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Abstract

We study the behavioural theory of Cardelli and Gordon’s Mobile Ambients. We
give an lts based operational semantics, and a labelled bisimulation based equivalence
that coincides with reduction barbed congruence. We also provide two up-to proof

techniques that we use to prove a set of algebraic laws, including the perfect firewall
equation.

Introduction

The calculus of Mobile Ambients [7], abbreviated MA, has been introduced as a process
calculus for describing mobile agents.
In MA, the term n[P ] represents an agent, or ambient, named n, executing the code P .

Intuitively, the ambient n is a bounded, protected, and (potentially) mobile space where the
computation P takes place. In turn P may contain other ambients, may perform (local)
communications, or may exercise capabilities, that allow entry to or exit from named ambi-
ents. Ambient names, such as n, are used to control access to the ambient’s computation
space and may be dynamically created as in the π-calculus, [21], using the construct (νn)P .
A system in MA consists of a collection of ambients running in parallel where the knowledge
of certain ambient names may be restricted.

A crucial notion in a process calculus, and therefore also in MA, is that of behavioural
equality between processes. For instance, behavioural equalities are used to verify that an
implementation respects its specification, or that a code optimisation is correct. Roughly
speaking, two processes are behavioural equivalent if no difference can be detected by inter-
acting with them. In this paper, we focus on bisimulation-based behavioural equivalences.
The notion of bisimulation was originally proposed in [23] and since then it has been used
to define semantic equivalences for a variety of process calculi such as CCS, [20], and the
π-calculus, [21].
Our touchstone equivalence is a generalisation of the reduction barbed congruence of [16].

Reduction barbed congruence is the largest equivalence relation which

• is a congruence for the language, that is is preserved by the constructs of the language

• preserves, in some sense, the reduction semantics of the language
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• preserves barbs, that is preserves some simple observational property of terms.

However, context-based behavioural equalities, such as reduction barbed congruence, suf-
fer from the universal quantification on contexts. This quantification makes very hard to
prove process equalities, and makes mechanical checking impossible. Simpler proof tech-
niques are based on labelled bisimilarities whose definitions do not use context quantifica-
tion. These bisimilarities should imply, or (better) coincide with, reduction barbed congru-
ence [24, 1, 11]. The behaviour of processes is characterised using co-inductive relations
defined over a labelled transition system, or LTS, a collection of relations of the form

P
α
−−→ Q.

Intuitively the action α in the judgement P
α
−−→ Q represents some small context with which

P can interact; if the labelled bisimilarity coincides with the reduction barbed congruence
then this collection of small contexts, codified as actions, is sufficient to capture all possible
interactions that processes can have with arbitrary contexts.

Even if the idea of bisimulation is very general and does not rely on the specific syntax
of the calculus, the definition of an appropriate notion of bisimilarity for Mobile Ambients
revealed to be harder than expected. The reasons of that can be resumed as follows:

• It is difficult for an ambient n to control interferences that may originate either from
other ambients in its environment or from the computation running at n itself, [17].

• Ambient mobility is asynchronous — no permission is required to migrate into an ambi-
ent. As noticed in [28], this may cause a stuttering phenomenon originated by ambients
that may repeatedly enter and exit another ambient. Any successful bisimilarity for
MA should not observe stuttering [28].

• One of the main algebraic laws of MA is the perfect firewall equation, [7]:

(νn)n[P ] = 0 for n not in P .

If you suppose P = in k.0, it is evident that a bisimilarity that want to capture this
law must not observe the movements of secret ambients, that is those ambients, like n,
whose names are not known by the rest of the system.

In [18], it is introduced a labelled bisimilarity for an “easier” variant of MA, called SAP,
equipped with (i) synchronous mobility, as in Levi and Sangiorgi’s Safe Ambients [17], and
(ii) passwords to exercise control over, and differentiate between, different ambients which
may wish to exercise a capability. The main result in [18] is the characterisation of reduction
barbed congruence in terms of the labelled bisimilarity. The result holds only in SAP and
heavily relies on the two features (i) and (ii) mentioned above.

This work is the natural continuation of [18] where, now, we tackle the original problem:
to provide bisimulation proof methods for Mobile Ambients.
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Contribution First of all, as in the Distributed π-calculus [14], we rewrite the syntax of
MA in two levels: processes and systems. This is because we are interested in studying
systems rather than processes. So, our behavioural equalities are defined over systems. This
little expedient allows us (i) to focus on higher-order actions, where movement of code is
involved, and (ii) to model stuttering in terms of standard τ -actions.
We give a new labelled transition system for MA which is used to define a labelled

bisimilarity over systems. The resulting bisimilarity can be defined either in late or in early
style. However, as in HOπ [25], the two formulations coincide, and we concentrate on the
easier late version, denoted by ≈. The definition of ≈ reminds us that of the asynchronous
bisimilarity found in [1]. Indeed, as for inputs in asynchronous π, our bisimilarity does not
observe the movements of secret ambients.
We prove that in MA the relation≈ completely characterises reduction barbed congruence

over systems. Then, we enhance our proof methods by defining two up-to proof techniques,
along the lines of [22, 27, 30]. More precisely, we develop both up-to-expansion and up-
to-context proof techniques and prove their soundness. We are not aware of other forms
of up-to proof techniques for higher-order calculi. Finally, we apply our bisimulation proof
methods to prove a collection of both old and new algebraic laws (among which the perfect
firewall equation); then we also prove the correctness of the protocol, introduced in [7], for
controlling access through a firewall.
The paper ends with Section 7, containing a discussion of our results and a comparison

with related work.

1 Mobile Ambients in Two Levels

In Table 1 we give the syntax of MA, where N denotes an infinite set of names. Unlike other
definitions of MA in the literature, our syntax is defined in a two-level structure, a lower one
for processes, and an upper one for systems.
As regards processes, the constructs for inactivity, parallel composition, restriction and

replicated prefixing are inherited from mainstream concurrent calculi, most notably the π-
calculus [21]. The inactive process, 0, does nothing. Parallel composition is denoted by
a binary operator, P | Q, that is commutative and associative. The restriction operator,
(νn)P , creates a new (unique) name n within a scope P . We have replicated prefixing,
!C.P , (rather than full replication) to create as many parallel replicas as needed. Specific
of the ambient calculus are the ambient, n[P ], and the prefix via capabilities, C.P . In
n[P ], n is the name of the ambient and P is the process running inside the ambient. The
process C.P executes an action regulated by the capability C, and then continues as the
process P . Capabilities are obtained from names; given a name n, the capability in n allows
entry into n, the capability out n allows exit out of n, and the capability open n allows the
destruction of the boundary of ambient n. For the sake of simplicity, at this stage, we omit
communication; it will be added in Section 5.
Systems are just a collection of ambients running in parallel where the knowledge of

certain ambient names may be restricted among two or more ambients.
We use a number of notational conventions. Parallel composition has the lowest prece-

dence among the operators. The process C.C ′.P is read as C.(C ′.P ). We omit trailing dead
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Table 1 The Mobile Ambients in Two Levels
Names: a, b, . . . , k, l,m, n, . . . ∈ N

Systems:
M,N ::= 0 termination

∣

∣ M1 |M2 parallel composition
∣

∣ (νn)M restriction
∣

∣ n[P ] ambient

Capabilities:
C ::= in n may enter into n

∣

∣ out n may exit out of n
∣

∣ open n may open n

Processes:
P,Q,R ::= 0 nil process

∣

∣ P1 | P2 parallel composition
∣

∣ (νn)P restriction
∣

∣ C.P prefixing
∣

∣ n[P ] ambient
∣

∣ !C.P replication

processes, writing C for C.0, and n[ ] for n[0]. Restriction (νn)P acts as binder for name
n, and the set of free names of P , fn(P ), is defined accordingly.

Operational semantics The dynamics of the calculus is given in the form of a reduction
relation over processes as described in Table 2. However, as systems are processes with a
special structure, the rules of Table 2 also describe the evolution of systems. The reduction
semantics relies on an auxiliary relation called structural congruence which brings the par-
ticipants of a potential interaction into contiguous positions. The definitions of structural
congruence, ≡, and of the reduction relation, _, can be found in the in Table 2. It is easy
to check that the reduction relation is closed under systems, that is, systems always reduce
to systems.

Behavioural semantics One of the main motivation of our work is the definition of a
notion of labelled bisimilarity for MA. Rather than simply defining an ad-hoc bisimulation
based equivalence over systems we first introduce a basic equivalence by considering nat-
ural desirable properties.We choose to start from a generalisation of the reduction barbed
congruence of [16].

Definition 1.1 A relation R over systems is reduction closed if M R N and M _ M ′

implies the existence of some N ′ such that N _∗ N ′ and M ′ R N ′, where _∗ denotes the
reflexive and transitive closure of _.
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Table 2 Structural Congruence and Reduction Rules

P | Q ≡ P | Q (Struct Par Comm)
(P | Q) | R ≡ P | (Q | R) (Struct Par Assoc)
P | 0 ≡ P (Struct Zero Par)
(νn)0 ≡ 0 (Struct Zero Res)
!C.P ≡ C.P | !C.P (Struct Repl Par)
(νn)(νm)P ≡ (νm)(νn)P (Struct Res Res)
n 6∈ fn(P ) implies (νn)(P | Q) ≡ P | (νn)Q (Struct Res Par)
n 6= m implies (νn)(m[P ]) ≡ m[(νn)P ] (Struct Res Amb)

≡ is the least equivalence relation which i) satisfies the axioms and rules above and
ii) is preserved by all contexts.

n[in m.P | Q] | m[R] _ m[n[P | Q] | R ] (Red In)

m[n[out m.P | Q] | R ] _ n[P | Q] | m[R] (Red Out)

open n.P | n[Q ] _ P | Q (Red Open)

P ≡ Q Q _ R R ≡ S implies P _ S (Red Struct)

_ is the least equivalence relation which i) satisfies the rules above and
ii) is preserved by all static contexts.

Definition 1.2 (Contexts) A static context is a context where the hole does not appear
under a prefix or a replication. A system context is a context generated by the following
grammar:

C[−] ::= −
∣

∣ C[−] |M
∣

∣ (νn)C[−]
∣

∣ n[C[−] | P ]

where M is an arbitrary system, and P is an arbitrary process.

Definition 1.3 A relation R over systems is contextual if M R N implies C[M ] R C[N ]
for all system contexts C[−].

In Mobile Ambients the observation predicateM ↓n denotes the possibility of the system
M of interacting with the environment via the ambient n. We writeM ↓n ifM ≡ (νm̃)(n[P ] |
M ′) where n 6∈ {m̃}. We write M ⇓n if there exists M

′ such that M _∗ M ′ and M ′ ↓n.

Definition 1.4 We say that a relation R over systems is barb preserving if M R N and
M ↓n implies N ⇓n.

Definition 1.5 (Reduction barbed congruence) Reduction barbed congruence, written
∼=, is the largest symmetric relation over systems which is reduction closed, contextual, and
barb preserving.

5



Table 3 Pre-actions, Env-actions, Actions, Concretions, and Outcomes

Pre-actions: π ::= Outcomes: O ::= P
∣

∣ K
∣

∣ in n
∣

∣ out n
∣

∣ open n
∣

∣ enter n
∣

∣ amb n
∣

∣ exit n

Env-actions: σ ::= Concretions: K ::= (νm̃)〈P 〉Q
∣

∣ k.enter n
∣

∣ k.exit n
∣

∣ ∗.enter n
∣

∣ ∗.exit n
∣

∣ n.enter k
∣

∣ k.open n

Actions: α ::= σ ∪ τ

2 A Labelled Transition Semantics

The capabilities or prefixes C in our language give rise, in the standard manner, [20], to

transitions of the form P
C
−−→ Q; for example we have

in n.P1 | P2
in n
−−−−→ P1 | P2.

However, similarly to [18], each of the capability C induces different and more complicated
actions. Our actions are defined over processes, although in the labelled bisimilarity we only
consider actions going from systems to systems. We make a distinction between pre-actions
and env-actions : the former denote the possibility to exercise certain capabilities whereas
the latter model the interaction of a system with its environment. As usual, we also have τ -
actions to model internal computations. Only env-actions and τ -actions model the evolution
of a system at run-time.

The pre-actions, defined in Table 4, are of the form P
π
−−→ O where the range of π

and of O, the outcomes, are given in Table 3. An outcome may be a simple process Q, if
for example π is a prefix of the language, or a concretion, of the form (νm̃)〈P 〉Q, when
an ambient boundary is somehow involved. Here, intuitively, P represents the part of the
system affected by the action, while Q is not affected, and m̃ is the set of private names
shared by P and Q. We adopt the convention that if K is the concretion (νm̃)〈P 〉Q, then
(νr)K is a shorthand for (νm̃)〈P 〉(νr)Q, if r 6∈ fn(P ), and the concretion (νrm̃)〈P 〉Q
otherwise. We have a similar convention for the rule (π Par): K | R is defined to be the
concretion (νm̃)〈P 〉(Q | R), where m̃ are chosen, using α-conversion if necessary, so that
fn(R) ∩ {m̃} = ∅.
The τ -actions, formally defined in Table 5, model the internal evolution of processes.

Basically, there are three possible interactions: entering, exiting , and opening of ambients.
Then, we also have the structural rules.

The env-actions, formally defined in Table 6, are of the form M
σ
−−→ M ′, where the

range of σ is given in Table 3. In practise, env-actions turn concretions in running systems
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Table 4 Labelled Transition System - Pre-actions

(π Pfx)
−

π.P
π
−−→ P

(π Repl Pfx)
−

!π.P
π
−−→ P | !π.P

(π Enter)
P

in n
−−−→ P1

m[P ]
enter n
−−−−−→ 〈m[P1]〉0

(π Amb)
−

n[P ]
amb n
−−−−→ 〈P 〉0

(π Exit)
P

out n
−−−−→ P1

m[P ]
exit n
−−−−−→ 〈m[P1]〉0

(π Res)
P

π
−−→ O n 6∈ fn(π)

(νn)P
π
−−→ (νn)O

(π Par)

P
π
−−→ O

P | Q
π
−−→ O | Q

Q | P
π
−−→ Q | O

by explicitly introducing the environment’s ambient interacting with the process in question.
The content of this ambient will be instantiated later, in the bisimilarity, with a process.
For convenience, we extend the syntax of processes with the special process ◦ to pinpoint
those ambients whose content will be instantiated later. The process ◦ does not reduce: it
is simply a placeholder. Notice that, unlike pre-actions and τ -actions, env-actions do not
have structural rules; this is because env-actions are supposed to be performed by complete
systems that can directly interact with the environment.
We call actions the set of env-actions to which τ has been added. Actions always go

from systems to systems and, in general, from processes to processes, even if the outcome
may possibly involve the special process ◦. As our bisimilarity will be defined over systems,
we will only consider actions (and not pre-actions) in its definition.

Proposition 2.1 If T is a system (resp. a process), and T
α
−−→ T ′ then T ′ is a system

(resp. a process), possibly containing the special process ◦.

