History based flow analysis in the lambda calculus

Tomasz Blanc Jean-Jacques Lévy

INRIA Rocquencourt and MSR-INRIA Joint Centre

November 14, 2006

- Motivations
- ${\rm \ensuremath{ \bullet}}$ $\lambda\mbox{-calculus, principals and independence}$

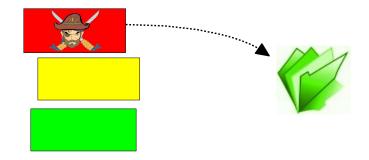
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- λ -calculus and the Chinese Wall
- Future works

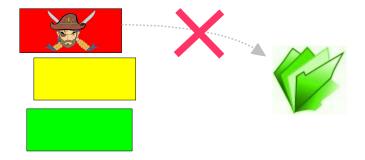
Motivations

• Restricting rights of downloaded programs is not sufficient...

• Restricting rights of downloaded programs is not sufficient...

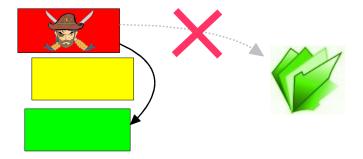


• Restricting rights of downloaded programs is not sufficient...

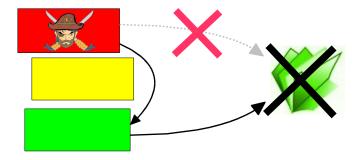


◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 = のへで

• Restricting rights of downloaded programs is not sufficient...

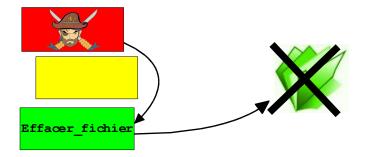


- Restricting rights of downloaded programs is not sufficient...
- ... since attackers can borrow privileges from local programs [Hardy].

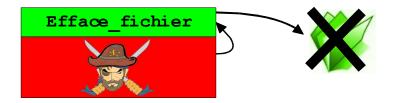


- \bullet Used in Java and C#.
- Before executing a sensitive action, one inspects the chain of function calls leading to that action.

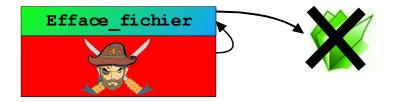
- \bullet Used in Java and C#.
- Before executing a sensitive action, one inspects the chain of function calls leading to that action.



- \bullet Used in Java and C#.
- Before executing a sensitive action, one inspects the chain of function calls leading to that action.



- \bullet Used in Java and C#.
- Before executing a sensitive action, one inspects the chain of function calls leading to that action.



- \bullet Used in Java and C#.
- Before executing a sensitive action, one inspects the chain of function calls leading to that action.

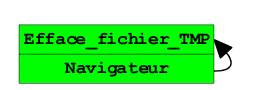


- Used in Java and C#.
- Before executing a sensitive action, one inspects the chain of function calls leading to that action.
- Problem : there remains (indirect) ways of acting outside function calls [Fournet-Gordon].

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

Navigateur

- Used in Java and C#.
- Before executing a sensitive action, one inspects the chain of function calls leading to that action.
- Problem : there remains (indirect) ways of acting outside function calls [Fournet-Gordon].

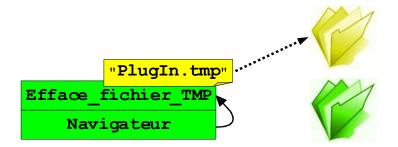


- Used in Java and C#.
- Before executing a sensitive action, one inspects the chain of function calls leading to that action.
- Problem : there remains (indirect) ways of acting outside function calls [Fournet-Gordon].

Cherche temporaire Efface fichier TMP Navigateur

◆□▶ ◆□▶ ★∃▶ ★∃▶ → 三 - のへで

- Used in Java and C#.
- Before executing a sensitive action, one inspects the chain of function calls leading to that action.
- Problem : there remains (indirect) ways of acting outside function calls [Fournet-Gordon].



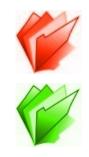
- Used in Java and C#.
- Before executing a sensitive action, one inspects the chain of function calls leading to that action.
- Problem : there remains (indirect) ways of acting outside function calls [Fournet-Gordon].

Efface	_fichier		
	"PlugIn.t	mp " \"	
Effaœ_:	fichier_TM		1
Nav:	igateur		

- Used in Java and C#.
- Before executing a sensitive action, one inspects the chain of function calls leading to that action.
- Problem : there remains (indirect) ways of acting outside function calls [Fournet-Gordon].

Efface_fichier	
"PlugIn.tmp"	
Efface_fichier_TMP	
Navigateur	

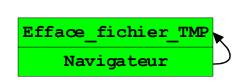
- Used in Java and C#.
- Before executing a sensitive action, one inspects the chain of function calls leading to that action.
- Problem : there remains (indirect) ways of acting outside function calls [Fournet-Gordon].



◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

Navigateur

- Used in Java and C#.
- Before executing a sensitive action, one inspects the chain of function calls leading to that action.
- Problem : there remains (indirect) ways of acting outside function calls [Fournet-Gordon].

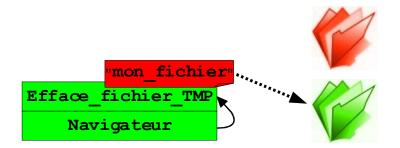


◆□▶ ◆□▶ ★∃▶ ★∃▶ → 三 - のへで

- Used in Java and C#.
- Before executing a sensitive action, one inspects the chain of function calls leading to that action.
- Problem : there remains (indirect) ways of acting outside function calls [Fournet-Gordon].

