A Theory of Speculative Computation

Gérard Boudol, Gustavo Petri

Projet INDES

January 2010 — Parsec meeting

Speculations: Motivation

@ Speculative computation

e Value prediction
e Branch prediction
e Instruction reordering

@ Relaxed memory models

o Write-buffers allow for W — R and W — W
e But not for and

IRIW example

initially x =y =0
x:=1|y:=1] Ix; (1)
ly (0)

ly; (1)
Ix (0)

N

29

Speculations: Motivation

@ Speculative computation

e Value prediction
e Branch prediction
e Instruction reordering

@ Relaxed memory models
o Write-buffers allow for W — R and W — W

e But not for and
IRIW example
initially x =y =0
xi=1]y:=1|1%; (1) | ly; (1)
ly (0) | x (0)

Speculations could explain these behaviors

Valid speculations: an intuition

Intuitively valid

(if !p then () else g := tt) Wra,tt
(if Ip then () else ()) rdp. 1t
(if ff then () else () -,
0

Valid speculations: an intuition

Intuitively valid Intuitively invalid
(if 1p then () else g := tf) ——o (if p then () else p := tt) V\:p’"
rd rdp, tt
(if 1p then () else () 27, (if !p then () else () :
(if ff then () else () N (if tt then () else () —
0 0

Intuitively valid

(if 1p then () else g := tt)
(if

Wrg, ¢t
d

if 1p then () else () LB
N

(if f then () else ()
0

Intuitively invalid

(if 1p then () else p = tt) —2=
(if !p then () else () o
(if tt then () else () L

0

We say that a speculative computation is
it is equivalent by permutations [Berry&Levy'79] to a
normal (sequential) computation.

when

6

Valid speculations: an intuition

29

Concurrent speculations

Programmability is an issue with parallel speculations (as it is in
relaxed memory models)

@ Programmability compromise in relaxed memory models for
high-level languages:

Data Race Freeness (DRF)

Programs free of data races in their
, expose (only) sequentially consistent
behaviors in the relaxed semantics.

@ Can we find a similar compromise for parallel speculations?

Speculative Data Race FreenessJ

Outline & Contributions

@ Operational semantics for speculations (with locks):

e Speculative evaluation contexts:
out-of-order execution, branch prediction
e Value prediction

@ Validity of speculations
© Programmability: SDRF
@ A variation of the language with

The language (locks)

E
F

x | Axe | tt | fF | (yalues
v | (eoer) expressions
(if e then e else ;)
(refe) | (Te) | (eo:=e1)
|

ep ; €1 stands for (Axeieyp) whenever x is not free in elJ

w= [] | E[F] evaluation contexts
= @9 | v fames

| (if [] then eg else ;)

| (ref[) [D) | T=e) [(v:=1)

| (holding ¢ do [])

Speculation Contexts

X o= [| Z[?d] speculation contexts

F speculation frames
(el) | (Ax[le)

(if e then [] else e1) | (if e then eg else [])
(e:=1D)

[Sh

(Ax[]eo) can be seen as ey ;]
No speculation for (with ¢ do e)

10/29

Speculation Contexts

X o= [| Z[?d] speculation contexts

F speculation frames
(el) | (Ax[le)

(if e then [] else e1) | (if e then eg else [])
(e:=1D)

[Sh

(Ax[]eo) can be seen as ey ;]
No speculation for (with ¢ do e)

11/29

Speculation Contexts

X o= [| Z[?d] speculation contexts

F speculation frames

(el) | (Ax[le)
(if e then [] else e1) | (if e then eg else [])
(

1),

[Sh

(Ax[]eo) can be seen as ey ;]
No speculation for (with ¢ do e)

12/29

Speculation Contexts

X o= [| Z[?d] speculation contexts

F speculation frames

(el) | (Ax[le)
(if e then [] else e1) | (if e then eg else [])
(

e:=])

(Ax[]eo) can be seen as ey ;]
No speculation for (with ¢ do e)

X[(q:=tt)] o[(p:=tt)] 1 [(g:=tt)]
ri=(1p) ;q:=tt (if ('r) then p:=tt else q:=tt)

~—
E[(!p)] E[(!r)]

13 /29

Speculative semantics

| = Z[x—vie]
X[(if tt then e else e1)] — X[ep]

X[(if ff then ey else e1)] — X[e]

)
)
)
T[(refv)] —> X[p]
)] —— E[V]
Z((p:=v)] —= Z[(]
E[(thread e)] 222 E[()]
T[(with £ do €)] = X[e] (e [X]
X[(with £ do e)] — XE[(holding £ do e)] ¢¢& [E]
E[(holding £ do v)] — E[v]

14 /29

Semantics: IRIW example

x:=1|y:=11]Ix;ly | ly;lx

IRIW example (revisited)

15/29

Semantics: IRIW example

X::l‘yzzl‘!x;!y‘!y;!x
lrdy,O lrdx,O
x:zl‘y:zl‘ Ix;0 ‘ ly:0

IRIW example (revisited)