Now, we explain the rules induced by the the prefix in, the immigration of ambients. A
typical example of an ambient m migrating into an ambient n is as follows:

(νm)(m[ in n.P1 | P2 ] | M) | n[Q] _ (νm)(M | n[m[P1 | P2 ] | Q])

The driving force behind the migration is the activation of the prefix in n, within the ambient
m. It induces a capability in the ambient m to migrate into n, which we formalise as a new
action enter n. Thus an application of (π Enter) gives

m[in n.P1 | P2]
enter n
−−−−−−→ 〈m[P1 | P2]〉0

and more generally, using the structural rules (π Res) and (π Par),

(νm)(m[in n.P1 | P2] | M)
enter n
−−−−−−→ (νm)〈m[P1 | P2]〉M.
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Table 5 Labelled Transition System - τ -actions

(τ Enter)

P
enter n
−−−−−→ (νp̃)〈P1〉P2 Q

amb n
−−−−→ (ν q̃)〈Q1〉Q2

(∗)

P | Q
τ
−−→ (νp̃)(ν q̃)(n[P1 | Q1] | P2 | Q2)

Q | P
τ
−−→ (ν q̃)(νp̃)(n[Q1 | P1] | Q2 | P2)

(τ Exit)
P

exit n
−−−−−→ (νm̃)〈k[P1]〉P2

n[P ]
τ
−−→ (νm̃)(k[P1] | n[P2])

(τ Amb)
P

τ
−−→ Q

n[P ]
τ
−−→ n[Q]

(τ Open)

P
open n
−−−−−→ P1 Q

amb n
−−−−→ (νm̃)〈Q1〉Q2

P | Q
τ
−−→ P1 | (νm̃)(Q1 | Q2)

Q | P
τ
−−→ (νm̃)(Q1 | Q2) | P1

(τ Res)
P

τ
−−→ P ′

(νn)P
τ
−−→ (νn)P ′

(τ Par)

P
τ
−−→ P ′

P | Q
τ
−−→ P ′ | Q

Q | P
τ
−−→ Q | P ′

(*) In rule (τ Enter) we require ((fn(P1) ∪ fn(P2)) ∩ {q̃}) = ((fn(Q1) ∪ fn(Q2)) ∩ {p̃}) = ∅

This means that the ambient m[in n.P1 | P2] has the capability to enter an ambient n; if
the capability is exercised, the ambient m[P1 | P2] will enter n while M will be the residual
at the point of execution. Of course the action can only be executed if there is an ambient n
in parallel. The rule (π Amb) allows to check for the presence of ambients. So for example,
we have

n[Q]
amb n
−−−−−→ 〈Q〉0.

Here, the concretion 〈Q〉0 says that Q is in n, while 0 is outside. Finally, the communication
(τ Enter) allows these two complementary actions to occur simultaneously, effecting the
migration of the ambient m[P1 | P2] from its current computation space into the ambient n,
giving rise to the original move above:

(νm)(m[ in n.P1 | P2 ] | M) | n[Q]
τ
−−→ (νm)(M | n[m[P1 | P2 ] | Q]).

Note that this is a higher-order interaction, as the ambient m[P1 | P2] is transferred between
two computation spaces.
We have not said yet what env-actions are useful for. They model the interaction of

mobile agents with their environment. So, for instance, using the rule (Enter Shh), we
derive from

(νm)(m[in n.P1 | P2] | M)
enter n
−−−−−−→ (νm)〈m[P1 | P2]〉M.

the transition

(νm)(m[in n.P1 | P2] | M)
∗.enter n
−−−−−−→ (νm)(n[◦ | m[P1 | P2]] |M).

This transition denotes a private (and therefore unknown) ambient entering an ambient
n provided by the environment. The computation running at n can be added later by
instantiating the placeholder ◦.
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Table 6 Labelled Transition System - Env-actions

(Enter)
P

enter n
−−−−−→ (νm̃)〈k[P1]〉P2

(†)

P
k.enter n
−−−−−−→ (νm̃)(n[◦ | k[P1]] | P2)

(Co-Enter)
P

amb n
−−−−→ (νm̃)〈P1〉P2

(†)

P
n.enter k
−−−−−−→ (νm̃)(n[P1 | k[ ◦ ]] | P2)

(Exit)
P

exit n
−−−−−→ (νm̃)〈k[P1]〉P2

(†)

P
k.exit n
−−−−−−→ (νm̃)(k[P1] | n[ ◦ | P2])

(Open)
P

amb n
−−−−→ (νm̃)〈P1〉P 2

P
k.open n
−−−−−−→ k[◦ | (νm̃)(P1 | P2)]

(Enter Shh)
P

enter n
−−−−−→ (νm̃)〈k[P1]〉P2

(‡)

P
∗.enter n
−−−−−−→ (νm̃)(n[◦ | k[P1]] | P2)

(Exit Shh)
P

exit n
−−−−−→ (νm̃)〈k[P1]〉P2

(‡)

P
∗.exit n
−−−−−−→ (νm̃)(k[P1] | n[◦ | P2])

(†) In rules (Enter), (Co-Enter), and (Exit) we require k 6∈ m̃

(‡) In rules (Enter Shh) and (Exit Shh) we require k 6= n and k ∈ m̃

Had the ambient name m not been restricted, we would have used the rule (Enter) to
derive

m[in n.P1 | P2] | M
m.enter n
−−−−−−−→ n[◦ | m[P1 | P2]] |M

to model a global ambient m which enters an ambient n provided by the environment.

The rules of emigration are along the same lines. A typical example of ambient m
emigrating from ambient n is as follows:

n[m[out n.P1 | P2] | Q] _ n[Q] | m[P1 | P2].

The driving force behind the emigration is the activation of the prefix out n within the
ambient m. It induces a capability in the ambient m to emigrate from n, which we formalise
as a new action exit n. Thus an application of the rule (π Exit), followed by (π Par), gives

m[out n.P1 | P2] | Q
exit n
−−−−−→ 〈m[P1 | P2]〉Q.

Here when this capability is exercised the code Q will remain inside the ambient n while the
ambient m[P1 | P2] will move outside. However to actually effect the emigration of m we
need a further context, namely the ambient n from which to emigrate. This leads to the rule
(τ Exit); an application of which gives the original move above:
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n[m[out n.P1 | P2] | Q]
τ
−−→ n[Q] | m[P1 | P2].

Again, env-actions can model the exiting of both private and global ambients from an
ambient provided by the environment.
Finally, we leave the rules which control the opening as an easy exercise for the reader.
We end this section with a theorem which asserts that the LTS-based semantics coincides

with the reduction semantics of Section 1.

Theorem 2.2

1. If P
τ
−−→ P ′ then P _ P ′

2. If P _ P ′ then P
τ
−−→≡ P ′.

Proof By transition induction. Part 1 is the most difficult. It requires a result describing

the structure of a process P and the outcome O for any pre-action π such that P
π
−−→ O.

For instance,

• If P
enter n
−−−−−−→ O then there exist p̃,m, P1, P2, P3, with n 6∈ p̃, such that

P ≡ (νp̃)(m[in n.P1 | P2] | P3) and O ≡ (νp̃)〈m[P1 | P2]〉P3.

• If P
exit n
−−−−−→ O then there exist p̃,m, P1, P2, P3, with n 6∈ p̃, such that

P ≡ (νp̃)(m[out n.P1 | P2] | P3) and O ≡ (νp̃)〈m[P1 | P2]〉P3.

Similar results are necessary for the remaining pre-actions. The proof of these results is
standard. ¤

Corollary 2.3 If M ≡ N and M
τ
−−→ M ′, then there is N ′ such that N

τ
−−→ N ′ and

M ′ ≡ N ′.

From the results above, it is easy to establish that if M ∼= N then

• M ⇓ n iff N ⇓ n

• M =⇒M ′ implies there is N ′ such that N =⇒ N ′ and M ′ ∼= N ′.

In the sequel we will use these properties without comment.
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3 Characterising Reduction Barbed Congruence

In this section we define a labelled bisimilarity for MA that completely characterises reduction
barbed congruence.
Since we are interested in weak bisimilarities, that abstract over τ -actions, we introduce

the notion of weak action. The definition is standard: =⇒ denotes the reflexive and transitive
closure of

τ
−−→;

α
==⇒ denotes =⇒

α
−−→=⇒;

α̂
==⇒ denotes =⇒ if α = τ and

α
==⇒ otherwise.

In the previous section we said that actions (and more precisely env-actions) introduce
a special process ◦ to pinpoint those ambients whose content will be instantiated in the
bisimilarity. It should be pointed out that we allow structural congruence to rearrange terms
containing ◦: with respect to structural congruence, ◦ behaves like the inactive process 0.
Before defining the bisimilarity we explain how ◦ is instantiated.

Definition 3.1 Let T , T1, and T2 range over both systems and processes. Then, given a
process P , we define:

0 • P
def
= 0 (T1 | T2) • P

def
= (T1 • P ) | (T2 • P )

n[R] • P
def
= n[R • P ] (νn)T • P

def
= (νn)(T • P ) if n 6∈ fn(P )

◦ • P
def
= P C.R • P

def
= C.(R • P )

!C.R • P
def
= !C.(R • P ).

Now, everything is in place to define our bisimilarity.

Definition 3.2 (Late bisimilarity) A symmetric relation R over systems is a late bisim-
ulation if M R N implies:

- if M
α
−−→M ′, α 6∈ {∗.enter n, ∗.exit n}, then there is a system N ′ such that N

α̂
==⇒

N ′ and for all processes P it holds M ′ • P R N ′ • P ;

- if M
∗.enter n
−−−−−−→ M ′ then there is a system N ′ such that N | n[ ◦ ] =⇒ N ′ and for all

processes P it holds M ′ • P R N ′ • P ;

- if M
∗.exit n
−−−−−−→ M ′ then there is a system N ′ such that n[◦ | N ] =⇒ N ′ and for all

processes P it holds M ′ • P R N ′ • P .

M and N are late bisimilar, written M ≈ N , if M R N for some late bisimulation R.

The bisimilarity above has a universal quantification over the process P provided by the
environment. This process instantiates the special process ◦ generated via env-actions. The
bisimilarity is defined in a late style as the existential quantification precedes the universal
one. Another possibility would be to define the bisimilarity in early style where the universal
quantification over the environment’s contribution P precedes that over the derivative N ′.
We write ≈e to denote this early variant. By definition, every late bisimulation is also a
early one, while the converse, in general, does not hold. However, in our case, as in HOπ
[25], we will prove that late and early bisimilarity actually coincide. As a consequence, late
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bisimilarity will be our main labelled bisimilarity because the derivatives N ′ do not depend
on processes P .
Finally, notice that, in the definition of bisimilarity, actions ∗.enter n and ∗.exit n are

treated apart asking for weaker matching requirements. This is because both actions are
not observable. Somehow, this is very similar to what happens with input actions in the
asynchronous π-calculus [15, 3].

3.1 Soundness

Late and early bisimilarity represent two proof techniques for reduction barbed congruence.
More precisely we prove that they are both contextual and contained in reduction barbed
congruence.
The following lemma is crucial for proving that ≈ is contextual. This lemma will be also

used for proving the soundness of the up-to-context proof techniques in Section 4.

Lemma 3.3 Let S be a contextual symmetric relation between systems. Let (M,N) ∈ S be
a pair satisfying the bisimulation conditions in S, that is,

- if M
α
−−→M ′, α 6∈ {∗.enter n, ∗.exit n}, then there is a system N ′ such that N

α̂
==⇒

N ′ and for all processes P it holds M ′ • P S N ′ • P ;

- if M
∗.enter n
−−−−−−→ M ′ then there is a system N ′ such that N | n[ ◦ ] =⇒ N ′ and for all

processes P it holds M ′ • P S N ′ • P ;

- if M
∗.exit n
−−−−−−→ M ′ then there is a system N ′ such that n[◦ | N ] =⇒ N ′ and for all

processes P it holds M ′ • P S N ′ • P .

Then, all the pairs (C[M ], C[N ]), for any system context C[−], also satisfy the bisimulation
conditions in S.

Proof The relation S is contextual, and as such it is the smallest relation between systems
such that:

- if M S N , then M | H S N | H for all systems H;

- if M S N , then (νm)M S (νm)N for all names m;

- if M S N , then m[M | P ] S m[N | P ] for all names m and processes P .

We prove the closure of C[M ] S C[N ] under the conditions for being a bisimulation by
induction on the structure of C[−].

• C[−] = −.

This case holds because M S N satisfies the bisimulation conditions in SS.

• C[−] = (νm)D[−].

We know that D[M ] S D[N ] satisfies the bisimulation conditions in S, and we want to
prove that (νm)D[M ] S (νm)D[N ] satisfies the bisimulation conditions in S as well.

Suppose (νm)D[M ]
α
−−→. We perform a case analysis on α.

12



– (νm)D[M ]
τ
−−→ O1.

This can only be derived fromD[M ]
τ
−−→ O1, where O1 = (νm)O1. The induction

hypothesis tells us that there exists a system O2 such that D[N ] =⇒ O2 and
O1 S O2. We can derive (νm)D[N ] =⇒ (νm)O2 and conclude (νm)O1 S (νm)O2

because S is closed under restriction.

– (νm)D[M ]
k.enter n
−−−−−−→ O1.

Observe that this must have been derived from

D[M ]
enter n
−−−−−→ (ν r̃)〈k[M1]〉M2

(νm)D[M ]
enter n
−−−−−→ (νm)(ν r̃)〈k[M1]〉M2

(νm)D[M ]
k.enter n
−−−−−−→ O1 ≡ (νm)(ν r̃)(n[◦ | k[M1]] |M2)

for some processM1 and systemM2. Remark that this implies m 6= n and m 6= k.

As D[M ]
enter n
−−−−−→ (ν r̃)〈k[M1]〉M2 then D[M ]

k.enter n
−−−−−−→ (ν r̃)(n[◦ | k[M1]] |

M2) = M ′. The induction hypothesis then tells us that there exist systems

N ′, A,B such that D[N ] =⇒ A
k.enter n
−−−−−−→ B =⇒ N ′, and for all processes P

it holds M ′ • P S N ′ • P . As A
k.enter n
−−−−−−→ B, the system B must be of the

form (νs̃)(n[◦ | k[N1]] | N2), for some process N1 and system N2. It also holds

A
enter n
−−−−−→ (νs̃)〈k[N1]〉N2. This implies (νm)A

enter n
−−−−−→ (νm)(νs̃)〈k[N1]〉N2,

from which we can derive (νm)A
k.enter n
−−−−−−→ C ≡ (νm)B = (νm)(νs̃)(n[◦ |

k[N1]] | N2). We obtain (νm)D[N ] =⇒ (νm)A
k.enter n
−−−−−−→ C =⇒≡ (νm)N ′.

Call (νm)N ′ = O2. We can conclude that for all processes P , it holds O1 • P S
O2 • P up to structural congruence, because S is closed under restriction.

– (νm)D[M ]
k.exit n
−−−−−−→ O1.