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Used in Java and C#.
- Before executing a sensitive action, one inspects the chain of function calls leading to that action.
- Problem : there remains (indirect) ways of acting outside function calls [Fournet-Gordon].



◆□▶ ◆□▶ ★∃▶ ★∃▶ → 三 - のへで

- Used in Java and C#.
- Before executing a sensitive action, one inspects the chain of function calls leading to that action.
- Problem : there remains (indirect) ways of acting outside function calls [Fournet-Gordon].

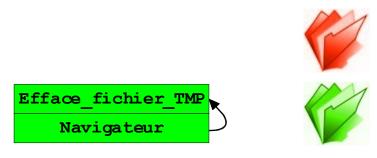
Efface_fichier	
Efface fichier TMP	*****
Navigateur	

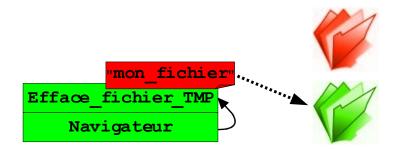
- Used in Java and C#.
- Before executing a sensitive action, one inspects the chain of function calls leading to that action.
- Problem : there remains (indirect) ways of acting outside function calls [Fournet-Gordon].

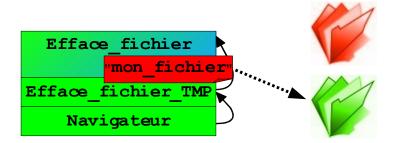
Efface_fichier	
Efface_fichier_TMP	
Navigateur	

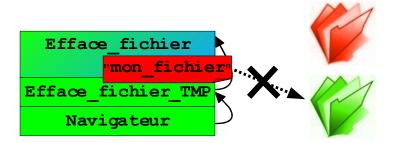
• Data are classified in several categories and their propagation is tracked during program execution.

Navigateur









- Data are classified in several categories and their propagation is tracked during program execution.
- Non-interference : public output does not rely on secret inputs.

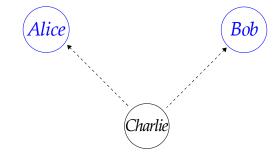
Efface_fichier "mon_fichie	
Efface_fichier_TMP	12
Navigateur	

- Data are classified in several categories and their propagation is tracked during program execution.
- Non-interference : public output does not rely on secret inputs.
- Static analysis is do-able even on complete languages (FlowCaml, JIF).

Efface_fichier	
"mon_fichier"	
Efface_fichier_TMP	
Navigateur	

Third approach : the Chinese Wall

- Conflicts of interest in « economy » [Brewer-Nash].
- Alice and Bob compete for a contract; Charlie is the buyer.
- Alice and Bob fix the price of the contract.
- Charlie wants to negotiate the price.



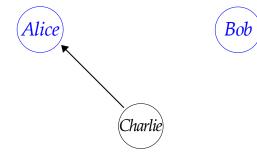
・ロト ・ 同ト ・ ヨト ・ ヨト - ヨー

SQC

• Charlie may interact with Alice and Bob.

Third approach : the Chinese Wall

- Conflicts of interest in « economy » [Brewer-Nash].
- Alice and Bob compete for a contract; Charlie is the buyer.
- Alice and Bob fix the price of the contract.
- Charlie wants to negotiate the price.

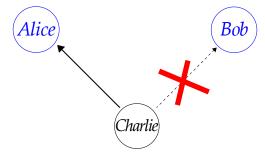


◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

- Charlie may interact with Alice and Bob.
- But as soon as Charlie interacts with Alice...

Third approach : the Chinese Wall

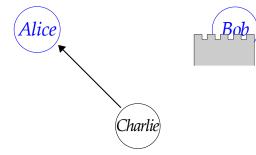
- Conflicts of interest in « economy » [Brewer-Nash].
- Alice and Bob compete for a contract; Charlie is the buyer.
- Alice and Bob fix the price of the contract.
- Charlie wants to negotiate the price.



- Charlie may interact with Alice and Bob.
- But as soon as Charlie interacts with Alice, Charlie may no longer interact with Bob.

Third approach : the Chinese Wall

- Conflicts of interest in « economy » [Brewer-Nash].
- Alice and Bob compete for a contract; Charlie is the buyer.
- Alice and Bob fix the price of the contract.
- Charlie wants to negotiate the price.



- Charlie may interact with Alice and Bob.
- But as soon as Charlie interacts with Alice, Charlie may no longer interact with Bob.

Safety policy	Safety property
Stack Inspection	-
Flow Information	Non interference
Chinese Wall	?

Objectives :

- define the Chinese Wall in the $\lambda\text{-calculus.}$
- examine the safety property of the Chinese Wall policy.

Safety policy	Safety property
Stack Inspection	-
Flow Information	Non interference
Chinese Wall	?

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへぐ

Objectives :

- \bullet define the Chinese Wall in the $\lambda\text{-calculus.}$
- examine the safety property of the Chinese Wall policy.

$\lambda\text{-calculus, principals and independence}$

λ_n -calculus : a λ -calculus with principals

• Alice, Bob, Charlie are principals.

• Terms of λ_n -calculus :

$$\begin{array}{ll} M, \ N \ ::= x & Variable \\ & \mid \ (\lambda x.M)^{A} & Abstraction \\ & \mid \ (MN)^{A} & Application \end{array}$$

Values :

 $V ::= (\lambda x.M)^{A}$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• **Remark** : principals differ from labels in the labelled λ -calculus.

λ_n -calculus : a λ -calculus with principals

• Alice, Bob, Charlie are principals.

