access: fully speci�ed

Definition safe_access : forall m, bnat m -> array m -> Z.

intros m [n h] [l len].

apply (access n l).

rewrite len; exact h.

Defined.

I Array update could be described in the same way

I Loops where i goes from 1 to m can be de�ned
I i with type bnat m