Observe that this must have been derived from

D[M ]
exit n
−−−−−→ (ν r̃)〈k[M1]〉M2

(νm)D[M ]
exit n
−−−−−→ (νm)(ν r̃)〈k[M1]〉M2

(νm)D[M ]
k.exit n
−−−−−−→ O1 ≡ (νm)(ν r̃)(n[◦ |M2] | k[M1])

for some process M1 and system M2. Remark that this implies m 6= n and

m 6= k. As D[M ]
exit n
−−−−−→ (ν r̃)〈k[M1]〉M2 then D[M ]

k.exit n
−−−−−−→ (ν r̃)(n[◦ |

M2] | k[M1]) = M ′. The induction hypothesis then tells us that there exist

systems N ′, A,B such thatD[N ] =⇒ A
k.exit n
−−−−−−→ B =⇒ N ′, and for all processes

P it holds M ′ • P S N ′ • P . As A
k.exit n
−−−−−−→ B, the system B must be of the

form (νs̃)(n[◦ | N2] | k[N1]), for some process N1 and system N2. It also holds

A
exit n
−−−−−→ (νs̃)〈k[N1]〉N2. This implies (νm)A

exit n
−−−−−→ (νm)(νs̃)〈k[N1]〉N2,

from which we can derive (νm)A
k.exit n
−−−−−−→ C ≡ (νm)B = (νm)(νs̃)(n[◦ |

N2] | k[N1]). We obtain (νm)D[N ] =⇒ (νm)A
k.exit n
−−−−−−→ C =⇒≡ (νm)N ′. Call
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(νm)N ′ = O2. We can conclude that for all processes P , it holds O1 •P S O2 •P
up to structural congruence, because S is closed under restriction.

– (νm)D[M ]
n.enter k
−−−−−−→ O1.

Observe that this must have been derived from

D[M ]
amb n
−−−−→ (ν r̃)〈M1〉M2

(νm)D[M ]
amb n
−−−−→ (νm)(ν r̃)〈M1〉M2

(νm)D[M ]
n.enter k
−−−−−−→ O1 ≡ (νm)(ν r̃)(n[k[ ◦ ] |M1] |M2)

for some processM1 and systemM2. Remark that this implies m 6= n and m 6= k.

As D[M ]
amb n
−−−−→ (ν r̃)〈M1〉M2 then D[M ]

n.enter k
−−−−−−→ (ν r̃)(n[k[ ◦ ] | M1] |

M2) = M ′. The induction hypothesis then tells us that there exist systems

N ′, A,B such that D[N ] =⇒ A
n.enter k
−−−−−−→ B =⇒ N ′, and for all processes P

it holds M ′ • P S N ′ • P . As A
n.enter k
−−−−−−→ B, the system B must be of the

form (νs̃)(n[k[ ◦ ] | N1] | N2), for some process N1 and system N2. It also holds

A
amb n
−−−−→ (νs̃)〈N1〉N2. This implies (νm)A

amb n
−−−−→ (νm)(νs̃)〈N1〉N2, from

which we can derive (νm)A
n.enter k
−−−−−−→ C ≡ (νm)B = (νm)(νs̃)(n[k[ ◦ ] |

N1] | N2). We obtain (νm)D[N ] =⇒ (νm)A
n.enter k
−−−−−−→ C =⇒≡ (νm)N ′. Call

(νm)N ′ = O2. We can conclude that for all processes P , it holds O1 •P S O2 •P
up to structural congruence, because S is closed under restriction.

– (νm)D[M ]
k.open n
−−−−−−→ O1.

Observe that this must have been derived from

D[M ]
amb n
−−−−→ (ν r̃)〈M1〉M2

(νm)D[M ]
amb n
−−−−→ (νm)(ν r̃)〈M1〉M2

(νm)D[M ]
k.open n
−−−−−−→ O1 ≡ k[◦ | (νm)(ν r̃)(M1 |M2)]

for some processM1 and systemM2. Remark that this implies m 6= n and m 6= k.

As D[M ]
amb n
−−−−→ (ν r̃)〈M1〉M2 then D[M ]

k.open n
−−−−−−→ k[◦ | (ν r̃)(M1 | M2)] =

M ′. Also observe that O1 ≡ (νm)k[◦ | (ν r̃)(M1 |M2)] = (νm)M
′. The induction

hypothesis then tells us that there exist systems N ′, A,B such that D[N ] =⇒

A
k.open n
−−−−−−→ B =⇒ N ′, and for all processes P it holds M ′ • P S N ′ • P . As

A
k.open n
−−−−−−→ B, the system B must be of the form k[◦ | (νs̃)(N1 | N2)], for some

process N1 and system N2. It also holds A
amb n
−−−−→ (νs̃)〈N1〉N2. This implies

(νm)A
amb n
−−−−→ (νm)(νs̃)〈N1〉N2, from which we can derive (νm)A

k.open n
−−−−−−→

C ≡ k[◦ | (νm)(νs̃)(N1 | N2)] ≡ (νm)k[◦ | (νs̃)(N1 | N2)] = (νm)N
′. We obtain

(νm)D[N ] =⇒ (νm)A
k.open n
−−−−−−→ C =⇒≡ (νm)N ′. Call (νm)N ′ = O2. We

can conclude that for all processes P , it holds O1 • P S O2 • P up to structural
congruence, because S is closed under restriction.
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– (νm)D[M ]
∗.enter n
−−−−−−→ O1.

Observe that there are two possible derivations.

∗ Suppose:

D[M ]
enter n
−−−−−→ (ν r̃)〈m[M1]〉M2

(νm)D[M ]
enter n
−−−−−→ (νm)(ν r̃)〈m[M1]〉M2

(νm)D[M ]
∗.enter n
−−−−−−→ O1 ≡ (νm)(ν r̃)(n[◦ | m[M1]] |M2)

where m 6∈ r̃, for some process M1 and system M2. Remark that this im-

plies n 6∈ r. As D[M ]
enter n
−−−−−→ (ν r̃)〈m[M1]〉M2 then D[M ]

m.enter n
−−−−−−−→

(ν r̃)(n[◦ | m[M1]] |M2) = M ′. The induction hypothesis then tells us that

there exist systems N ′, A,B such that D[N ] =⇒ A
m.enter n
−−−−−−−→ B =⇒ N ′,

and for all processes P it holds M ′ • P S N ′ • P . As A
m.enter n
−−−−−−−→ B, the

system B must be of the form (νs̃)(n[◦ | m[N1]] | N2), for some process N1

and system N2, where m 6∈ s̃. It also holds A
enter n
−−−−−→ (νs̃)〈m[N1]〉N2.

This implies (νm)A
enter n
−−−−−→ (νm)(νs̃)〈m[N1]〉N2, from which we can de-

rive (νm)A | n[ ◦ ]
τ
−−→ C ≡ (νm)B = (νm)(νs̃)(n[◦ | N2] | m[N1]). We

obtain (νm)(D[N ] | n[ ◦ ]) ≡ (νm)D[N ] | n[ ◦ ] =⇒ (νm)A | n[ ◦ ]
τ
−−→

C =⇒≡ (νm)N ′. Call (νm)N ′ = O2. We can conclude that for all processes
P , it holds O1 • P S O2 • P up to structural congruence, because S is closed
under restriction.

∗ Suppose:

D[M ]
enter n
−−−−−→ (ν r̃)〈k[M1]〉M2

(νm)D[M ]
enter n
−−−−−→ (νm)(ν r̃)〈k[M1]〉M2

(νm)D[M ]
∗.enter n
−−−−−−→ O1 ≡ (νm)(ν r̃)(n[◦ | k[M1]] |M2)

where k ∈ r̃, for some process M1 and system M2. Remark that n 6∈ r̃. As

D[M ]
enter n
−−−−−→ (ν r̃)〈k[M1]〉M2 then D[M ]

∗.enter n
−−−−−−→ (ν r̃)(n[◦ | k[M1]] |

M2) = M ′. The induction hypothesis then tells us that there exist a
system N ′ such that D[N ] | n[ ◦ ] =⇒ N ′, and for all processes P it holds
M ′ •P S N ′ •P . We can derive (νm)D[N ] | n[ ◦ ] ≡ (νm)(D[N ] | n[ ◦ ]) =⇒
(νm)N ′. Call (νm)N ′ = O2. We can conclude that for all processes P , it
holds O1 •P S O2 •P up to structural congruence, because S is closed under
restriction.

– (νm)D[M ]
∗.exit n
−−−−−−→ O1.

Observe that there are two possible derivations.

∗ Suppose:

D[M ]
exit n
−−−−−→ (ν r̃)〈m[M1]〉M2

(νm)D[M ]
exit n
−−−−−→ (νm)(ν r̃)〈m[M1]〉M2

(νm)D[M ]
∗.exit n
−−−−−−→ O1 ≡ (νm)(ν r̃)(n[◦ |M2] | m[M1])
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where m 6∈ r̃, for some process M1 and system M2. Remark that this implies

n 6∈ r. As D[M ]
exit n
−−−−−→ (ν r̃)〈m[M1]〉M2 then D[M ]

m.exit n
−−−−−−→ (ν r̃)(n[◦ |

M2] | m[M1]) = M ′. The induction hypothesis then tells us that there

exist systems N ′, A,B such that D[N ] =⇒ A
m.exit n
−−−−−−→ B =⇒ N ′, and

for all processes P it holds M ′ • P S N ′ • P . As A
m.exit n
−−−−−−→ B, the

system B must be of the form (νs̃)(n[◦ | N2] | m[N1]), for some process

N1 and system N2, where m 6∈ s̃. It also holds A
exit n
−−−−−→ (νs̃)〈k[N1]〉N2.

This implies (νm)A
exit n
−−−−−→ (νm)(νs̃)〈m[N1]〉N2, from which we can derive

(νm)n[◦ | A]
τ
−−→ C ≡ (νm)B = (νm)(νs̃)(n[◦ | N2] | m[N1]). We obtain

(νm)(D[N ] | n[ ◦ ]) ≡ (νm)D[N ] | n[ ◦ ] =⇒ (νm)A | n[ ◦ ]
τ
−−→ C =⇒≡

(νm)N ′. Call (νm)N ′ = O2. We can conclude that for all processes P , it
holds O1 •P S O2 •P up to structural congruence, because S is closed under
restriction.

∗ Suppose:

D[M ]
exit n
−−−−−→ (ν r̃)〈k[M1]〉M2

(νm)D[M ]
exit n
−−−−−→ (νm)(ν r̃)〈k[M1]〉M2

(νm)D[M ]
∗.exit n
−−−−−−→ O1 ≡ (νm)(ν r̃)(n[◦ |M2] | k[M1])

where k ∈ r̃, for some process M1 and system M2. Remark that n 6∈ r̃.

As D[M ]
exit n
−−−−−→ (ν r̃)〈k[M1]〉M2 then D[M ]

∗.exit n
−−−−−−→ (ν r̃)(n[◦ | M2] |

k[M1]) = M ′. The induction hypothesis then tells us that there exist a
system N ′ such that n[◦ | D[N ]] =⇒ N ′, and for all processes P it holds
M ′ •P S N ′ •P . We can derive (νm)D[N ] | n[◦ ] ≡ (νm)(D[N ] | n[◦ ]) =⇒
(νm)N ′. Call (νm)N ′ = O2. We can conclude that for all processes P , it
holds O1 •P S O2 •P up to structural congruence, because S is closed under
restriction.

• C[−] = D[−] | H.

We know that D[M ] S D[N ] satisfies the bisimulation conditions in S, and we want
to prove that D[M ] | H S D[N ] | H satisfies the bisimulation conditions in S as well.

We perform a case analysis on the transition D[M ] | H
α
−−→ O1.

We consider first the cases when there is no interaction between D[M ] and H.

– D[M ] | H
τ
−−→ O1, because D[M ]

τ
−−→ M ′ and O1 ≡ M ′ | H. The induction

hypothesis tells us that there exists a N ′ such that D[N ] =⇒ N ′ and M ′ S N ′.
Thus, D[N ] | H =⇒ O2 ≡ N ′ | H and O1 ≡ M ′ | H S N ′ | H ≡ O2 because S is
closed under parallel composition.

– D[M ] | H
τ
−−→ O1, because H

τ
−−→ H ′ and O1 ≡ D[M ] | H ′. Let O2 = D[N ] |

H ′: it holds D[N ] | H
τ
−−→ O2, and O1 S O2 because D[M ] S D[N ] and S is

closed under parallel composition.
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– D[M ] | H
k.enter n
−−−−−−→ O1.

There are two possible derivations.

∗ Suppose:

D[M ]
enter n
−−−−−→ (ν r̃)〈k[M1]〉M2

D[M ] | H
enter n
−−−−−→ (ν r̃)〈k[M1]〉M2 | H

D[M ] | H
k.enter n
−−−−−−→ O1 ≡ (ν r̃)(n[◦ | k[M1]] |M2 | H)

for some processM1 and systemM2. Remark that k 6∈ r̃. As D[M ]
enter n
−−−−−→

(ν r̃)〈k[M1]〉M2 then D[M ]
k.enter n
−−−−−−→ (ν r̃)(n[◦ | k[M1]] | M2) = M ′.

The induction hypothesis then tells us that there exist systems N ′, A,B such

that D[N ] =⇒ A
k.enter n
−−−−−−→ B =⇒ N ′, and for all processes P it holds

M ′ • P S N ′ • P . As A
k.enter n
−−−−−−→ B, the system B must be of the form

(νs̃)(n[◦ | k[N1]] | N2), for some process N1 and system N2. It also holds

A
enter n
−−−−−→ (νs̃)〈k[N1]〉N2. This implies A | H

enter n
−−−−−→ (νs̃)〈k[N1]〉N2 |

H, from which we can derive A | H
k.enter n
−−−−−−→ (νs̃)(n[◦ | k[N1]] | N2 |

H) ≡ B | H. We obtain D[N ] | H =⇒ A | H
k.enter n
−−−−−−→≡ B | H =⇒≡

N ′ | H. Call N ′ | H = O2. We can conclude that for all processes P , it
holds O1 •P S O2 •P up to structural congruence, because S is closed under
parallel composition.

∗ Suppose:

H
enter n
−−−−−→ (ν r̃)〈k[H1]〉H2

D[M ] | H
enter n
−−−−−→ (ν r̃)〈k[H1]〉H2 | D[M ]

D[M ] | H
k.enter n
−−−−−−→ O1 ≡ (ν r̃)(n[◦ | k[H1]] | H2 |M)

for some process H1 and system H2. Remark that k 6∈ r̃. We can construct
the following derivation:

H
enter n
−−−−−→ (ν r̃)〈k[H1]〉H2

D[N ] | H
enter n
−−−−−→ (ν r̃)〈k[H1]〉H2 | D[N ]

D[N ] | H
k.enter n
−−−−−−→ (ν r̃)(n[◦ | k[H1]] | H2 | D[N ]) = O2

We can conclude that for all processes P , it holds O1 • P S O2 • P up to
structural congruence, because D[M ] S D[N ] and S is closed under parallel
composition.

– D[M ] | H
k.exit n
−−−−−−→ O1.

There are two possible derivations.
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∗ Suppose:

D[M ]
exit n
−−−−−→ (ν r̃)〈k[M1]〉M2

D[M ] | H
exit n
−−−−−→ (ν r̃)〈k[M1]〉M2 | H

D[M ] | H
k.exit n
−−−−−−→ O1 ≡ (ν r̃)(n[◦ |M2 | H] | k[M1])

for some process M1 and system M2. Remark that k 6∈ r̃. As D[M ]
exit n
−−−−−→

(ν r̃)〈k[M1]〉M2 then D[M ]
k.exit n
−−−−−−→ (ν r̃)(n[◦ | M2] | k[M1]) = M ′.