• Terms of λ_n -calculus :

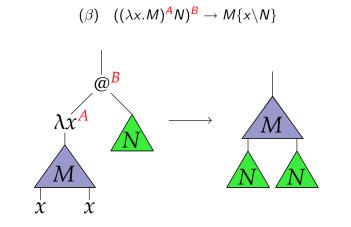
$$\begin{array}{ll} M, \ N ::= x & Variable \\ & \mid \ (\lambda x.M)^A & Abstraction \\ & \mid \ (MN)^A & Application \end{array}$$

Values :

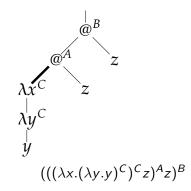
$$V ::= (\lambda x.M)^{A}$$

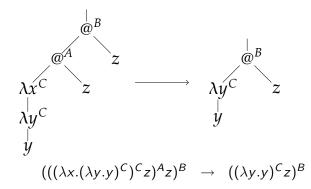
• **Remark** : principals differ from labels in the labelled λ -calculus.

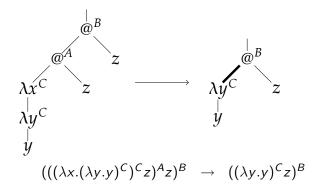
Reduction in λ_n -calculus

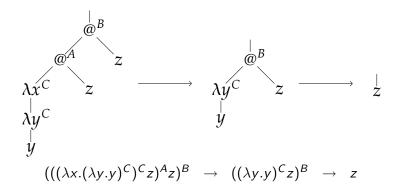


◆□ > ◆□ > ◆豆 > ◆豆 > ◆□ > ◆□ >









◆□ > ◆□ > ◆豆 > ◆豆 > ◆□ > ◆□ >

- Confluence
- Finite Developments

Standardisation

Definition

The reduction
$$M \xrightarrow{((\lambda x.N)^B P)^C} M'$$
 ignores A iff $A \notin \{B, C\}$.

- Also written $M \xrightarrow{\neg A} M'$.
- We write $M \xrightarrow{\neg A} M'$ if every reduction step ignores A.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

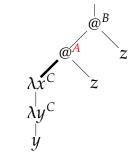
Definition

The reduction
$$M \xrightarrow{((\lambda x.N)^B P)^C} M'$$
 ignores A iff $A \notin \{B, C\}$.

• Also written
$$M \xrightarrow{\neg A} M'$$
.

• We write $M \xrightarrow{\neg A} M'$ if every reduction step ignores A.

Example :



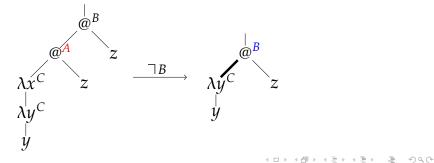
Definition

The reduction
$$M \xrightarrow{((\lambda x.N)^B P)^C} M'$$
 ignores A iff $A \notin \{B, C\}$.

• Also written
$$M \xrightarrow{\neg A} M'$$
.

• We write $M \xrightarrow{\neg A} M'$ if every reduction step ignores A.

Example :



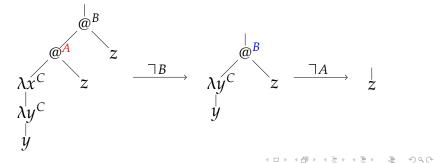
Definition

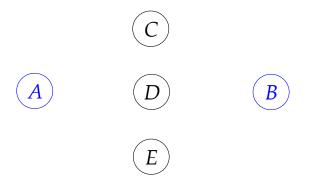
The reduction
$$M \xrightarrow{((\lambda x.N)^B P)^C} M'$$
 ignores A iff $A \notin \{B, C\}$.

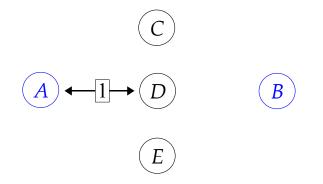
• Also written
$$M \xrightarrow{\neg A} M'$$
.

• We write $M \xrightarrow{\neg A} M'$ if every reduction step ignores A.

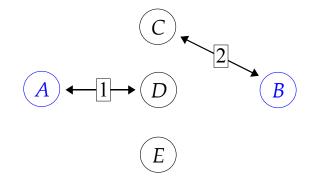
Example :

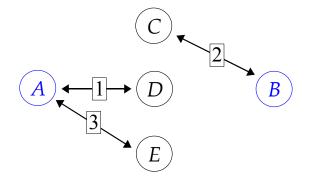


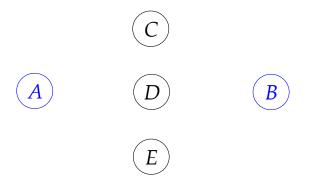


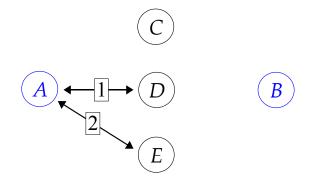


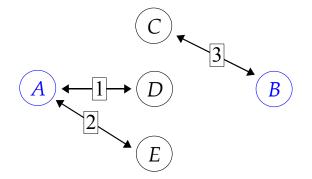
▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへぐ

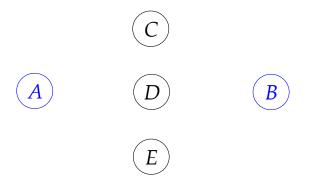


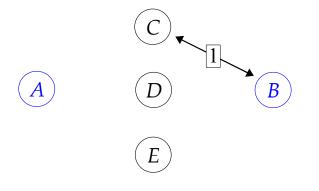


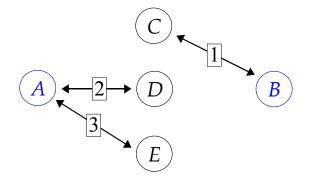












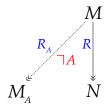
Definition (Independence)

The reduction $R : M \rightarrow N$ is independent of the interaction between Aand B iff there exists $R_A : M \xrightarrow{\neg A} M_A$ and $R_B : M \xrightarrow{\neg B} M_B$ such that $R \leq R'$ (i.e. R/R' is empty) with $R' = R_A$; $(R_B/R_A) = R_B$; (R_A/R_B) .

