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Abstract. Many ITP developments exist in the context of a single
prover, and are dominated by proof effort. In contrast, when applying
rigorous semantic techniques to realistic computer systems, engineering
the definitions becomes a major activity in its own right. Proof is then
only one task among many: testing, simulation, communication, commu-
nity review, etc. Moreover, the effort invested in establishing such defi-
nitions should be re-usable and, where possible, irrespective of the local
proof-assistant culture. For example, in recent work on processor and
programming language concurrency (x86, Power, ARM, C++0x, Com-
pCertTSO), we have used Coq, HOL4, Isabelle/HOL, and Ott—often
using multiple provers simultaneously, to exploit existing definitions or
local expertise.
In this paper we describe Lem, a prototype system specifically designed
to support pragmatic engineering of such definitions. It has a carefully
designed source language, of a familiar higher-order logic with datatype
definitions, inductively defined relations, and so on. This is typechecked
and translated to a variety of programming languages and proof assis-
tants, preserving the original source structure (layout, comments, etc.)
so that the result is readable and usable. We have already found this
invaluable in our work on Power, ARM and C++0x concurrency.

1 Motivation

Mechanised proof assistants such as ACL2 [1], Coq [6], HOL4 [9], HOL Light [8],
Isabelle/HOL [10], PVS [12], and Twelf [19] are becoming important tools for
Computer Science. In many applications of these tools, the majority of effort is
devoted to proof, and that is rightly a main focus of their developers. This focus
leads each of these systems to have its own logic, various mechanisms for making
mathematical definitions, and extensive support for machine-checked interactive
and/or automated reasoning.

In some applications, however, the definitions themselves, of types, functions,
and relations, are a major focus of the work. This is often the case when mod-
elling key computational infrastructure: network protocols, programming lan-
guages, multiprocessors, and so on. For example, we have worked on TCP [4,13],
Optical Networking [3], Java Module Systems [18], the semantics of an OCaml
fragment [11], concurrency for C and C++ [2,5,16], and the semantics of x86,
POWER and ARM multiprocessors [14,15]; and there are numerous examples
by other groups (far too many to cite here). In each of these cases, considerable
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effort was required to establish the definitions of syntax and semantics, including
analysis of informal specifications, empirical testing, and proof of metatheory.
These definitions can be large: for example, our TCP specification is around
10 000 non-comment lines of HOL4. At this scale, the activity of working with
the definitions becomes more like developing software than defining small calculi:
one has to refactor, test, coordinate between multiple people, and so on, and all
of this should, as far as possible, be complete before one embarks on any proof.

Moreover, in such work a proof assistant is just one piece of a complex project,
involving production typesetting, testing infrastructure, code generation, and
tools for embedding source-language terms into the prover. Sometimes there is
no proof activity, but great benefits arise simply from working in typechecked
and typeset mathematics; sometimes there is mechanised symbolic evaluation or
code generation for testing and prototyping; sometimes there is hand proof or a
mixture of hand and mechanised proof; and sometimes there is the classic full
mechanised proof supported by provers.

Ideally, the results of such work should be made widely available in a re-
usable form, so that other groups can build on them and so that the field can
eventually converge on standard models for the relatively stable aspects of the
computational environment in which we work. Unfortunately, at present such
re-use is highly restricted for two reasons. Firstly, the field is partitioned into
schools around each prover: the difficulty in becoming fluent in their use means
that very few people can use more than one tool effectively. Indeed, even within
some of our own projects we have had to use several provers due to differing local
expertise. This variation makes it hard to compare the results of even carefully
specified benchmarks, such as the POPLmark challenge.

Secondly, the differences between the provers mean that it is a major and
error-prone task to port a development—or even just its definitions—from one
system to another. In some cases this is for fundamental reasons: definitions
which make essential use of the dependent types of Coq may be hard or impossi-
ble to practically port to HOL4. However, many of the examples cited above are
logically undemanding: they have no need for dependent types, the differences
between classical and constructive reasoning are not particularly relevant, and
there is often little or no object-language variable binding (of course this does not
apply for formalisation of rich type theories). They do make heavy use of basic
discrete mathematics and “programming language” features: sets and set com-
prehensions; first-order logic; and inductive types and records with functions and
relations over them. Thus, the challenge is one of robustly translating between
the concrete syntax and definition styles of the different proof assistants.