The induction hypothesis then tells us that there exist systems N ′, A,B such

that D[N ] =⇒ A
k.exit n
−−−−−−→ B =⇒ N ′, and for all processes P it holds

M ′ • P S N ′ • P . Remark that N ′ ≡ (νh̃)n[◦ | N3] | N4, for some N3, N4. As

A
k.exit n
−−−−−−→ B, the system B must be of the form (νs̃)(n[◦ | N2] | k[N1]),

for some process N1 and system N2. It also holds A
exit n
−−−−−→ (νs̃)〈k[N1]〉N2.

This implies A | H
exit n
−−−−−→ (νs̃)〈k[N1]〉N2 | H, from which we can derive

A | H
k.exit n
−−−−−−→ (νs̃)(n[◦ | N2 | H] | k[N1]) ≡ B • (◦ | H). We obtain

D[N ] | H =⇒ A | H
k.exit n
−−−−−−→ B • (◦ | H) =⇒≡ N ′ • (◦ | H). Call

N ′ • (◦ | H) = O2. As for all processes P it holds M ′ • P S N ′ • P , we can
conclude that for all processes Q, it holds O1 • Q S O2 • Q up to structural
congruence, because O1 •Q ≡M ′ • (Q | H) S N ′ • (Q | H) ≡ O2 •Q.

∗ Suppose:

H
exit n
−−−−−→ (ν r̃)〈k[H1]〉H2

D[M ] | H
exit n
−−−−−→ (ν r̃)〈k[H1]〉H2 | D[M ]

D[M ] | H
k.exit n
−−−−−−→ O1 ≡ (ν r̃)(n[◦ | H2 | D[M ]] | k[H1])

for some process H1 and system H2. Remark that k 6∈ r̃. We can construct
the following derivation:

H
exit n
−−−−−→ (ν r̃)〈k[H1]〉H2

D[N ] | H
exit n
−−−−−→ (ν r̃)〈k[H1]〉H2 | D[N ]

D[N ] | H
k.exit n
−−−−−−→ (ν r̃)(n[◦ | H2 | D[N ]] | k[H1]) = O2

We can conclude that for all processes P , it holds O1 • P S O2 • P up to
structural congruence, because D[M ] S D[N ] and S is closed under parallel
composition and ambient.

– D[M ] | H
n.enter k
−−−−−−→ O1.

There are two possible derivations.

18



∗ Suppose:

D[M ]
amb n
−−−−→ (ν r̃)〈M1〉M2

D[M ] | H
amb n
−−−−→ (ν r̃)〈M1〉M2 | H

D[M ] | H
n.enter k
−−−−−−→ O1 ≡ (ν r̃)(n[k[ ◦ ] |M1] |M2 | H)

for some processM1 and systemM2. Remark that k, n 6∈ r̃. AsD[M ]
amb n
−−−−→

(ν r̃)〈M1〉M2 then D[M ]
n.enter k
−−−−−−→ (ν r̃)(n[k[ ◦ ] | M1] | M2) = M ′.

The induction hypothesis then tells us that there exist systems N ′, A,B such

that D[N ] =⇒ A
n.enter k
−−−−−−→ B =⇒ N ′, and for all processes P it holds

M ′ • P S N ′ • P . As A
n.enter k
−−−−−−→ B, the system B must be of the form

(νs̃)(n[k[ ◦ ] | N1] | N2), for some process N1 and system N2. It also holds

A
amb n
−−−−→ (νs̃)〈N1〉N2. This implies A | H

amb n
−−−−→ (νs̃)〈N1〉N2 | H, from

which we can derive A | H
n.enter k
−−−−−−→ (νs̃)(n[k[◦ ] | N1] | N2 | H) ≡ B | H.

We obtain D[N ] | H =⇒ A | H
n.enter k
−−−−−−→≡ B | H =⇒≡ N ′ | H. Call

N ′ | H = O2. We can conclude that for all processes P , it holdsO1•P S O2•P
up to structural congruence, because S is closed under parallel composition.

∗ Suppose:

H
amb n
−−−−→ (ν r̃)〈H1〉H2

D[M ] | H
amb n
−−−−→ (ν r̃)〈H1〉H2 | D[M ]

D[M ] | H
n.enter k
−−−−−−→ O1 ≡ (ν r̃)(n[k[ ◦ ] | H1] | H2 | D[M ])

for some process H1 and system H2. Remark that k 6∈ r̃. We can construct
the following derivation:

H
amb n
−−−−→ (ν r̃)〈H1〉H2

D[N ] | H
amb n
−−−−→ (ν r̃)〈H1〉H2 | D[N ]

D[N ] | H
n.enter k
−−−−−−→ (ν r̃)(n[k[ ◦ ] | H1] | H2 | D[N ]) = O2

We can conclude that for all processes P , it holds O1 • P S O2 • P up to
structural congruence, because D[M ] S D[N ] and S is closed under parallel
composition.

– D[M ] | H
k.open n
−−−−−−→ O1.

There are two possible derivations.
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∗ Suppose:

D[M ]
amb n
−−−−→ (ν r̃)〈M1〉M2

D[M ] | H
amb n
−−−−→ (ν r̃)〈M1〉M2 | H

D[M ] | H
k.open n
−−−−−−→ O1 ≡ k[◦ | (ν r̃)(M1 |M2) | H]

for some processM1 and systemM2. Remark that k, n 6∈ r̃. AsD[M ]
amb n
−−−−→

(ν r̃)〈M1〉M2 then D[M ]
k.open n
−−−−−−→ k[◦ | (ν r̃)(M1 | M2)]. The induction

hypothesis then tells us that there exist systems N ′, A,B such that D[N ] =⇒

A
k.open n
−−−−−−→ B =⇒ N ′, and for all processes P it holds M ′ • P S N ′ • P .

As A
k.open n
−−−−−−→ B, the system B must be of the form k[◦ | (νs̃)(N1 | N2)],

for some process N1 and system N2. It also holds A
amb n
−−−−→ (νs̃)〈N1〉N2.

This implies A | H
amb n
−−−−→ (νs̃)〈N1〉N2 | H, from which we can derive

A | H
k.open n
−−−−−−→ k[◦ | (νs̃)(N1 | N2) | H] ≡ B • (◦ | H). We obtain

D[N ] | H =⇒ A | H
k.open n
−−−−−−→≡ B • (◦ | H) =⇒≡ N ′ • (◦ | H). Call

N ′ • (◦ | H) = O2. We can conclude that for all processes P , it holds
O1 • P S O2 • P up to structural congruence, because for all processes P it
holds M ′ • (P | H) S N ′ • (P | H).

∗ Suppose:

H
amb n
−−−−→ (νh̃)〈H1〉H2

D[M ] | H
amb n
−−−−→ (νh̃)〈H1〉H2 | D[M ]

D[M ] | H
k.open n
−−−−−−→ O1 ≡ k[◦ | (νh̃)(H1 | H2) | D[M ]]

for some process H1 and system H2. Remark that k 6∈ h̃. We can construct
the following derivation:

H
amb n
−−−−→ (νh̃)〈H1〉H2

D[N ] | H
amb n
−−−−→ (νh̃)〈H1〉H2 | D[N ]

D[N ] | H
k.open n
−−−−−−→ k[◦ | (νh̃)(H1 | H2) | D[N ]] = O2

We can conclude that for all processes P , it holds O1 • P S O2 • P up to
structural congruence, because D[M ] S D[N ] and S is closed under parallel
composition and ambient.

– D[M ] | H
∗.enter n
−−−−−−→ O1.

There are two possible derivations.
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∗ Suppose:

D[M ]
enter n
−−−−−→ (ν r̃)〈k[M1]〉M2

D[M ] | H
enter n
−−−−−→ (ν r̃)〈k[M1]〉M2 | H

D[M ] | H
∗.enter n
−−−−−−→ O1 ≡ (ν r̃)(n[◦ | k[M1]] |M2 | H)

where k ∈ r̃, for some process M1 and system M2. Remark that n 6∈ r̃. As

D[M ]
enter n
−−−−−→ (ν r̃)〈k[M1]〉M2 then D[M ]

∗.enter n
−−−−−−→ (ν r̃)(n[◦ | k[M1]] |

M2) = M ′. The induction hypothesis then tells us that there exist a
system N ′ such that D[N ] | n[ ◦ ] =⇒ N ′, and for all processes P it holds
M ′•P S N ′•P . We can deriveD[N ] | n[◦] | H =⇒ N ′ | H. CallN ′ | H = O2.
We can conclude that for all processes P , it holds O1 • P S O2 • P up to
structural congruence, because S is closed under parallel composition.

∗ Suppose:

H
enter n
−−−−−→ (ν r̃)〈k[H1]〉H2

D[M ] | H
enter n
−−−−−→ (ν r̃)〈k[H1]〉H2 | D[M ]

D[M ] | H
∗.enter n
−−−−−−→ O1 ≡ (ν r̃)(n[◦ | k[H1]] | H2 | D[M ])

where k ∈ r̃ for some process H1 and system H2. We can construct the
following derivation:

H
enter n
−−−−−→ (ν r̃)〈k[H1]〉H2

D[N ] | H
enter n
−−−−−→ (ν r̃)〈k[H1]〉H2 | D[N ] n[ ◦ ]

amb n
−−−−→ 〈 ◦ 〉0

D[N ] | H | n[ ◦ ]
τ
−−→ (ν r̃)(n[◦ | k[H1]] | H2 | D[N ]) = O2

We can conclude that for all processes P , it holds O1 • P S O2 • P up to
structural congruence, because D[M ] S D[N ] and S is closed under parallel
composition.

– D[M ] | H
∗.exit n
−−−−−−→ O1.

There are two possible derivations.

∗ Suppose:

D[M ]
exit n
−−−−−→ (ν r̃)〈k[M1]〉M2

D[M ] | H
exit n
−−−−−→ (ν r̃)〈k[M1]〉M2 | H

D[M ] | H
∗.exit n
−−−−−−→ O1 ≡ (ν r̃)(n[◦ |M2 | H] | k[M1])

for some process M1 and system M2. Remark that k ∈ r̃. As D[M ]
exit n
−−−−−→

(ν r̃)〈k[M1]〉M2 then D[M ]
∗.exit n
−−−−−−→ (ν r̃)(n[◦ | M2] | k[M1]) = M ′.

The induction hypothesis then tells us that there exist systems N ′ such that
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n[◦ | D[N ]] =⇒ N ′, and for all processes P it holds M ′ • P S N ′ • P .
Remark that N ′ ≡ (νs̃)n[◦ | N3] | N4, for some N3, N4. We can derive
n[ ◦D[N ] | H] =⇒ (νs̃)n[◦ | N3 | H] | N4. Call (νs̃)n[◦ | N3 | H] | N4 = O2.
As for all processes P it holds M ′ • P S N ′ • P , we can conclude that for all
processes Q, it holds O1 • Q S O2 • Q up to structural congruence, because
O1 •Q ≡M ′ • (Q | H) S N ′ • (Q | H) ≡ O2 •Q.

∗ Suppose:

H
exit n
−−−−−→ (ν r̃)〈k[H1]〉H2

D[M ] | H
exit n
−−−−−→ (ν r̃)〈k[H1]〉H2 | D[M ]

D[M ] | H
∗.exit n
−−−−−−→ O1 ≡ (ν r̃)(n[◦ | H2 | D[M ]] | k[H1])

for some process H1 and system H2. Remark that k ∈ r̃. We can construct
the following derivation:

H
exit n
−−−−−→ (ν r̃)〈k[H1]〉H2

D[N ] | H
exit n
−−−−−→ (ν r̃)〈k[H1]〉H2 | D[N ]

n[◦ | D[N ] | H]
τ
−−→ (ν r̃)(n[◦ | H2 | D[N ]] | k[H1]) = O2

We can conclude that for all processes P , it holds O1 • P S O2 • P up to
structural congruence, because D[M ] S D[N ] and S is closed under parallel
composition and ambient.

Then, we consider the cases when there is interaction between D[M ] and H.

– D[M ] | H
τ
−−→ O1, because

D[M ]
enter n
−−−−−→ (νm̃)〈k[M1]〉M2 and H

amb n
−−−−→ (νh̃)〈H1〉H2.

Then O1 ≡ (νh̃, m̃)(n[k[M1] | H1] | M2 | H2). We distinguish the cases k ∈ m̃,
and k 6∈ m̃.

∗ k 6∈ m̃. As D[M ]
enter n
−−−−−→ (νm̃)〈k[M1]〉M2, it also holds D[M ]

k.enter n
−−−−−−→

M ′ ≡ (νm̃)(n[◦ | k[M1]] | M2). The induction hypothesis tells us that there

exists a system N ′ such that D[N ]
k.enter n
=======⇒ N ′ ≡ (νm̃)(n[◦ | k[N1]] | N2),

and for all processes P , it holdsM ′ •P S N ′ •P . But if D[N ]
k.enter n
=======⇒ N ′,

thenD[N ]
enter n
======⇒ (νm̃)〈k[N1]〉N2. This implies thatD[N ] | H

τ
==⇒ O2 ≡

(νh̃, ñ)(n[k[N1] | H1] | N2 | H2). Since for all processes P , M
′ • P S N ′ • P ,

it also holds M ′ • H1 S N ′ • H1, and O1 S O2 follows because S is closed
under parallel composition and restriction.

∗ k ∈ m̃. As D[M ]
enter n
−−−−−→ (νm̃)〈k[M1]〉M2, it also holds D[M ]

enter n
−−−−−→

M ′ ≡ (νm̃)(n[◦ | k[M1]] | M2). The induction hypothesis tells us that there
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exists a system N ′ such that D[N ] | n[ ◦ ] =⇒ N ′ ≡ (νñ)(n[◦ | N1] | N2), and
for all processes P , it holds M ′ • P S N ′ • P . We can derive D[N ] | H =⇒
O2 ≡ (νh̃, ñ)(n[N1 | H1] | N2 | H2). Since for all processes P ,M

′•P S N ′•P ,
it also holds M ′ • H1 S N ′ • H1, and O1 S O2 follows because S is closed
under parallel composition and restriction.

– D[M ] | H
τ
−−→ O1, because

D[M ]
amb n
−−−−→ (νm̃)〈M1〉M2 and H

enter n
−−−−−→ (νh̃)〈k[H1]〉H2.

Then O1 ≡ (νh̃, m̃)(n[k[H1] | M1] | M2 | H2). As D[M ]
amb n
−−−−→ (νm̃)〈M1〉M2,

it also holds D[M ]
n.enter k
−−−−−−→ M ′ ≡ (νm̃)(n[k[ ◦ ] | M1] | M2). The induction

hypothesis tells us that there exists a system N ′ such that D[N ]
n.enter k
=======⇒ N ′ ≡

(νñ)(n[k[ ◦ ] | N1] | N2), and for all processes P , it holds M ′ • P S N ′ • P .

As D[N ]
n.enter k
=======⇒ N ′, we can derive D[N ]

amb k
====⇒ (νñ)〈N1〉N2. It follows

D[N ] | H =⇒ (νh̃, ñ)(n[k[H1] | N1] | N2 | H2) = O2. Since for all processes P , it
holds M ′ • P S N ′ • P , we have M ′ • h[H1] S N ′ • h[H1], and O1 S O2 follows
because S is closed under parallel composition and restriction.

• C[−] = n[D[−] | P ], where P is an arbitrary process.