Definition (Independence)

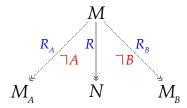
The reduction $R : M \rightarrow N$ is independent of the interaction between Aand B iff there exists $R_A : M \xrightarrow{\neg A} M_A$ and $R_B : M \xrightarrow{\neg B} M_B$ such that $R \leq R'$ (i.e. R/R' is empty) with $R' = R_A$; $(R_B/R_A) = R_B$; (R_A/R_B) .

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>



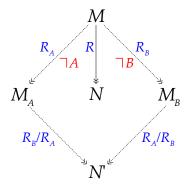
Definition (Independence)

The reduction $R : M \rightarrow N$ is independent of the interaction between Aand B iff there exists $R_A : M \xrightarrow{\neg A} M_A$ and $R_B : M \xrightarrow{\neg B} M_B$ such that $R \leq R'$ (i.e. R/R' is empty) with $R' = R_A$; $(R_B/R_A) = R_B$; (R_A/R_B) .



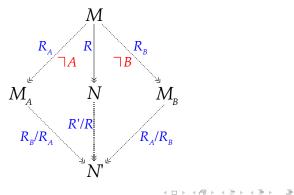
Definition (Independence)

The reduction $R : M \rightarrow N$ is independent of the interaction between Aand B iff there exists $R_A : M \xrightarrow{\neg A} M_A$ and $R_B : M \xrightarrow{\neg B} M_B$ such that $R \leq R'$ (i.e. R/R' is empty) with $R' = R_A$; $(R_B/R_A) = R_B$; (R_A/R_B) .



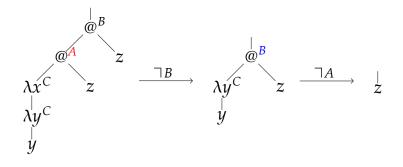
Definition (Independence)

The reduction $R : M \rightarrow N$ is independent of the interaction between Aand B iff there exists $R_A : M \xrightarrow{\neg A} M_A$ and $R_B : M \xrightarrow{\neg B} M_B$ such that $R \leq R'$ (i.e. R/R' is empty) with $R' = R_A$; $(R_B/R_A) = R_B$; (R_A/R_B) .



Sac

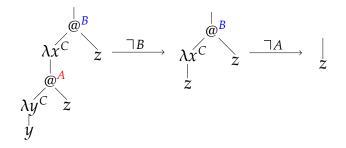
Independence : example 1/2



This reduction is not independent of the interaction between A and B.

◆□▶ ◆國▶ ★ 동▶ ★ 동▶ - 注

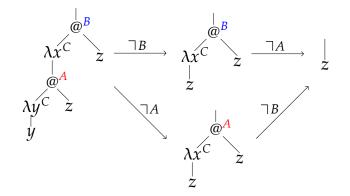
Independence : example 2/2



This reduction is independent of the interaction between A and B.

◆□▶ ◆□▶ ★∃▶ ★∃▶ → □ ● ○○○

Independence : example 2/2



This reduction is independent of the interaction between A and B.

・ロト ・ 同ト ・ ヨト ・ ヨト

3

SQC

- A λ -calculus with principals.
- A safety property : independence.
- How to express the Chinese Wall policy in the λ_n -calculus?
 - This policy relies on history.
 - We use the labelled λ -calculus to track history of interactions.
- Which safety property is guaranteed by the Chinese Wall policy ?
 - ▶ We show that a reduction following the Chinese Wall policy between *A* and *B* is independent of the interaction between *A* and *B*.

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨー

- A λ -calculus with principals.
- A safety property : independence.
- How to express the Chinese Wall policy in the λ_n -calculus?
 - This policy relies on history.
 - We use the labelled λ -calculus to track history of interactions.
- Which safety property is guaranteed by the Chinese Wall policy?
 - ▶ We show that a reduction following the Chinese Wall policy between *A* and *B* is independent of the interaction between *A* and *B*.

◆□▶ ◆□▶ ★∃▶ ★∃▶ → 三 - のへで

- A λ -calculus with principals.
- A safety property : independence.
- How to express the Chinese Wall policy in the λ_n -calculus?
 - This policy relies on history.
 - \blacktriangleright We use the labelled $\lambda\text{-calculus}$ to track history of interactions.
- Which safety property is guaranteed by the Chinese Wall policy?
 - ▶ We show that a reduction following the Chinese Wall policy between *A* and *B* is independent of the interaction between *A* and *B*.

- A λ -calculus with principals.
- A safety property : independence.
- How to express the Chinese Wall policy in the λ_n -calculus?
 - This policy relies on history.
 - \blacktriangleright We use the labelled $\lambda\text{-calculus}$ to track history of interactions.
- Which safety property is guaranteed by the Chinese Wall policy?
 - ▶ We show that a reduction following the Chinese Wall policy between *A* and *B* is independent of the interaction between *A* and *B*.

- A λ -calculus with principals.
- A safety property : independence.
- How to express the Chinese Wall policy in the λ_n -calculus?
 - This policy relies on history.
 - We use the labelled λ -calculus to track history of interactions.
- Which safety property is guaranteed by the Chinese Wall policy?
 - ► We show that a reduction following the Chinese Wall policy between A and B is independent of the interaction between A and B.