16 /29

Semantics: IRIW example

X::l‘yzzl‘!x;!y‘!y;!x

lrdy,O lrdx,O
x:zl‘y:zl‘ Ix:0 ‘ ly:0
Lwrer Lwryg

O | O | 0] ;0

IRIW example (revisited)

17 /29

Semantics: IRIW example

X::l‘yzzl‘!x;!y‘!y;!x
lrdy,O lrdx,O
x:zl‘y:zl‘ Ix;0 ‘ ly:0

Lwrer [wryg

O | O | 0] ;0
brde1 lrdys
O | O | 1,0] 150

IRIW example (revisited)

18 /29

Concurrency

SPW o/

e e/l

° t' ¢ dom(T)U{t}
(S, L, (¢, e) [I(t',) T)

a
e — €

= a# spwer & (%)
(S, L. (t,) I T) 7 (S, L (£, T)

spw /

(S, L(t,e)[| T) —

a=rd,, = v=5(p)&S=S&Ll'=
a=wrp,, = =Sp=v]&l'=1L
(+) a=0 = S =S&IgL&L =LU{l)
a=10 = S =S&L=L—{0)

19/29

The need for Validity

[{p—ff}, 0, (if!pthen p:=tt)]
L owr Jtt

[{pwtt}, 0, (if 1p thpen 0)]
! rdp,tt

[{p— tt}, 0, (if tt then ())]

Causality is not enforced by the semantics

The need for Validity

[{p—ff}, 0, (if!pthen p:=tt)]
L owr Jtt

[{pwtt}, 0, (if 1p thpen 0)]
! rdp,tt

[{p— tt}, 0, (if tt then ())]

Causality is not enforced by the semantics

We say that a speculative computation is when
it is equivalent by permutations [Berry&Levy'79] to a
normal (sequential) computation.

21/29

Permutation equivalence

Diamond Lemma

/ \ where (+) {01/(30, o) = 0f
\ /

@ (%) rules out permutations of

op/(a1,01) = 0}

Wrptt
_—

—0

@ What about permutation of ?

(if tt then () else p := tt)

== U {(er,v,er,W), (Wrp,v,rdpw), (rdp,v’wrP,W)} J
pERef ,v,weVal

22/29

Validity: definition

Equivalence by Permutations

o Given that —ag # a; we have:

Valid Speculative Computation

A speculation is valid if it is equivalent by permutation to a normal
computation. A speculative computation ~y is valid if all its thread
projections 7| are valid speculations

23 /29

Speculatively Data Race Free

@ By valid speculations we can explain most of the Java
Memory Model litmus tests

@ But it fails for DRF programs:
(if !p then) | (if !q then p := tt)

@ We need a stronger property:

DRF Configuration (resp. Speculative DRF Configuration)

A configuration C is DRF (resp. SDRF) iff for any configuration
C’ reachable from C by normal (resp. speculative) computations,

a a
such that ¢’ -2 (y and €' —=— C; we have
to,00 t1,01

to 7'5 t1 = —|(ao # al)

24 /29

SDREF result

Theorem (Main Result)

Every configuration reachable from a Speculatively Data Race Free
closed expressions by a speculative computation is also reachable
by a normal computation.

25 /29

A lower level language (barriers)

@ Assuming that we have locks is not necessarily realistic for
lower level languages

e The DRF (cf. SDRF) guarantee is not very useful for these

languages
v i= x| Axe | tt | ff] values
e == v | (ee1) expressions

| (if e then e else ;)

| (refe) | (Te) | (eo:=e1)]
| (threade) |] | |

26 /29

Validity

@ The dependency relation permutations across barriers

M = %sf{(spw,rdp),(spw,rdp),(spw,wrp),(wrp,spw)}
pe
U U {(rdpv FI’), (rra rdp)a (er rdP)? (de, rW)}
pPERef
U U {(WrP7 WW): (WW7 er), (I’W, er), (erv WI’)}
pERef

e Permutation equivalence as before (considering <)

@ Valid Speculative computation as before

27/29

Preserving Order of Shared Memory Accesses

POSMA

A configuration C Preserves Ordering of Shared Memory Accesses
(POSMA) iff for any valid speculative computation v : (C =)
with

ao ap a ar
Y = "Yo : 1 : 2

t,00 t',04 t' 0] t,o1

and where t' # t # t", =(ag # a1), ao # a1 and a; # a; we have

[70l¢, (a0, 00)] =t [ole >, Y1, (a1, 01)]
| .

Theorem (POSMA Main Result)

Every configuration reachable from a POSMA well-formed closed
configuration by a valid speculative computation is also reachable
by a normal computation.

28 /29

Some current work

@ How do we make SDRF and POSMA useful for programming?

o Common data-race detection type systems check for SDRF
rather than DRF
e Enforcement of SDRF by compilation [some work that we did]

o Type-directed compilation
o Enforcement of POSMA by compilation [work in progress]

@ Prove that common synchronization implementations are
POSMA (eg. spinlocks in TSO)

29/29