We know that D[M ] S D[N ] satisfies the bisimulation conditions in S, and we want to
prove that n[D[M ] | P ] S n[D[N ] | P ] behaves as a bisimulation as well. We perform

a case analysis on the transition n[D[M ] | P ]
α
−−→ O1.

– n[D[M ] | P ]
τ
−−→ O1, because D[M ]

τ
−−→ M ′. Then O1 ≡ n[M ′ | P ]. The

induction hypothesis tells us that there exists a system N ′ such that D[N ] =⇒ N ′

and M ′ S N ′. We can derive n[D[N ] | P ] =⇒ n[N ′ | P ] and conclude n[M ′ |
P ] S n[N ′ | P ] because S is closed under ambient.

– n[D[M ] | P ]
τ
−−→ O1, because P

τ
−−→ P ′. Then O1 ≡ n[D[M ] | P ′]. Call

O2 = n[D[N ] | P ′]. Then O1 S O2 because D[M ] S D[N ], and S is closed under
the contexts of the form C[−] = n[− | Q] where Q is a process.

– n[D[M ] | P ]
τ
−−→ O1, because D[M ]

exit n
−−−−−→ (ν r̃)〈k[M1]〉M2. Then O1 ≡

(ν r̃)(k[M1] | n[M2 | P ]). We distinguish the two cases k ∈ r̃ and k 6∈ r̃.

∗ k 6∈ r̃. From D[M ]
exit n
−−−−−→ (ν r̃)〈k[M1]〉M2 we can derive D[M ]

k.exit n
−−−−−−→

(ν r̃)(k[M1] | n[◦ |M2]). The induction hypothesis tells us that there exists a

system N ′ such that D[N ]
k.exit n
======⇒ N ′ ≡ (νs̃)(k[N1] | n[◦ | N2]) and for all

processes Q, it holds M ′ •Q S N ′ •Q. But D[N ]
k.exit n
======⇒ N ′ can only be

derived from D[N ]
exit n
=====⇒ (νs̃)〈k[N1]〉N2 and thus n[D[N ] | P ] =⇒ N ′•P .

As for all processes Q, it holds M ′ •Q S N ′ •Q, we can derive (ν r̃)(k[M1] |
n[P |M2]) S (νs̃)(k[N1] | n[P | N2]), as required.
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∗ k ∈ r̃. From D[M ]
exit n
−−−−−→ (ν r̃)〈k[M1]〉M2 we can derive D[M ]

∗.exit n
−−−−−−→

(ν r̃)(k[M1] | n[◦ | M2]). The induction hypothesis tells us that there exists
a system N ′ such that n[◦ | D[N ]] =⇒ N ′ ≡ (νs̃)(k[N1] | n[◦ | N2]), and for
all processes Q, it holds M ′ •Q S N ′ •Q. We can instantiate the placeholder
◦ with the process P , thus obtaining the transition n[D[N ] | P ] =⇒ N ′ • P .
As for all processes Q, it holds M ′ •Q S N ′ •Q , we have O1 = (νm̃)(k[M1] |
n[P |M2]) ≡M ′ • P S N ′ • P ≡ (νs̃)(k[N1] | n[P | N2]) = O2, as required.

– n[D[M ] | P ]
τ
−−→ O1, because P

exit n
−−−−−→ (ν r̃)〈k[P1]〉P 2. This implies O1 ≡

(ν r̃)(k[P1] | n[D[M ] | P2]). It also holds n[D[N ] | P ]
τ
−−→≡ (ν r̃)(k[P1] |

n[D[N ] | P2]). Call this last term O2. The relation O1 S O2 follows because
D[M ] S D[N ] and from the closure properties of S.

– n[D[M ] | P ]
τ
−−→ O1, and the τ action is generated by an interaction between

D[M ] and P . There are three cases.

∗ D[M ]
amb m
−−−−→ (ν r̃)〈M1〉M2 and P

open m
−−−−−→ P ′. Then O1 = n[(ν r̃)(M1 |

M2) | P
′]. It holds D[M ]

n.open m
−−−−−−→ n[◦ | (ν r̃)(M1 | M2)]. The induction

hypothesis tells us that there exists a system N ′ such that D[N ]
n.open m
−−−−−−→

N ′, and for all processes Q it holds M ′ • Q S N ′ • Q. The system N ′ must

be of the form n[◦ | (νs̃)(N1 | N2)]. The transition D[N ]
n.open m
=======⇒ N ′

must have been derived from D[N ]
amb m
−−−−→ (νs̃)〈N1〉N2. This implies that

n[D[N ] | P ] =⇒ n[(νs̃)(N1 | N2) | P ′]. Call this last term O2. We can
instantiate the placeholder ◦ with the process P ′, thus obtaining the transition
n[D[N ] | P ] =⇒ N ′ • P . As for all processes Q, it holds M ′ • Q S N ′ • Q ,
we have O1 = n[(ν r̃)(M1 |M2) | P

′] ≡M ′ • P ′ S N ′ • P ′ ≡ n[(νs̃)(N1 | N2) |
P ′] = O2, as required.

∗ D[M ]
enter m
−−−−−−→ and P

amb m
−−−−→, or D[M ]

amb m
−−−−→ and P

enter m
−−−−−−→. Call

A1 the outcome of the interaction between D[M ] and P . In both cases, by an
analysis carried on previously, we know that there is a process A2 such that

D[N ] | P =⇒ A2, with A1 S A2. We obtain n[D[M ] | P ]
τ
−−→ n[A1] = O1,

and n[D[N ] | P ] =⇒ n[A2]. The relation n[A1] S n[A2] follows from the
closure of S under ambient.

– n[D[M ] | P ]
n.enter k
−−−−−−→ O1. Then O1 ≡ n[k[ ◦ ] | D[M ] | P ]. But n[D[N ] |

P ]
n.enter k
−−−−−−→ O2, where O2 ≡ n[k[ ◦ ] | D[N ] | P ]. For all processes Q, O1 •Q S

O2 •Q follows from D[M ] S D[N ] because of the closure properties of S.

– n[D[M ] | P ]
n.exit m
−−−−−−→ m[ ◦ ] | n[D[M ] | P ′] = O1, because P

out m
−−−−→ P ′. It

also holds n[D[N ] | P ]
n.exit m
−−−−−−→ m[ ◦ ] | n[D[N ] | P ′]. Call this last term O2.

Then, for all processes Q, the relation O1 •Q S O2 •Q follows from D[M ] S D[N ]
because of the closure properties of S.

¤
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Theorem 3.4 Late bisimilarity is contextual.

Proof Let S be the smallest binary relation between systems such that:

1. ≈ ⊆ S;

2. if M S N , then C[M ] S C[N ] for all system contexts C[−].

Remark that S is symmetric because of the symmetry of ≈. We prove that S is a late
bisimilarity up to ≡ by induction on the definition of S.

• M S N because M ≈ N .

Immediate.

• C[M ] S C[N ] because M S N .

The induction hypothesis assures that (M,N) ∈ S is a pair satisfying the bisimu-
lation conditions in S. Lemma 3.3 assures that the pair (C[M ], C[N ]) satisfies the
bisimulation conditions in S.

¤

Note that the above proof does not rely on the transitivity of the late bisimulation. Note
also that it is easy to adapt Lemma 3.3 and the above proof to show that early bisimilarity
is contextual.

Proposition 3.5 Late bisimilarity is an equivalence relation.

Proof [Sketch] The only non-trivial property is transitivity. We basically need Theorem 3.4
to say that ≈ is preserved by parallel composition and ambient nesting. These two properties
are necessary to deal with the env-actions ∗.enter n and ∗.exit n. ¤

Proposition 3.6 Early bisimilarity is contextual, and it is an equivalence relation.

As stated in the following Lemma, there is a close relationship between the observation
predicate M ↓n and a particular action that M can emit.

Lemma 3.7

1. If M
n.enter k
−−−−−−−→M ′ then M ↓n;

2. if M ↓n then there exists a system M ′ such that M
n.enter k
−−−−−−−→M ′, for some k.

We conclude that both late and early bisimilarity are contained in the reduction barbed
congruence.

Theorem 3.8 (Soundness) The following inclusions hold ≈⊆≈e⊆∼=.

Proof The first inclusion holds by definition. The second one comes from Proposition 3.6
and the fact that early bisimilarity is reduction closed and barb-preserving. ¤
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Table 7 Contexts for visible actions

α = k.enter n Cα[−] = n[◦ | done[in k.out k.out n]] | −
α = k.exit n Cα[−] = (νa)a[in k.out k.done[out a]] | n[◦ | −]
α = n.enter k Cα[−] = (νa)a[in n.k[out a.(◦ | (νb)b[out k.out n.done[out b]])]] | −
α = k.open n Cα[−] = k[◦ | (νa, b)(open b.open a.done[out k] | a[− | open n.b[out a]])]

where a and b are fresh.

3.2 Completeness

We now prove that late and early bisimilarity are more than proof techniques. They actually
characterise reduction barbed congruence. The main challenge here is to design the contexts
capable to observe our visible actions. The definition of these contexts, Cα[−], for every
visible action α, is given in Table 7. The special ambient name done is used as fresh barb to
signal the consumption of actions.
To prove our characterisation result it suffices to show that reduction barbed congruence

is contained in the late bisimilarity. Then, by Theorem 3.8 we can conclude that late,
early, and reduction barbed congruence, they all coincide. The proof that reduction barbed
congruence implies the late bisimilarity requires the correspondence between visible actions
α and their corresponding contexts Cα[−].
The following lemma says that the defining contexts are sound, that is, they can success-

fully mimic the execution of visible actions.

Lemma 3.9 Let M be a system, and let α ∈ {k.enter n, k.exit n, n.enter k, k.open n}.

For all processes P , if M
α
−−→M ′ then Cα[M ] • P =⇒∼= M ′ • P | done[ ].

Proof The proof is by case analysis on α.

α = k.enter n Let P be a process. We know that M
k.enter n
−−−−−−→M ′. Then

M ≡ (νm̃)(k[in n.M1 |M2] |M3)

where ({n, k} ∪ fn(P )) ∩ {m̃} = ∅, and

M ′ ≡ (νm̃)(n[◦ | k[M1 |M2]] |M3).

Now,

Ck.enter n[M ] • P

≡ (νm̃)(n[P | done[in k.out k.out n]] | k[in n.M1 |M2] |M3)

_ (νm̃)(n[P | done[in k.out k.out n] | k[M1 |M2]] |M3)

_ (νm̃)(n[P | k[M1 |M2 | done[out k.out n]]] |M3)

_ (νm̃)(n[P | done[out n] | k[M1 |M2]] |M3)

_ (νm̃)(done[ ] | n[P | k[M1 |M2]] |M3)

≡ (νm̃)(n[◦ | k[M1 |M2] |M3]) • P | done[ ]

= M ′ • P | done[ ]
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This implies Ck.enter n[M ] • P =⇒∼= M ′ • P | done[ ].

α = k.exit n Let P be a process. We know that M
k.exit n
−−−−−−→M ′. Then

M ≡ (νm̃)(k[out n.M1 |M2] |M3)

where ({n, k} ∪ fn(P )) ∩ {m̃} = ∅, and

M ′ ≡ (νm̃)(k[M1 |M2] | n[◦ |M3]).

Now,

Ck.exit nM • P

≡ (νm̃)((νa)a[in k.out k.done[out a]] | n[P | k[out n.M1 |M2] |M3)]

_ (νm̃)((νa)a[in k.out k.done[out a]] | k[M1 |M2] | n[P |M3])

_ (νm̃)((νa)k[a[out k.done[out a]] |M1 |M2] | n[P |M3])

_ (νm̃)((νa)a[done[out a]] | k[M1 |M2] | n[P |M3])

_ (νm̃)((νa)(done[ ] | a[ ]) | k[M1 |M2] | n[P |M3])
∼= (νm̃)(k[M1 |M2] | n[◦ | P3]) • P | done[ ]

= M ′ • P | done[ ]

This implies Ck.exit n[M ] • P =⇒∼= M ′ • P | done[ ].

α = n.enter k Let P be a process. We know that M
n.enter k
−−−−−−→M ′. Then

M ≡ (νm̃)(n[M1] |M2)

where ({n, k} ∪ fn(P )) ∩ {m̃} = ∅, and

M ′ ≡ (νm̃)(n[M1 | k[ ◦ ]] |M2).

Now,

Cn.enter k[M ] • P

≡ (νm̃)((νa)a[in n.k[out a.(P | (νb)b[out k.out n.done[out b]])]] | n[M1] |M2)

_ (νm̃)(n[M1 | (νa)a[k[out a.(P | (νb)b[out k.out n.done[out b]])]]] |M2)

_ (νm̃)(n[M1 | (νa)a[] | k[P | (νb)b[out k.out n.done[out b]]]] |M2)

_ (νm̃)(n[M1 | (νa)a[] | k[P ] | (νb)b[out n.done[out b]]] |M2)

_ (νm̃)(n[M1 | (νa)a[] | k[P ]] | (νb)b[done[out b]] |M2)

_ (νm̃)(n[M1 | (νa)a[] | k[P ]] | (νb)b[] | done[] |M2)
∼= (νm̃)(n[M1 | k[ ◦ ]] |M2) • P | done[ ]

= M ′ • P | done[ ]

This implies Cn.enter k[M ] • P =⇒∼= M ′ • P | done[ ].
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Table 8 Auxiliary contexts and processes

−1 ⊕−2 = (νo)(o[ ] | open o.−1 | open o.−2)

SPYα〈i, j,−〉 = (i[out n] | −)⊕ (j[out n] | −)
if α ∈ {k.enter n, k.exit n, k.open n, ∗.enter n, ∗.exit n}

SPYα〈i, j,−〉 = (i[out k.out n] | −)⊕ (j[out k.out n] | −) if α ∈ {n.enter k}

α = k.open n Let P be a process. We know thatM
k.open n
−−−−−−→M ′. ThenM ≡ (νm̃)(n[M1] |

M2), where n ∈ {m̃}, and M ′ ≡ k[◦ | (νm̃)(M1 | M2)]. Names a and b are fresh for
M . Now,

Ck.open n[M ] • P

≡ k[P | (νa, b)(open b.open a.done[out k] |

a[(νm̃)(n[M1] |M2) | open n.b[out a]])]

_ k[P | (νa, b)(open b.open a.done[out k] | a[(νm̃)(M1 |M2) | b[out a]])]

_ k[P | (νa, b)(open b.open a.done[out k] | a[(νm̃)(M1 |M2)] | b[])]

_ k[P | (νa, b)(open a.done[out k] | a[(νm̃)(M1 |M2)])]

_ k[P | (νa, b)(done[out k] | (νm̃)(M1 |M2))]

_ k[P | (νm̃)(M1 |M2))]done[]

≡ k[◦ | (νm̃)(M1 |M2)] • P | done[ ]

= M ′ • P | done[ ]

This implies Ck.open n[M ] • P =⇒∼= M ′ • P | done[ ].
¤

To complete the correspondence proof between actions α and their contexts Cα[−], we
have to prove the converse of Lemma 3.9, formalised in Lemma 3.12. Such result requires a
few technical definitions given in Table 8.
The symbol ⊕ denotes a form of internal choice, whereas the context SPYα〈i, j,−〉 is a

technical tool to guarantee that the process P provided by the environment does not perform
any action. This is necessary when proving completeness to guarantee that the contribution
P is the same in both sides. The ability of SPYα〈i, j, P 〉 to “spy” on P derives from the fact
that one the two fresh barbs i and j is lost when P performs any action. The property of
SPYα〈i, j,−〉 is captured in the following lemma.