λ -calculus and the Chinese Wall

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ▲□

Terms

$$M, N ::= x$$

$$| (\lambda x.N)^{A}$$

$$| (MN)^{A}$$

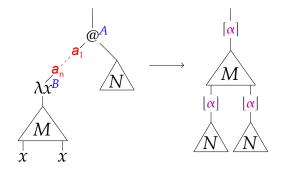
$$| a: M$$
Atomic labels
Compound labels

$$\alpha, \beta ::= Aa_{1}a_{2} \cdots a_{n}B \quad n \ge 0$$
Values

$$V, W ::= (\lambda x.N)^{A} \mid a: V$$

◆□ > ◆□ > ◆ □ > ● □ >

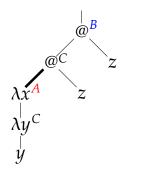
Labelled reduction



 $(\beta) \quad R = (a_1 : \ldots : a_n : (\lambda x.M)^B N)^A \to \lceil \alpha \rceil : M\{x \setminus \lfloor \alpha \rfloor : N\}$ $\alpha = Aa_1 \ldots a_n B$

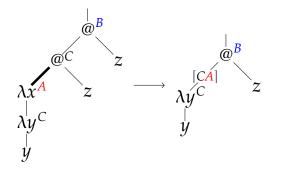
The redex name is $name(R) = \alpha$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○



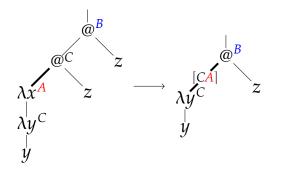
 $(((\lambda x.(\lambda y.y)^{C})^{A}z)^{C}z)^{B}$

< □ > < □ > < 三 > < 三 > < 三 > へ □ > < □ > <



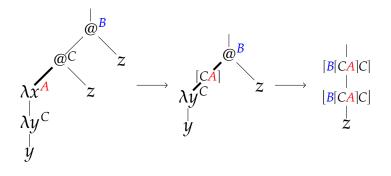
 $(((\lambda x.(\lambda y.y)^{C})^{A}z)^{C}z)^{B} \to (\lceil CA \rceil : (\lambda y.y)^{C}z)^{B}$

◆□ > ◆□ > ◆豆 > ◆豆 > → □ = → ○へ⊙



 $(((\lambda x.(\lambda y.y)^{C})^{A}z)^{C}z)^{B} \to (\lceil CA \rceil : (\lambda y.y)^{C}z)^{B}$

◆□ > ◆□ > ◆豆 > ◆豆 > ◆□ > ◆□ >



$$(((\lambda x.(\lambda y.y)^{C})^{A}z)^{C}z)^{B} \rightarrow (\lceil CA \rceil : (\lambda y.y)^{C}z)^{B} \rightarrow \lceil B \lceil CA \rceil C \rceil : \lfloor B \lceil CA \rceil C \rfloor : z$$

◆□ > ◆□ > ◆豆 > ◆豆 > → □ = → ○へ⊙

• Head sequence :
$$\tau(x) = \tau((\lambda x.M)^A) = \tau((MN)^A) = 0$$

 $\tau(a:M) = a\tau(M)$

• Head sequence : $\tau(x) = \tau((\lambda x.M)^A) = \tau((MN)^A) = 0$ $\tau(a:M) = a\tau(M)$

・ロト・日本・日本・日本・日本・日本・日本

• Example :
$$\tau(a:b:c:(\lambda x.x)^A) = abc$$

• Head sequence :
$$\tau(x) = \tau((\lambda x.M)^A) = \tau((MN)^A) = 0$$

 $\tau(a:M) = a\tau(M)$

• Principals contained in atomic or compound labels :

$$\operatorname{Princ}(\operatorname{Aa}_1 \dots \operatorname{a}_n B) = \{A, B\} \cup_{1 \leq i \leq n} \operatorname{Princ}(a_i)$$

 $\operatorname{Princ}(\lceil \alpha \rceil) = \operatorname{Princ}(\lfloor \alpha \rfloor) = \operatorname{Princ}(\alpha)$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへぐ

• Head sequence :
$$\tau(x) = \tau((\lambda x.M)^A) = \tau((MN)^A) = 0$$

 $\tau(a:M) = a\tau(M)$

• Principals contained in atomic or compound labels :

$$extsf{Princ}(Aa_1 \dots a_n B) = \{A, B\} \cup_{1 \leq i \leq n} extsf{Princ}(a_i) \ extsf{Princ}(\lceil \alpha \rceil) = extsf{Princ}(\lfloor \alpha
floor) = extsf{Princ}(\alpha)$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへぐ

• Example : $Princ(A \lceil B \lfloor AC \rfloor D \rceil E) = \{A, B, C, D, E\}$

• Head sequence :
$$\tau(x) = \tau((\lambda x.M)^A) = \tau((MN)^A) = 0$$

 $\tau(a:M) = a\tau(M)$

• Principals contained in atomic or compound labels :

$$\begin{aligned} \mathtt{Princ}(\mathsf{A}\mathsf{a}_1\ldots\mathsf{a}_n\mathsf{B}) &= \{\mathsf{A},\mathsf{B}\}\cup_{1\leq i\leq n}\mathtt{Princ}(\mathsf{a}_i)\\ \mathtt{Princ}(\lceil\alpha\rceil) &= \mathtt{Princ}(\lfloor\alpha\rfloor) = \mathtt{Princ}(\alpha) \end{aligned}$$

Definition (Separation)

A sequence of atomic labels $a_1 \dots a_n$ separates the principals A and B iff, for every $1 \le i \le n$, we have $\{A, B\} \not\subseteq \text{Princ}(a_i)$.