2 Portable definitions with Lem

We have designed a language, Lem, for writing, managing, and publishing large
scale semantic definitions, for use as an intermediate language when generating
definitions from domain-specific tools, and for use as an intermediate language
for porting definitions between existing provers. Our implementation can cur-
rently typecheck Lem sources, and generate HOL4, Isabelle/HOL, OCaml, and



LATEX (the latter drawing on Wansborough’s HOLDoc tool design). Develop-
ment of a Coq backend is in progress. We are already using Lem in our research:
we developed a semantics for multiprocessor concurrency on the POWER archi-
tecture [14] in Lem, and our semantics for C++0x [2,5] concurrency has been
ported from Isabelle/HOL to Lem.

Semantically, we have designed Lem to be roughly the intersection of com-
mon functional programming languages and higher-order logics, as we regard
this as a sweet spot: expressive enough for the applications we mention above,
yet familiar and relatively easy to translate into the various provers; there is
intentionally no logical novelty here. Lem has a simple type theory with primi-
tive support for recursive and higher-order functions, inductive relations, n-ary
tuples, algebraic datatypes, record types, type inference, and top-level polymor-
phism. It also includes a type class mechanism broadly similar to Isabelle’s and
Haskell’s (without constructor classes). It differs from the internal logics of HOL4
or Isabelle/HOL principally in having type, function and relation definitions as
part of the language rather than encoded into it: the Lem type system is formally
defined (using Ott [17]) in terms of the user-level syntax.

The novelty is rather in the detailed design and implementation, to ensure
the following four important pragmatic properties. We can achieve all of these
goals more easily than one could in context of a prover implementation because
we are not constrained to use an intermediate representation suitable for the im-
plementation of a proof kernel (e.g., explicitly typed lambda terms), and because
we are building a lightweight stand-alone tool, without a large legacy codebase.

1. Readability of source files Lem syntactically resembles OCaml and F#,
giving us a popular and readable syntax. It includes nested modules (but not
functors), recursive type and function definitions, record types, type abbrevia-
tions, and pattern matching. It has additional syntax for quantifiers, including
restricted quantifiers (∀x ∈ S. Px), set comprehension, and inductive relations.
For example, here is an extract from our POWER model:

let write_reaching_coherence_point_action m s w =

let writes_past_coherence_point’ =

s.writes_past_coherence_point union {w} in

(* make write before other writes to this address not past coherence *)

let coherence’ = s.coherence union

{ (w,wother) | forall (wother IN (writes_not_past_coherence s))

| (not (wother = w)) && (wother.w_addr = w.w_addr)} in

<| s with coherence = coherence’;

writes_past_coherence_point = writes_past_coherence_point’ |>

let sem_of_instruction i ist =

match i with

| Padd set rD rA rB -> op3regs Add set rD rA rB ist

| Psub set rD rA rB -> op3regs Sub set rD rB rA ist (* swap args *)

end

We do not always follow OCaml: for example, Lem uses curried data constructors
instead of tupled ones, and it uses <| and |> for records, saving { and } for set
comprehensions. Type classes provide principled support for overloading.



Lem does not at present include support for arbitrary user-defined syntax,
as provided by Ott [17] and (to a greater or lesser extent) by several proof
assistants. Lem and Ott have complementary strengths: Ott is particularly useful
for defining semantics as inductively defined relations over a rich user syntax,
but has limited support for logic, sets, and function definitions, whereas Lem is
the converse. We envisage refactoring the Ott implementation, which currently
generates Coq, HOL, and Isabelle/HOL code separately, to instead generate Lem
code and leave the prover-specific output to the Lem tool. In the longer term, a
metalanguage that combines both is highly desirable.

2. Taking the source text seriously Explaining the definitions is a key
aspect of the kind of work we mention above. We need to produce production-
quality typesetting, of the complete definitions in logical order and of various
excerpts, in papers, longer documents, and presentations. As all these have to
be maintained as the definitions evolve, the process must be automated, without
relying on cut-and-paste or hand-editing of generated LaTeX code. Moreover, it
is essential to give the user control of layout. Here again the issues of large-scale
definitions force our design: in some cases, especially for small definitions, pretty
printing from a prover internal representation can do a good enough job, but
manual formatting choices were necessary to make (e.g.) our C++0x memory
model readable. Accordingly, we preserve all source-file formatting, including line
breaks, indentation, comments, and parentheses, in the generated code. This lets
us generate corresponding LaTeX code, e.g. for the previous example:

let write reaching coherence point action m s w =
let writes past coherence point ′ =
s.writes past coherence point ∪ {w} in