Lemma 3.10 Let M be a system which may possibly contain an occurrence of the special

process ◦. If M • SPYα〈i, j, P 〉
τ
−−→ O and O ⇓i,j, where i, j are fresh for P and M , then

there exists a system M ′ such that:

1. O = M ′ • SPYα〈i, j, P 〉;

2. M
τ
−−→M ′.
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Proof For 1), the definition of • assures that there exists an arbitrary context C[−] such
that C[SPYα〈i, j, P 〉] = M • SPYα〈i, j, P 〉, and names in P are not bound in C[−]. The

construction of SPYα〈i, j, P 〉 assures that if C[SPYα〈i, j, P 〉]
τ
−−→ Q, then either there is an

arbitrary context C ′ such that Q = C ′[SPYα〈i, j, P 〉], or Q = C[P ′] where SPYα〈i, j, P 〉
τ
−−→

P ′. But if SPYα〈i, j, P 〉
τ
−−→ P ′, then P ′ ⇓ i 6⇓ j, or P ′ ⇓ j 6⇓ i. As O ⇓i,j , O must be the

outcome of the first reduction, and as such there exists an arbitrary context C ′[−] such that

O = C ′[SPYα〈i, j, P 〉]. Let M ′ = C ′[◦]. As C[SPYα〈i, j, P 〉]
τ
−−→ C ′[SPYα〈i, j, P 〉], names

in P cannot be bound in C ′[−]. This implies O = C ′[SPYα〈i, j, P 〉] =M ′ • SPYα〈i, j, P 〉, as
required for 1).

For 2), M •SPYα〈i, j, P 〉 = C[SPYα〈i, j, P 〉]
τ
−−→ C ′[SPYα〈i, j, P 〉] =M ′ •SPYα〈i, j, P 〉

implies M = C[◦]
τ
−−→ C ′[◦] =M ′, as required. ¤

We also need a simple result on arbitrary contexts.

Lemma 3.11 Let C[−] and C ′[−] be arbitrary contexts, P, P ′ processes, and r a fresh name

for C[−] and P , such that C[r[P ]]
τ
−−→ C ′[r[P ′]]. Then C[0]

τ
−−→ C ′[0].

We can finally prove the correspondence between actions and contexts.

Lemma 3.12 Let M be a system, let α ∈ {k.enter n, k.exit n, n.enter k, k.open n}, and
let i, j be fresh names for M . For all processes P with {i, j} ∩ fn(P ) = ∅, if Cα[M ] •
SPYα〈i, j, P 〉 =⇒∼= O | done[ ] and O ⇓i,j, then there exists a system M ′ such that O ∼=

M ′ • SPYα〈i, j, P 〉 and M
α
==⇒M ′.

Proof The proof depends on the precise definition of the context. The main argument is
that in the reduction

Cα[M ] • SPYα〈i, j, P 〉 =⇒∼= O | done[ ]

the fresh ambient done[ ] can only be unleashed ifM performs the action α, possibly preceded
or followed by some internal actions. The fresh barbs i, j assure that the process P does not
take part in the reduction, and that the component SPYα〈i, j, P 〉 is found intact after the
reduction. The barbed congruence is used to garbage collect a possible (νa)a[ ] ambient. We
proceed by case analysis on α.

α = k.enter n. Observe that

Cα[M ] • SPYα〈i, j, P 〉 = n[SPYα〈i, j, P 〉 | done[in k.out k.out n]] |M .

As O ⇓i,j and done is fresh, by several applications of Lemma 3.10, there must be
a system D[−] such that O | done[ ] ≡ D[done[ ]] • SPYα〈i, j, P 〉 and Cα[M ] =⇒
D[done[ ]]. As P cannot reduce and done is fresh, the ambient n does not migrate
during the reduction. Moreover, as M is a system, the ambient n cannot be opened.
Also observe that the ambient done must consume the prefix in k, thus requiring the
presence of an ambient k inside the ambient n during the reduction. More precisely,
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there exist systems M1 and M2 and a static context C[−] such that:

Cα[M ] • SPYα〈i, j, P 〉

= n[SPYα〈i, j, P 〉 | done[in k.out k.out n]] |M

=⇒
τ
−−→ (νm̃)(n[SPYα〈i, j, P 〉 | done[in k.out k.out n] |M1] |M2)
τ
−−→ (νm̃)(n[SPYα〈i, j, P 〉 | C[done[out k.out n]]] |M2)

=⇒ D[done[ ]] • SPYα〈i, j, P 〉

≡ D[0] • SPYα〈i, j, P 〉 | done[ ]

≡ O | done[ ]

Examining the above reductions sequence from Cα[M ]•SPYα〈i, j, P 〉 we conclude that

M =⇒
k.enter n
−−−−−−→ (νm̃)(n[◦ |M1] |M2).

As the name done is fresh for M , by several applications of Lemma 3.11, we also have
that

(νm̃)(n[◦ | 0 |M1] |M2) • SPYα〈i, j, P 〉 =⇒ D[0] • SPYα〈i, j, P 〉.

Repeated application of Lemma 3.10(2) gives (νm̃)(n[◦ | 0 | M1] | M2) =⇒ D[0],
and therefore, as ≡ is closed under reduction, there is a M ′, M ′ ≡ D[0], such that

M
k.enter n
=======⇒M ′, as desired.

α = k.exit n. Observe that

Ck.exit n[M ] • SPYα〈i, j, P 〉 = (νa)a[in k.out k.done[out a]] | n[SPYα〈i, j, P 〉 |M ] .

To unleash the ambient done, the ambient a must perform both its capabilities, and as
its name is restricted the ambient a will be empty at the end of reduction. As P cannot
reduce, and M is a system, the ambient n does not migrate during the reduction. Also
observe that the ambient a must consume the prefix in k, thus requiring the presence
of an ambient k at top-level. More precisely, there exist a system M1 and a static
contexts D[−] and E[−] such that:

Ck.exit n[M ] • SPYα〈i, j, P 〉

= (νa)a[in k.out k.done[out a]] | n[SPYα〈i, j, P 〉 |M ]

=⇒ (νa)a[in k.out k.done[out a]] |M1 • SPYα〈i, j, P 〉
τ
−−→ (νa)D[a[out k.done[out a]]] • SPYα〈i, j, P 〉

=⇒ (νa)E[done[ ] | a[ ]] • SPYα〈i, j, P 〉 (?)
∼= E[0] • SPYα〈i, j, P 〉 | done[ ]

≡ O | done[ ]

Examining the above reductions sequence from Ck.exit n[M ]•SPYα〈i, j, P 〉 we conclude
that

M =⇒
k.exit n
−−−−−−→M1.
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As the name done is fresh forM , by several applications of Lemma 3.11 to the reduction
marked by (?) we have:

(νa)a[in k.out k.0] |M1 • SPYα〈i, j, P 〉
=⇒ (νa)E[0 | a[ ]] • SPYα〈i, j, P 〉.

Again, as a is fresh, by several applications of Lemma 3.11, and reducing underneath
(νa), we obtain:

(νa)(0 |M1) • SPYα〈i, j, P 〉
=⇒ (νa)E[0 | 0] • SPYα〈i, j, P 〉.

Summarising,

M1 • SPYα〈i, j, P 〉 ≡ (νa)(0 |M1) • SPYα〈i, j, P 〉 =⇒ (νa)E[0 | 0] • SPYα〈i, j, P 〉

and, as ≡ is closed under reductions,

M1 =⇒≡ E[0].

So, assuming M ′ = E[0], we can conclude.

α = n.enter k. Observe that

Cα[M ] • SPYα〈i, j, P 〉 =
(νa)a[in n.k[out a.(SPYα〈i, j, P 〉 | (νb)b[out k.out n.done[out b]])]] |M

To unleash the ambient done, the ambient a must use its in n capability, and the
ambient b must exit from a. Moreover the ambient b must unleash all its capabilities.
This implies that at the end of the reduction both secret ambients a and b will be empty.
Also observe that the prefix in n must be consumed, thus requiring the presence of an
ambient n at top-level.

More precisely, there exist a system M1 and static contexts D[−] and E[−] such that

Cn.enter k[M ] • SPYα〈i, j, P 〉

= (νa)a[in n.(k[out a.(SPYα〈i, j, P 〉 | (νb)b[out k.out n.done[out b]])])] |M

=⇒ (νa)a[in n.(k[out a.(SPYα〈i, j, P 〉 | (νb)b[out k.out n.done[out b]])])] |M1
τ
−−→ D[(νa)a[k[out a.(SPYα〈i, j, P 〉 | (νb)b[out k.out n.done[out b]]])]]

=⇒ E[done[] | (νb)b[ ]] • SPYα〈i, j, P 〉 (?)
∼= E[done[]] • SPYα〈i, j, P 〉
∼= E[0] • SPYα〈i, j, P 〉 | done[]

= O | done[ ]
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Observe that,

D[(νa)a[k[out a.(SPYα〈i, j, P 〉 | (νb)b[out k.out n.done[out b]]])]]
∼= D[k[SPYα〈i, j, P 〉 | (νb)b[out k.out n.done[out b]]]]

Thus, by examining the above reductions sequence from Cn.enter k[M ] • SPYα〈i, j, P 〉
we conclude that

M =⇒
n.enter k
−−−−−−→∼= D[k[ ◦ ]].

As the name done is fresh, several applications of Lemma 3.11 to the above reduction
marked by (?) gives:

D[(νa)a[k[out a.(SPYα〈i, j, P 〉 | (νb)b[out k.out n.0])]]]
=⇒ E[0 | (νb)b[ ]] • SPYα〈i, j, P 〉

Again, as b is fresh, by several applications of Lemma 3.11 and reducing underneath
(νb), we have:

D[(νa)a[k[out a.(SPYα〈i, j, P 〉 | 0)]]]
=⇒ E[0 | 0] • SPYα〈i, j, P 〉.

Summarising,

D[k[SPYα〈i, j, P 〉]] ∼= D[(νa)a[k[out a.(SPYα〈i, j, P 〉 | 0)]]] =⇒∼= E[0]•SPYα〈i, j, P 〉.

and, as ∼= is closed under reduction, this implies:

D[k[ ◦ ]] • SPYα〈i, j, P 〉 = D[k[SPYα〈i, j, P 〉]] =⇒≡ E[0] • SPYα〈i, j, P 〉.

Now, by applying Lemma 3.10 there must be a system M̂ such that: D[k[ ◦ ]] =⇒ M̂
and M̂ • SPYα〈i, j, P 〉 ∼= E[0] • SPYα〈i, j, P 〉. Finally, as

M =⇒
n.enter k
−−−−−−→∼= D[k[ ◦ ]]

and ∼= is reduction closed, there must by M ′ such that M =⇒M ′ and

M ′ • SPYα〈i, j, P 〉 ∼= E[0] • SPYα〈i, j, P 〉 ∼= O

as required.

α = k.open n. Observe that

Ck.open n[M ] • SPYα〈i, j, P 〉 =
k[SPYα〈i, j, P 〉 | (νa, b)(open b.open a.done[out k] | a[M | open n.b[out a]])]

where a and b are fresh. To unleash the ambient done, the ambient a must use its
open n capability, and the ambient b must exit from a. Moreover both the empty
ambients a and b will be opened before done is activated. Also observe that the prefix
open n must be consumed, thus requiring the presence of an ambient n inside the
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ambient a. More precisely, there exist a system M1, processes Qi, and a static context
D[−] such that:

Ck.open n[M ] • SPYα〈i, j, P 〉

= k[SPYα〈i, j, P 〉 | (νa, b)(open b.open a.done[out k] | a[M | open n.b[out a]])]

=⇒ k[SPYα〈i, j, P 〉 | (νa, b)(open b.open a.done[out k] | a[M1 | open n.b[out a]])]
τ
−−→ k[SPYα〈i, j, P 〉 | (νa, b)(open b.open a.done[out k] | a[Q | b[out a]])]

=⇒ k[SPYα〈i, j, P 〉 | (νa, b)(open b.open a.done[out k] | a[Q1 | b[out a]])]
τ
−−→ k[SPYα〈i, j, P 〉 | (νa, b)(open b.open a.done[out k] | b[ ] | a[Q1])]

=⇒ k[SPYα〈i, j, P 〉 | (νa, b)(open b.open a.done[out k] | b[ ] | a[Q2])]
τ
−−→ k[SPYα〈i, j, P 〉 | (νa, b)(open a.done[out k] | 0 | a[Q2])]

=⇒ k[SPYα〈i, j, P 〉 | (νa, b)(open a.done[out k] | 0 | a[Q3])]

=⇒ k[SPYα〈i, j, P 〉 | (νa, b)(done[out k] | 0 | Q3)]

=⇒ D[done[ ]] • SPYα〈i, j, P 〉

≡ D[0] • SPYα〈i, j, P 〉 | done[ ]

= O | done[ ]

Examining the above reductions sequence from Ck.open n[M ]•SPYα〈i, j, P 〉 we conclude
that

M =⇒
k.open n
−−−−−−→ k[◦ | Q].

As
k[SPYα〈i, j, P 〉 | (νa, b)(open b.open a.done[out k] | a[Q | b[out a]])]
=⇒ D[done[ ]] • SPYα〈i, j, P 〉

and the name done is fresh, by several applications of Lemma 3.11 we have

k[SPYα〈i, j, P 〉 | (νa, b)(open b.open a.0 | a[Q | b[out a]])]
=⇒ D[0] • SPYα〈i, j, P 〉.

By Lemma 3.10, this implies

k[◦ | (νa, b)(open b.open a.0 | a[Q | b[out a]])] =⇒ D[0].

Applying our proof techniques we can easily prove that:

k[◦ | (νa, b)(open b.open a.0 | a[Q | b[out a]])] ∼= k[◦ | Q].

As ∼= is closed under reduction, it follows that there is M ′ such that

k[◦ | Q] =⇒M ′ ∼= D[0].

So, there is M ′ such that M =⇒M ′ and O ∼= M ′ • SPYα〈i, j, P 〉, as desired.
¤
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Theorem 3.13 (Completeness) Reduction barbed congruence is contained in late bisim-
ilarity.

Proof We prove that the relation R = {(M,N) | M ∼= N} is a late bisimulation. The
result will then follow by co-induction.

• Suppose M R N and M
α
−−→M ′. Suppose also α ∈ {k.enter n, k.exit n, n.enter k,

k.open n}. We must find a system N ′ such that N
α
==⇒ N ′ and for all P , M ′ • P ∼=

N ′ • P .

The idea of the proof is to use a particular context which mimics the effect of the
action α, and also allows us to subsequently compare the residuals of the two systems.
This context has the form

Dα〈P 〉[−] = (Cα[−] | Flip) • SPYα〈i, j, P 〉

where Cα[−] are the contexts in Table 7 and Flip is the system:

(νk)k[in done.out done.(succ[out k]⊕ fail[out k])]

with succ and fail are fresh names. Intuitively, the existence of the fresh barb fail

indicates that the action α has not yet happened, whereas the presence of succ together
with the absence of fail ensures that the action α has been performed, and has been
reported via done.