• Head sequence :
$$\tau(x) = \tau((\lambda x.M)^A) = \tau((MN)^A) = 0$$

 $\tau(a:M) = a\tau(M)$

• Principals contained in atomic or compound labels :

$$\operatorname{Princ}(Aa_1 \dots a_n B) = \{A, B\} \cup_{1 \leq i \leq n} \operatorname{Princ}(a_i)$$

 $\operatorname{Princ}(\lceil \alpha \rceil) = \operatorname{Princ}(\lfloor \alpha \rfloor) = \operatorname{Princ}(\alpha)$

Definition (Separation)

A sequence of atomic labels $a_1 \dots a_n$ separates the principals A and B iff, for every $1 \le i \le n$, we have $\{A, B\} \not\subseteq \text{Princ}(a_i)$.

• Examples : $\star [AC] [C[DE]B]$ separates A et B.

★ [DC][C[AE]B] does not separate A et B.

Theorem (Separation)

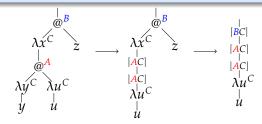
If M is an unlabelled term and if the reduction $M \rightarrow V$ is independent of the interaction between A and B, then $\tau(V)$ separates A and B.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Independence and labels : separation

Theorem (Separation)

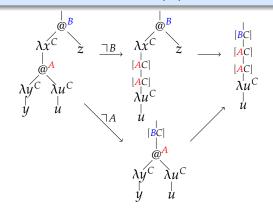
If M is an unlabelled term and if the reduction $M \rightarrow V$ is independent of the interaction between A and B, then $\tau(V)$ separates A and B.



Independence and labels : separation

Theorem (Separation)

If M is an unlabelled term and if the reduction $M \rightarrow V$ is independent of the interaction between A and B, then $\tau(V)$ separates A and B.

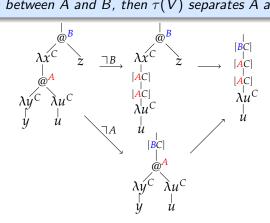


Dac

Independence and labels : separation

Theorem (Separation)

If M is an unlabelled term and if the reduction $M \rightarrow V$ is independent of the interaction between A and B, then $\tau(V)$ separates A and B.



The head sequence [BC][AC][AC] separates A and B.

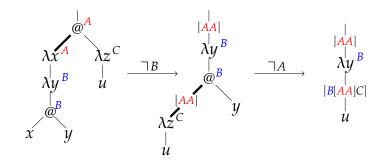
・ロト・(中ト・モト・モー・ 中・ つくぐ

Theorem

If $M \rightarrow V$ and if $\tau(V)$ separates A and B, then there is a reduction $\mathcal{R}: M \rightarrow W$ independent of the interaction between A and B.

Theorem

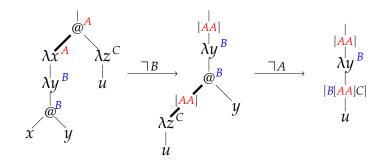
If $M \rightarrow V$ and if $\tau(V)$ separates A and B, then there is a reduction $\mathcal{R}: M \rightarrow W$ independent of the interaction between A and B.



▲ロト ▲団ト ▲目ト ▲目ト ▲目 ● のへの

Theorem

If $M \rightarrow V$ and if $\tau(V)$ separates A and B, then there is a reduction $\mathcal{R}: M \rightarrow W$ independent of the interaction between A and B.



・ロト ・ 同ト ・ ヨト ・ ヨト

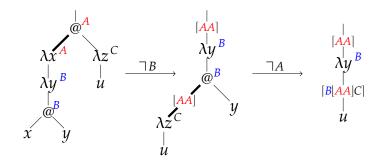
=

Sac

* The label [AA] separates A et B.

Theorem

If $M \rightarrow V$ and if $\tau(V)$ separates A and B, then there is a reduction $\mathcal{R} : M \rightarrow W$ independent of the interaction between A and B.



- * The label [AA] separates A et B.
- * This reduction **is not** independent of the interaction between A and B.

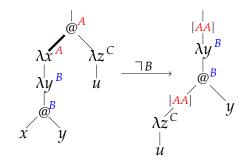
문제 비용하는 것

1

590

Theorem

If $M \rightarrow V$ and if $\tau(V)$ separates A and B, then there is a reduction $\mathcal{R} : M \rightarrow W$ independent of the interaction between A and B.



- * The label [AA] separates A et B.
- * This reduction is independent of the interaction between A and B.

▲□ト ▲ ヨト ▲ ヨト

-2

900

Expressing Chinese Wall in the λ_n -calculus

• The Chinese Wall between A and B is written $\mathcal{CW}(A, B)$.

• If redex R has name $Aa_1 \dots a_n B$, then :

- ► A and B interact (directly).
- If C ∈ Princ(a_i), then C participated to the creation of this interaction.

Definition (Chinese Wall)

A reduction follows $\mathcal{CW}(A, B)$ iff every redex R contracted by this reduction is such that :

 $\{A,B\} \not\subseteq \texttt{Princ}(\texttt{name}(R))$

- The Chinese Wall between A and B is written $\mathcal{CW}(A, B)$.
- If redex R has name $Aa_1 \ldots a_n B$, then :
 - A and B interact (directly).
 - ► If C ∈ Princ(a_i), then C participated to the creation of this interaction.