(* make write before other writes to this address not past coherence *)
let coherence ′ = s.coherence ∪

{(w , wother)|∀wother∈(writes not past coherence s)
| (¬ (wother = w)) ∧ (wother .w addr = w .w addr)} in

〈[s with coherence = coherence ′;
writes past coherence point = writes past coherence point ′]〉

let sem of instruction i ist =
match i with
| Padd set rD rA rB → op3regs Add set rD rA rB ist
| Psub set rD rA rB → op3regs Sub set rD rB rA ist (* swap args *)
end

It also ensures that the generated prover and OCaml code is human-readable in
its own right.

3. Support for execution Exploring such definitions, and testing con-
formance between specifications and deployed implementations (and between
specifications at different levels of abstraction), is also a central aspect of our
work; both need some way to make the definitions executable. In previous work
with various colleagues we have built hand-crafted symbolic evaluators within
HOL4 [3,4,13,15], interpreters from code extracted from Coq [16], and mem-
ory model exploration tools from code generated from Isabelle/HOL [2]. Lem



supports several constructs which cannot in general be executed, e.g., quantifica-
tion in propositions and set comprehensions, but Lem can generate OCaml code
where the range is restricted to a finite set (otherwise OCaml generation fails).
This has been invaluable for our POWER memory model exploration tool [14].

4. Quick parsing and type checking with good error messages This
is primarily a matter of careful engineering, using conventional programming-
language techniques. Lem is a batch-mode tool in the style of standard compilers,
rather than focussed on interactive use, in the typical proof-assistant style.

3 Implementation
Our Lem implementation is written in OCaml, using Ott to specify the concrete
syntax, and it loosely follows the architecture of a traditional compiler. The
central data structure is a typed abstract syntax tree (AST), and processing
follows 4 phases: (1) source files are lexed and parsed into untyped ASTs; (2) the
untyped ASTs are type checked and converted into typed ASTs; (3) typed-AST-
to-typed-AST transformations remove language features that are not present in
the target (e.g., the removal of type classes by introducing dictionary passing
for OCaml and HOL4); and (4) the transformed, typed AST is printed in the
target language syntax. We try to make the printing step as simple as possible,
and uniform across the various back-ends, by handling all of the complexities of
translation in (3). The untyped and typed ASTs contain all of the whitespace
(both indentation and line breaks) and comments of the original source file; the
step (4) printer uses these instead of a pretty printing algorithm for layout.

The logical design of Lem makes the basic translation to a variety of targets
straightforward. The standard libraries of our various targets have differing data
representations and interfaces. For each desired feature (e.g., finite maps, or bit
vectors), we design an interface for Lem, and specify how that interface is to be
translated for each target. This is similar to Ott’s hom functionality; however,
here we typecheck the translation specifications to ensure that the generated
code is well-formed.

4 Future work
We are actively developing Lem: our immediate goal is to finish and polish the
existing backends (including the in-progress Coq backend). Also of interest is a
HOL4-to-Lem translation (allowing us to automatically port, for example, Fox’s
detailed ARM instruction semantics [7] to other provers) and we would like Coq-
to-Lem and Isabelle/HOL-to-Lem translations, which will need expertise in the
front-end implementations of those systems. Lem does not currently support
OCaml generation for inductively defined relations (although one can sometimes
use the Isabelle backend and then apply its code generation mechanism). Ulti-
mately, we would like to directly generate OCaml that searches for derivations;
this will be particularly useful in conjunction with Ott, for running test and
example programs directly on an operational semantics.

Although Lem is primarily a design and engineering project, it would benefit
from a rigorous understanding of exactly how the semantics of the source and



target logics relate to each other, for the fragments we consider. In particular,
when multiple provers are used to verify properties of a Lem-specified system,
we would like a semantic justification that the resulting definitions have the same
meaning, and that a lemma verified in one prover can be used in another. There
have been several projects that port low-level proofs between provers (a very
different problem to the readable-source-file porting that we consider here); while
this approach yields the right guarantees, we expect it would be very challenging
because the various backends can transform the same definition differently (e.g.,
keeping type classes for Isabelle, but not for HOL4).
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