As ∼= is contextual, M ∼= N implies that, for all processes P , it holds

Dα〈P 〉[M ] ∼= Dα〈P 〉[N ] .

By Lemma 3.9, and by inspecting the reduction of the Flip process, we observe that:

Dα〈P 〉[M ] =⇒∼= M ′ • SPYα〈i, j, P 〉 | done[ ] | Flip

=⇒∼= M ′ • SPYα〈i, j, P 〉 | done[ ] | succ[ ]

where M ′ • SPYα〈i, j, P 〉 | done[ ] | succ[ ] ⇓i,j,succ 6⇓fail. Call this outcome O1.

This reduction must be matched by a corresponding reduction

Dα〈P 〉[N ] =⇒ O2

where O1
∼= O2. However, the possible matching reductions are constrained by the

barbs of O1, because it must hold O2 ⇓i,j,succ 6⇓fail.

As O2 ⇓succ 6⇓fail, it must be O2
∼= N̂ | done[ ] | succ[ ], for some systems N̂ .

As O2 ⇓i,j, the previous observation can be combined with Lemma 3.12 to derive the

existence of a system (over the extended process syntax) N ′ such that N̂ ∼= N ′ •
SPYα〈i, j, P 〉 and a weak action

N
α
==⇒ N ′.
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To conclude we must establish that for all P , it holds M ′ • P ∼= N ′ • P . As barbed
congruence is preserved by restriction, we have (νdone, succ)O1

∼= (νdone, succ)O2. As
(νdone)done[ ] ∼= (νsucc)succ[ ] ∼= 0, it follows that

M ′ • SPYα〈i, j, P 〉 ∼= N ′ • SPYα〈i, j, P 〉.

Again, ∼= is preserved by restriction and (νi, j)SPYα〈i, j, P 〉 ∼= P . So, we can finally
derive M ′ • P R N ′ • P , for all processes P .

• Suppose now M R N and M
∗.enter n
−−−−−−→ M ′, We must find a system N ′ such that

N | n[ ◦ ] =⇒ N ′ and for all P , M ′ • P ∼= N ′ • P .

We consider the context

C〈P 〉[−] = − | n[SPY∗.enter n〈i, j, P 〉] .

Because ∼= is contextual, for all processes P it holds

C〈P 〉[M ] ∼= C〈P 〉[N ] .

By inspecting the reduction rules of C〈P 〉[M ] we observe that,

C〈P 〉[M ] =⇒ M ′ • SPY∗.enter n〈i, j, P 〉

where M ′ • SPY∗.enter n〈i, j, P 〉 ⇓i,j . Call this outcome O1.

This reduction must be matched by a corresponding reduction

C〈P 〉[N ] =⇒ O2

where O1
∼= O2 and O2 ⇓i,j. By several applications of Lemma 3.10 it follows that there

is a system N ′ such that O2 = N ′ • SPY∗.enter n〈i, j, P 〉 and N | n[ ◦ ] =⇒ N ′. Again,
as ∼= is preserved by restriction and (νi, j)SPY∗.enter n〈i, j, P 〉 ∼= P , from O1

∼= O2 and
the freshness of i and j we can derive M ′ • P ∼= N ′ • P , for all P , as required.

• Suppose at last MRN and M
∗.exit n
−−−−−−→ M ′. In this case we must find a system N ′

such that n[◦ | N ] =⇒ N ′ and for all P , M ′ • P ∼= N ′ • P .

We consider the context

C〈P 〉[−] = n[− | SPY∗.exit n〈i, j, P 〉] .

Because ∼= is contextual, for all processes P it holds

C〈P 〉[M ] ∼= C〈P 〉[N ] .

By inspecting the reduction rules of C〈P 〉[M ] we observe that,

C〈P 〉[M ] =⇒ M ′ • SPY∗.exit n〈i, j, P 〉
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where M ′ • SPY∗.exit n〈i, j, P 〉 ⇓i,J . Call this outcome O1.

This reduction must be matched by a corresponding reduction

C〈P 〉[N ] =⇒ O2

where O1
∼= O2 and O2 ⇓A,B. By several applications of Lemma 3.10 it follows that

there is a system N ′ such that O2 = N ′ • SPY∗.enter n〈i, j, P 〉 and n[◦ | N ] =⇒ N ′.
Again, as ∼= is preserved by restriction and (νi, j)SPY∗.exit n〈i, j, P 〉 ∼= P , from O1

∼=
O2 and the freshness of i and j we can derive M ′ • P ∼= N ′ • P , for all P , as required.

and in turn that O2 ≡ N ′ • SPY∗.exit n〈i, j, P 〉. We can derive that n[◦ | N ] =⇒ N ′,
and conclude that for all P , M ′ • P ∼= N ′ • P because of Lemma 3.10.

¤

As a consequence:

Theorem 3.14 Late bisimilarity, early bisimilarity, and reduction barbed congruence they
all coincide.

Proof Theorem 3.8 states that ≈⊆≈e and ≈e⊆∼=. Theorem 3.13 states the reduction
barbed congruence is contained in late bisimilarity, that is ∼=⊆≈. We hence have the following
chain of inclusions ∼=⊆≈⊆≈e⊆∼=. ¤

4 Up-to Proof Techniques

In the previous section we gave a labelled characterisation of reduction barbed congruence to
prove that two systems have the same behaviour. In this section we adapt some well-known
up-to proof techniques [22, 27] to our setting. As usual, these techniques allow us to reduce
the size of the relation R for proving that two processes are bisimilar. We focus on two forms
of up-to techniques: the up-to-expansion [29] and the up-to-context technique [26]. As in the
π-calculus, these two techniques can also be merged. As a consequence, we only prove the
more general up to context and up to expansion proof-technique.
Roughly, the expansion [2], written ., is an asymmetric variant of the bisimilarity which

allows us to count the number of silent moves performed by a process. More precisely,M . N
holds if M and N are bisimilar and N has at least as many τ -moves as M . Formally,

Definition 4.1 (Expansion) A relation R over systems is an expansion if MRN implies:

• if M
α
−−→M ′, α 6∈ {enter n, exit n}, then there exists a system N ′ such that N

α̂
==⇒

N ′ and for all processes P it holds M ′ • P R N ′ • P ;

• if M
enter n
−−−−−→ M ′ then there exists a system N ′ such that N | n[ ◦ ] =⇒ N ′ and for

all processes P it holds M ′ • P R N ′ • P ;

• if M
exit n
−−−−−→ M ′ then there exists a system N ′ such that n[◦ | N ] =⇒ N ′ and for all

processes P it holds M ′ • P R N ′ • P ;
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• if N
α
−−→ N ′, α 6∈ {enter n, exit n}, then there exists a system M ′ such that M

α̂
−−→

M ′ and for all processes P it holds M ′ • P R N ′ • P ;

• if N
enter n
−−−−−→ N ′ then (M | n[P ]) R N ′ • P , for all processes P ;

• if N
exit n
−−−−−→ N ′ then n[M | P ] R N ′ • P , for all processes P .

We write M . N , if M R N for some expansion R.

Definition 4.2 (Bisimulation up to &) A relation R is a bisimulation up to & and ≈
if M R N implies:

• if M
α
−−→M ′, α 6∈ {enter n, exit n}, then there exists a system N ′ such that N

α̂
==⇒

N ′ and for all processes P it holds M ′ • P &R. N ′ • P ;

• if M
enter n
−−−−−→ M ′ then there exists a system N ′ such that N | n[ ◦ ] =⇒ N ′ and for

all processes P it holds M ′ • P &R. N ′ • P ;

• if M
exit n
−−−−−→ M ′ then there exists a system N ′ such that n[◦ | N ] =⇒ N ′ and for all

processes P it holds M ′ • P &R. N ′ • P .

Theorem 4.3 If R is a bisimulation up to &, then it holds that R ⊆≈.

The proofs of Theorem 4.3 and of Theorem 4.5 below can be easily derived from the proof
of Theorem 4.7.

Definition 4.4 (Bisimulation up to context) A symmetric relation R is a bisimula-
tion up-to context if P R Q implies:

• if M
α
−−→ M ′′, α 6∈ {enter n, exit n}, then there exists a system N ′′ such that

N
α̂
==⇒ N ′′, and for all processes P there is a system context C[−] and systems M ′

and N ′ such that M ′′ • P = C[M ′], N ′′ • P = C[N ′], and M ′ R N ′;

• if M
∗.enter n
−−−−−−→ M ′′ then there exists a system N ′′ such that N | n[ ◦ ] =⇒ N ′′, and

for all processes P there is a system context C[−] and systems M ′ and N ′ such that
M ′′ • P = C[M ′], N ′′ • P = C[N ′], and M ′ R N ′;

• if M
∗.exit n
−−−−−−→ M ′′ then there exists a system N ′′ such that n[◦ | N ] =⇒ N ′′, and

for all processes P there is a system context C[−] and systems M ′ and N ′ such that
M ′′ • P = C[M ′], N ′′ • P = C[N ′], and M ′ R N ′.

Theorem 4.5 If R is a bisimulation up to context, then it holds that R ⊆≈.

Definition 4.6 (Bisimulation up to context and up to &) A symmetric relation R
is a bisimulation up to context and up to & if P R Q implies:
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• if M
α
−−→ M ′′, α 6∈ {enter n, exit n}, then there exists a system N ′′ such that

N
α̂
==⇒ N ′′, and for all processes P there is a system context C[−] and systems M ′

and N ′ such that M ′′ • P & C[M ′], N ′′ • P & C[N ′], and M ′ R N ′;

• if M
enter n
−−−−−→ M ′′ then there exists a system N ′′ such that N | n[ ◦ ] =⇒ N ′′, and

for all processes P there is a system context C[−] and systems M ′ and N ′ such that
M ′′ • P & C[M ′], N ′′ • P & C[N ′], and M ′ R N ′;

• if M
exit n
−−−−−→ M ′′ then there exist a system N ′′ such that n[◦ | N ] =⇒ N ′′, and

for all processes P there is a system context C[−] and systems M ′ and N ′ such that
M ′′ • P & C[M ′], N ′′ • P & C[N ′], and M ′ R N ′.

Theorem 4.7 If R is a bisimulation up to context and up to &, then R ⊆≈.

Proof We define the relation S as the smallest relation such that:

1. M R N implies M S N ;

2. M & A,A S B,B . N implies M S N ;

3. M S N implies C[M ] S C[N ], for all system contexts C[−].

We prove by induction on its definition, that S is a late bisimulation. This will assure the
soundness of the relationR, becauseM R N impliesM S N which impliesM ≈ N . Observe
that S is symmetric because R is.

• M S N because M R N .

Suppose thatM
α
−−→M ′′, with α 6∈ {∗.enter n, ∗.exit n}. As R is a bisimulation up

to context and up-to &, we know that there exists a system N ′′ such that N
α
==⇒ N ′′.

We also know that for all process P , there exist a system context C[−] and systems
M ′ and N ′ such that M ′′ • P & C[M ′], N ′′ • P & C[N ′], and M ′ R N ′. This implies
M ′ S N ′. By construction S is contextual and C[M ′] S C[N ′] holds. By construction
S is closed under expansion, and therefore M ′′ S N ′′, as required.

Suppose that M
∗.enter n
−−−−−−→ M ′′. As R is a bisimulation up to context and up to &,

we know that there exists a system N ′′ such that N | n[ ◦ ]
∗.enter n
=======⇒ N ′′. We also

know that for all process P , there exist a system context C[−] and systems M ′ and N ′

such that M ′′ •P & C[M ′], N ′′ •P & C[N ′], and M ′ R N ′. This implies M ′ S N ′. By
construction, S is contextual, and C[M ′] S C[N ′] holds. By construction S is closed
under expansion, and therefore M ′′ S N ′′, as required.

Suppose that M
∗.exit n
−−−−−−→M ′′. As R is a bisimulation up to context and up to &, we

know that there exists a system N ′′ such that n[◦ | N ]
∗.exit n
======⇒ N ′′. We also know

that for all process P , there exist a system context C[−] and systems M ′ and N ′ such
that M ′′ • P & C[M ′], N ′′ • P & C[N ′], and M ′ R N ′. This implies M ′ S N ′. By
construction, S is contextual, and C[M ′] S C[N ′] holds. By construction S is closed
under expansion, and we conclude M ′′ S N ′′, as required.
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• M S N because M & A,A S B,B . N .

The induction hypothesis tells us that A S B behaves like a late bisimulation.

Suppose M
α
−−→ M ′, with α 6∈ {∗.enter n, ∗.exit n}. A simple diagram chasing

allows us to conclude that there are systems A′, B′, N ′ such that for all process P
it holds M ′ • P & A′ • P S B′ • P . N ′ • P , and in turn, by construction of S,
M ′ • P S N ′ • P .

Suppose M
∗.enter n
−−−−−−→M ′. As M & A, for all process P , it holds M ′ • P & A | n[P ].

As A S B, the closure properties of S assure that A | n[P ] S B | n[P ]. The expansion
relation is a congruence, and since B S N we conclude that B | n[P ] . N | n[P ]. But
N | n[P ] =⇒ N | n[P ], and M ′ • P &S. (N | n[ ◦ ]) • P . This, by construction of S,
implies M ′ • P S (N | n[ ◦ ]) • P .

Suppose M
∗.exit n
−−−−−−→ M ′. As M & A, for all process P , it holds M ′ • P & n[P | A].

As A S B, the closure properties of S assure that n[P | A] S n[P | B]. The expansion
relation is a congruence, and since B S N we conclude that n[P | A] . n[P | N ]. But
n[P | B] =⇒ n[P | N ], and M ′ • P &S. n[◦ | N ] • P . This, by construction of S,
implies M ′ • P S n[◦ | N ] • P .

• C[M ] S C[N ] because M S N and C[−] is a system context.

The induction hypothesis tells us that (M,N) ∈ S is a pair satisfying the bisimulation
conditions in S. Lemma 3.3 assures that the pair (C[M ], C[N ]) ∈ S satisfies the
bisimulation conditions in S.