Definition (Chinese Wall)

A reduction follows $\mathcal{CW}(A, B)$ iff every redex R contracted by this reduction is such that :

 $\{A,B\} \not\subseteq \texttt{Princ}(\texttt{name}(R))$

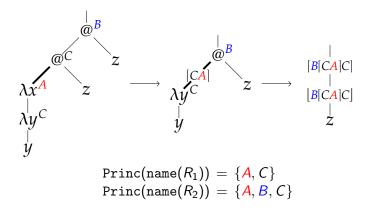
- The Chinese Wall between A and B is written $\mathcal{CW}(A, B)$.
- If redex R has name $Aa_1 \ldots a_n B$, then :
 - A and B interact (directly).
 - ► If C ∈ Princ(a_i), then C participated to the creation of this interaction.

Definition (Chinese Wall)

A reduction follows $\mathcal{CW}(A, B)$ iff every redex R contracted by this reduction is such that :

 $\{A, B\} \not\subseteq \operatorname{Princ}(\operatorname{name}(R))$

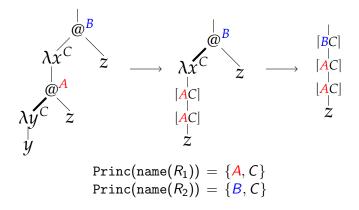
Chinese Wall in the λ_n -calculus : example 1/2



This reduction does not follow CW(A, B).

◆ロト ◆昼 ト ◆臣 ト ◆臣 ト ◆ 回 ト ◆ 回 ト

Chinese Wall in the λ_n -calculus : example 2/2



This reduction follows CW(A, B).

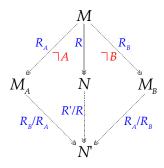
<ロト < 回ト < 回ト < ヨト < ヨト = 三三

Sac

Correction of CW(A, B)

Theorem (Correction)

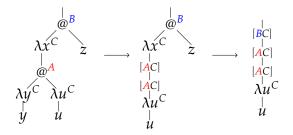
If $R : M \rightarrow N$ follows CW(A, B), then R is independent of the interaction between A and B.



The Chinese Wall guarantees the independence.

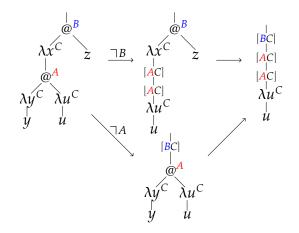
< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Correction of CW(A, B) : example



The reduction follows CW(A, B)...

Correction of CW(A, B) : example



...hence it is independent of the interaction between A and B

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨー

Dac

• Sublabel of a compound label :

$$\begin{array}{l} \alpha \leq \alpha \\ \alpha \leq Aa_1 \dots a_n B \text{ si } \exists i \ . \ a_i = \lceil \beta \rceil \text{ and } \alpha \leq \beta \\ \alpha \leq Aa_1 \dots a_n B \text{ si } \exists i \ . \ a_i = |\beta| \text{ and } \alpha \leq \beta \end{array}$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへぐ

• Example : $\alpha \preceq A[\alpha][\gamma]B$

• Sublabel of a compound label :

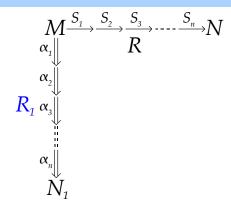
$$\begin{array}{l} \alpha \leq \alpha \\ \alpha \leq Aa_1 \dots a_n B \text{ si } \exists i \ . \ a_i = \lceil \beta \rceil \text{ and } \alpha \leq \beta \\ \alpha \leq Aa_1 \dots a_n B \text{ si } \exists i \ . \ a_i = \lfloor \beta \rfloor \text{ and } \alpha \leq \beta \end{array}$$

• Example : $\alpha \preceq A[\alpha][\gamma]B$

$$M \xrightarrow{S_1} \xrightarrow{S_2} \xrightarrow{S_3} \cdots \xrightarrow{S_n} N$$

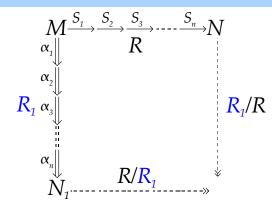
$$M \xrightarrow{S_1} \xrightarrow{S_2} \xrightarrow{S_3} \cdots \xrightarrow{S_n} N$$

For $1 \le i \le n$, we write $\alpha_i = \text{name}(S_i)$. We have $\{A, B\} \cap \text{Princ}(\alpha_i) \ne \{A, B\}$.



For $1 \le i \le n$, we write $\alpha_i = \text{name}(S_i)$. We have $\{A, B\} \cap \text{Princ}(\alpha_i) \ne \{A, B\}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

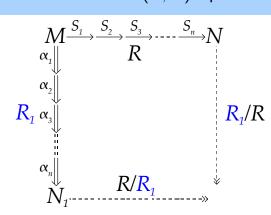


For $1 \le i \le n$, we write $\alpha_i = \text{name}(S_i)$. We have $\{A, B\} \cap \text{Princ}(\alpha_i) \ne \{A, B\}$.

イロト イボト イヨト イヨト

1

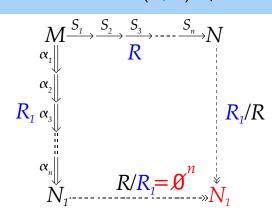
Sac



For $1 \le i \le n$, we write $\alpha_i = \text{name}(S_i)$. We have $\{A, B\} \cap \text{Princ}(\alpha_i) \ne \{A, B\}$.

Lemma (Completion)

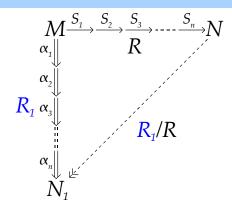
If $R: M \xrightarrow{S_1} \dots \xrightarrow{S_n} N$ and if for every *i*, we have $name(S_i) = \alpha_i$, then $R_1: M \xrightarrow{\alpha_1} \dots \xrightarrow{\alpha_n} N_1$ and $R \leq R_1$.