¤

5 Adding Communication

The basic idea is to have an output process such as 〈E〉.P , which outputs the message E
and then continues as P , and an input process (x)Q which on receiving a message binds it
to x in Q which then executes; here occurrences of x in Q are bound. Notice that we have
synchronous output; as discussed in [33, 28, 4] this is not unrealistic because communication
in MA is always local. The syntax of our extended language, together with the reduction
rule for communication, is given in Table 9.
The LTS is extended by the introduction of two new pre-actions (E) for input, 〈−〉 for

output, and a new form of concretions (νm̃)〈E〉Q. In Table 11 we give all the defining rules
that should be added to those of Table 4 and Table 5 to obtain the LTS for the extended
calculus. Note that in the structural rules of Table 4 we are now assuming that parallel
composition and restriction distribute over the new form of concretions (νm̃)〈E〉Q in the
same manner as (νm̃)〈P 〉Q. The slightly unusual pre-action for output allows a uniform
treatment of extrusion of names.
The proof of Theorem 2.2 can be easily completed to take into account the extended

calculus. A consequence of working with MA in two levels is that communication capabil-
ities cannot be observed at top-level. Moreover, the free variables of a system cannot be

39



Table 9 The Message-passing Mobile Ambients in Two Levels

Names: a, b, . . . , k, l,m, n, . . . ∈ N

Capabilities:
C ::= in n may enter into n

∣

∣ out n may exit out of n
∣

∣ open n may open n

Expressions:
E,F ::= x variable

∣

∣ C capability
∣

∣ E.F path
∣

∣ ε empty path

Guards:
G ::= E expression

∣

∣ (x) input
∣

∣ 〈E〉 output

Systems:
M,N ::= 0 termination

∣

∣ M1 |M2 parallel composition
∣

∣ (νn)M restriction
∣

∣ n[P ] ambient

Processes:
P,Q,R ::= 0 nil process

∣

∣ P1 | P2 parallel composition
∣

∣ (νn)P restriction
∣

∣ G.P prefixing
∣

∣ n[P ] ambient
∣

∣ !G.P replication

Structural and Reduction rules for Communication:
E.(F.P ) ≡ (E.F ).P (Struct Path)
ε.P _ P (Red Empty Path)
(x).P | 〈M〉.Q _ P{M/x} | Q (Red Comm)

Table 10 Pre-actions and Concretions for Communication
Pre-actions: π ::= . . . Concretions: K ::= (νm̃)〈P 〉Q

∣

∣ (E)
∣

∣ 〈−〉
∣

∣ (νm̃)〈E〉Q
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Table 11 Labelled Transition System - Communication

(π Output)
−

〈E〉.P
〈−〉
−−−→ 〈E〉P

(π Input)
−

(x).P
(E)
−−−→ P{E/x}

(π Path)
E.(F.P )

π
−−→ Q

(E.F ).P
π
−−→ Q

(τ Eps)
−

ε.P
τ
−−→ P

(τ Comm) P
〈−〉
−−−→ (νm̃)〈E〉P ′ Q

(E)
−−−→ Q′ fn(Q′) ∩ {m̃} = ∅

P | Q
τ
−−→ (νm̃)(P ′ | Q′)

instantiated by a system context, because in a system context the hole cannot appear under
a prefix. This in turn implies that our bisimulations can be applied to the extended calculus,
and all the results of Section 3 and Section 4 hold without modifications.

Theorem 5.1 Late bisimilarity, early bisimilarity, and barbed congruence coincide in the
Message Passing Calculus.

Theorem 5.2 The up-to expansion, up-to context, and up-to context and expansion proof
techniques are sound proof techniques in the Message Passing Calculus.

6 Algebraic Theory

In this section we prove a a collection of algebraic properties using our bisimulation proof
methods. Then, we prove the correctness of a protocol for controlling access through a
firewall, first proposed in [7].
We briefly comment on the laws of Theorem 6.1. The first two laws are two examples

of local communication within private ambients without interference. The third law is the
well-known perfect firewall law. The following four laws represent non-interference properties
about movements of private ambients. Finally, the last two laws say when opening cannot
be interfered.

Theorem 6.1

1. (νn)n[〈W 〉.P | (x).Q |M ] ∼= (νn)n[P | Q{W/x} |M ] if n 6∈ fn(M)

2. (νn)n[〈W 〉.P | (x).Q |
∏

j∈J open kj.Rj] ∼= (νn)n[P | Q{W/x} |
∏

j∈J open kj.Rj]

3. (νn)n[P ] ∼= 0 if n 6∈ fn(P )

4. (νn)((νm)m[in n.P ] | n[M ]) ∼= (νn)n[(νm)m[P ] |M ] if n 6∈ fn(M)

5. (νm,n)(m[in n.P ] | n[
∏

j∈J open kj.Rj]) ∼= (νm,n)n[m[P ] |
∏

j∈J open kj.Rj]

6. (νn)n[(νm)m[out n.P ] |M ] ∼= (νn)((νm)m[P ] | n[M ]) if n 6∈ fn(M)
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7. (νn)n[m[out n.P ] |
∏

j∈J open kj.Rj] ∼= (νn)(m[P ] | n[
∏

j∈J open kj.Rj]) if m 6=
kj, for j ∈ J

8. n[(νm)(open m.P | m[N ]) | Q] ∼= n[(νm)(P | N) | Q] if Q ≡ M |
∏

j∈J〈Wj〉.Rj

and m 6∈ fn(N)

9. (νn)n[(νm)(open m.P | m[Q]) | R] ∼= (νn)n[(νm)(P | Q) | R] if R ≡
∏

i∈I〈Wi〉.Si |
∏

j∈J open kj.Rj and m,n 6∈ fn(Q).

Proof The proofs of the above laws, except for (3) and (9), are by exhibiting the appro-
priate bisimulation. In all cases the bisimulation has a similar form:

S = {(LHS,RHS)}∪ ≈

where LHS, RHS denote the left hand side, right hand side respectively of the equation,
parameterised over names, processes and systems. For proving the laws (3) and (9) we need
to show that the above S is a bisimulation up to context and up to structural congruence.
The most delicate cases are those regarding the silent moves ∗.enter k and ∗.exit k. For
instance, if

(νn)n[P ]
∗.enter k
−−−−−−→ (νn)k[◦ | n[P ′]] ≡ k[◦ | (νn)n[P ′]]

then
0 | k[ ◦ ] =⇒≡ k[◦ | 0]

and up to context and structural congruence we are still in S. ¤

Crossing a firewall A protocol is discussed in [7] for controlling access through a firewall.
An ambient w represents the firewall; an ambient m, a trusted agent inside which is a
process Q that is supposed to cross the firewall. The firewall ambient sends into the agent
a pilot ambient k with the capability in w for entering the firewall. The agent acquires the
capability by opening k. The process Q carried by the agent is finally liberated inside the
firewall by the opening of ambient m. Names m and k act like passwords which guarantee
the access only to authorised agents. Here is the protocol in MA:

AG
def
= m[open k.(x).x.Q]

FW
def
= (νw)w[open m.P | k[out w.in m.〈in w〉]]

The correctness (of a slight variant) of the protocol above is shown in [7] for may-testing [9]
proving that

(νm, k)(AG | FG) ∼= (νw)w[Q | P ]

under the conditions that w 6∈ fn(Q), x 6∈ fv(Q), {m, k} ∩ (fn(P ) ∪ fn(Q)) = ∅. The proof
relies on non-trivial contextual reasonings. In what follows, we show how it can be established
using our bisimulation proof methods.
The system on the right can be obtained from that one on the left by executing six τ -

actions. So, it suffices to prove that ∼= is insensitive to all these τ -actions. The result follows
from the algebraic laws of Theorem 6.1 and the following two laws:
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Lemma 6.2 Let P , Q, and R be processes. Then

1. (νk,m,w)(k[in m.P ] | m[open k.Q] | w[open m.R])
∼= (νk,m,w)(m[k[P ] | open k.Q] | w[open m.R])

2. (νm,w)(m[〈in w〉 | (x).P ] | w[open m.Q]) ∼= (νm,w)(m[P{in w/x}] | w[open m.Q])

Proof By exhibiting the appropriate bisimulation. Again, in all cases the bisimulation
has a similar form:

S = {(LHS,RHS)}∪ ≈

where LHS, RHS denote the left hand side, right hand side respectively of the identity. ¤

Theorem 6.3 If w 6∈ fn(Q), x 6∈ fv(Q), and {m, k} ∩ (fn(P ) ∪ fn(Q)) = ∅, then

(νm, k)(AG | FG) ∼= (νw)w[Q | P ].

Proof It suffices to apply the algebraic laws of Theorem 6.1 and Lemma 6.2. More
precisely, we apply, in sequence, Law (7) of Theorem 6.1, Law (1) of Lemma 6.2, Law (9) of
Theorem 6.1, Law (2) of Lemma 6.2, and Laws (5) and (9) of Theorem 6.1. ¤

7 Conclusion and Related Work

In this paper we study the behavioural theory of Cardelli and Gordon’s Mobile Ambients.
We rewrite the syntax of MA in two levels, thus distinguishing processes and systems. This
little expedient allows us to gain new interesting algebraic laws without loosing expressive
power.
The main results of the paper are:

• an LTS based operational semantics for MA,

• a bisimulation based equivalence over this LTS which coincides with reduction barbed
congruence,

• up-to expansion and up-to context proof techniques.

We believe that interesting labelled characterisations of typed reduction barbed congruence
can be derived along the lines of [19].
Higher-order LTSs for Mobile Ambients can be found in [6, 13, 32, 10]. But we are not

aware of any form of bisimilarity defined using these LTSs. A simple first-order LTS for MA
without restriction is proposed by Sangiorgi in [28]. Using this LTS the author defines an
intensional bisimilarity for MA which separates terms on the basis of their internal structure.
Our work is the natural prosecution of [18] where an LTS and a labelled characterisation

of reduction barbed congruence are given for a variant of Levi and Sangiorgi’s Safe Ambients,
called SAP. The main differences with respect to [18] are the following:

• SAP differs from MA for having co-capabilities and passwords, both features are es-
sential to prove the characterisation result in SAP.
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• Our env-actions, unlike those in [18], are truly late, as they do not mention the pro-
cess provided by the environment. This process can be added late, when playing the
bisimulation game.

• Our actions for ambient’s movement, unlike those in SAP, report the name of the
migrating ambient. For instance, in k.enter n we say that ambient k enters n. The
knowledge of k is necessary to make the action observable for the environment. This
is not needed in SAP, because movements can be observed by means of co-capabilities.

• Co-capabilities also allow the observation of the movement of an ambient whose name
is private. As a consequence, the perfect firewall equation does not hold neither in
SAP, nor in Safe Ambients. In MA, the movements of an ambient whose name is
private cannot be observed. This is why the perfect firewall equation holds.

Finally, apart from [18], other forms of bisimilarity for higher-order calculi, such as Dis-
tributed π-calculus [14], Seal [33], Nomadic Pict [31], a Calculus for Mobile Resources [12],
and NBA [5], can be found in [19, 8, 31, 12, 5], but only [19, 12, 5] prove a labelled charac-
terisations of a contextually defined notion of equivalence. The perfect firewall equation as
already been proved for Morris-style contextual equivalence in [13] using a context lemma.

Acknowledgements The authors would like to thank Vladimiro Sassone who spotted a
problem in the proof of Theorem 4.7 in an early draft of the paper. The second author
is grateful to the Foundations of Computing Group of University of Sussex, for the kind
hospitality and support.

References

[1] R. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for the asynchronous
π-calculus. Theoretical Computer Science, 195:291–324, 1998.

[2] S. Arun-Kumar and M. Hennessy. An efficiency preorder for processes. Acta Informatica,
29:737–760, 1992.

[3] G. Boudol. Asynchrony and the π-calculus. Technical Report RR-1702, INRIA-Sophia
Antipolis, 1992.

[4] M. Bugliesi, G. Castagna, and S. Crafa. Boxed ambients. In Proc. 4th TACS, volume
2215 of LNCS. Springer-Verlag, 2001.

[5] M. Bugliesi, S. Crafa, M. Merro, and V. Sassone. Communication interference in mobile
boxed ambients. Forthcoming Technical Report. An extended abstract appeared in Proc.
FSTTCS’02, LNCS, Springer-Verlag.

[6] L. Cardelli and A. Gordon. A commitment relation for the ambient calculus. Unpub-
lished notes, 1996.

44



[7] L. Cardelli and A. Gordon. Mobile ambients. Theoretical Computer Science, 240(1):177–
213, 2000. An extended abstract appeared in Proc. of FoSSaCS ’98.

[8] G. Castagna and F. Zappa Nardelli. The seal calculus revisited: Contextual equivalence
and bisimilarity. In Proc. 22nd FSTTCS ’02, volume 2556 of LNCS. Springer-Verlag,
2002.

[9] R. De Nicola and M. Hennessy. Testing equivalences for processes. Theoretical Computer
Science, 34:83–133, 1984.

[10] G. Ferrari, U. Montanari, and E. Tuosto. A LTS semantics of ambients via graph
synchronization with mobility. In Proc. ICTCS, volume 2202 of LNCS, 2001.

[11] C. Fournet and G. Gonthier. A hierarchy of equivalences for asynchronous calculi. In
Proc. 25th ICALP, pages 844–855, 1998.

[12] J.C. Godskesen, T. Hildebrandt, and V. Sassone. A calculus of mobile resources. In
Proc. 10th CONCUR ’02, volume 2421 of LNCS, 2002.

[13] A. D. Gordon and L. Cardelli. Equational properties of mobile ambients. Journal of
Mathematical Structures in Computer Science, 12:1–38, 2002.

[14] M. Hennessy and J. Riely. A typed language for distributed mobile processes. In Proc.
25th POPL. ACM Press, 1998.

[15] K. Honda and M. Tokoro. An Object Calculus for Asynchronous Communications. In
Proc. ECOOP ’91, volume 512 of LNCS. Springer Verlag, 1991.

[16] K. Honda and N. Yoshida. On reduction-based process semantics. Theoretical Computer
Science, 152(2):437–486, 1995.

[17] F. Levi and D. Sangiorgi. Controlling interference in ambients. In Proc. 27th POPL.
ACM Press, 2000.

[18] M. Merro and M. Hennessy. Bisimulation congruences in safe ambients. In Proc. 29th
POPL ’02. ACM Press, 2002.

[19] M. Hennessy M. Merro and J. Rathke. Towards a behavioural theory of access and
mobility control in distributed system. To appear in Proc. 5th FoSSaCS ’03, LNCS,
2003, Springer-Verlag.

[20] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[21] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, (Parts I and II).
Information and Computation, 100:1–77, 1992.

[22] R. Milner and D. Sangiorgi. Barbed bisimulation. In Proc. 19th ICALP, volume 623 of
LNCS, pages 685–695. Springer Verlag, 1992.

45



[23] D.M. Park. Concurrency on automata and infinite sequences. In P. Deussen, editor,
Conf. on Theoretical Computer Science, volume 104 of LNCS. Springer Verlag, 1981.

[24] D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-Order
Paradigms. PhD thesis CST–99–93, Department of Computer Science, University of
Edinburgh, 1992.

[25] D. Sangiorgi. Bisimulation for Higher-Order Process Calculi. Information and Compu-
tation, 131(2):141–178, 1996.

[26] D. Sangiorgi. Locality and non-interleaving semantics in calculi for mobile processes.
Theoretical Computer Science, 155:39–83, 1996.

[27] D. Sangiorgi. On the bisimulation proof method. Journal of Mathematical Structures
in Computer Science, 8:447–479, 1998.

[28] D. Sangiorgi. Extensionality and intensionality of the ambient logic. In Proc. 28th
POPL. ACM Press, 2001.

[29] D. Sangiorgi and R. Milner. The problem of “Weak Bisimulation up to”. In Proc.
CONCUR ’92, volume 630 of LNCS, pages 32–46. Springer Verlag, 1992.

[30] D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes. Cambridge
University Press, 2001.

[31] A. Unyapoth and P. Sewell. Nomadic Pict: Correct communication infrastructures for
mobile computation. In Proc. 28th POPL. ACM, January 2001.

[32] M. G. Vigliotti. Transition systems for the ambient calculus. Master thesis, Imperial
College of Science, Technology and Medicine (University of London), September 1999.

[33] J. Vitek and G. Castagna. Seal: A framework for secure mobile computations. In
Internet Programming Languages, 1999.

46