For $1 \le i \le n$, we write $\alpha_i = \text{name}(S_i)$. We have $\{A, B\} \cap \text{Princ}(\alpha_i) \ne \{A, B\}$.

Lemma (Completion)

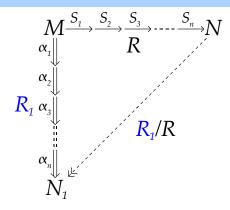
If $R: M \xrightarrow{S_1} \dots \xrightarrow{S_n} N$ and if for every *i*, we have $name(S_i) = \alpha_i$, then $R_1: M \xrightarrow{\alpha_1} \dots \xrightarrow{\alpha_n} N_1$ and $R \leq R_1$.



For $1 \le i \le n$, we write $\alpha_i = \text{name}(S_i)$. We have $\{A, B\} \cap \text{Princ}(\alpha_i) \ne \{A, B\}$.

Lemma (Completion)

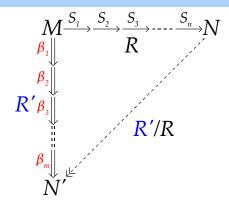
If $R: M \xrightarrow{S_1} \dots \xrightarrow{S_n} N$ and if for every *i*, we have $name(S_i) = \alpha_i$, then $R_1: M \xrightarrow{\alpha_1} \dots \xrightarrow{\alpha_n} N_1$ and $R \leq R_1$.



For $1 \le i \le n$, we write $\alpha_i = \text{name}(S_i)$. We have $\{A, B\} \cap \text{Princ}(\alpha_i) \ne \{A, B\}$.

Lemma (Reordering)

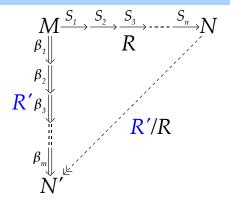
If $R: M \stackrel{\alpha_1}{\Rightarrow} \dots \stackrel{\alpha_n}{\Rightarrow} N$, there is a reduction $R': M \stackrel{\beta_1}{\Rightarrow} \dots \stackrel{\beta_m}{\Rightarrow} N'$ such that (1) $\{\beta_i\}_{1 \leq i \leq m} \subseteq \{\alpha_i\}_{1 \leq i \leq n}$ (2) if i < j, then $\beta_j \not\prec \beta_i$ (3) $R \leq R'$

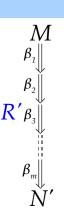


For $1 \le i \le n$, we write $\alpha_i = \text{name}(S_i)$. We have $\{A, B\} \cap \text{Princ}(\alpha_i) \ne \{A, B\}$.

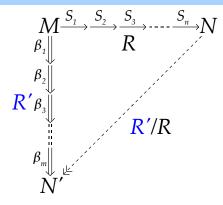
Lemma (Reordering)

If $R: M \stackrel{\alpha_1}{\Rightarrow} \dots \stackrel{\alpha_n}{\Rightarrow} N$, there is a reduction $R': M \stackrel{\beta_1}{\Rightarrow} \dots \stackrel{\beta_m}{\Rightarrow} N'$ such that (1) $\{\beta_i\}_{1 \leq i \leq m} \subseteq \{\alpha_i\}_{1 \leq i \leq n}$ (2) if i < j, then $\beta_j \not\prec \beta_i$ (3) $R \leq R'$





- If i < j, we have $\beta_j \not\prec \beta_i$.
- $\{\gamma_i\}_{1 \le i \le k}$: elements of $\{\beta_i\}_{1 \le i \le m}$ such that $\{A, B\} \cap \text{Princ}(\beta_i) = \emptyset$.
- $\{\delta_i\}_{1 \le i \le k'}$: elements of $\{\beta_i\}_{1 \le i \le m}$ such that $\{A, B\} \cap \text{Princ}(\beta_i) \ne \emptyset$.
- If $\beta_i \in {\delta_i}_{1 \le i \le k'}$, if $\beta_j \in {\gamma_i}_{1 \le i \le k}$, we have $\beta_i \not\models \beta_{j \in \mathbb{R}}$, $i \in \mathbb{R}$

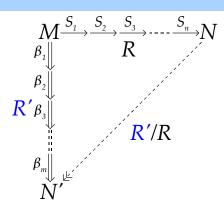


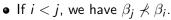
- If i < j, we have $\beta_j \not\prec \beta_i$.
- $\{\gamma_i\}_{1 \le i \le k}$: elements of $\{\beta_i\}_{1 \le i \le m}$ such that $\{A, B\} \cap \text{Princ}(\beta_i) = \emptyset$.
- $\{\delta_i\}_{1 \le i \le k'}$: elements of $\{\beta_i\}_{1 \le i \le m}$ such that $\{A, B\} \cap \text{Princ}(\beta_i) \ne \emptyset$.

• If $\beta_i \in {\delta_i}_{1 \le i \le k'}$, if $\beta_j \in {\gamma_i}_{1 \le i \le k}$, we have $\beta_i \not\models \beta_{j \in \mathbb{R}}$, $i \in \mathbb{N}$

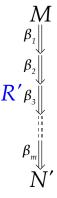
М

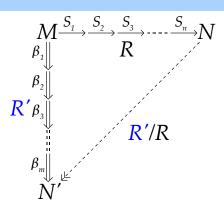
R





- $\{\gamma_i\}_{1 \le i \le k}$: elements of $\{\beta_i\}_{1 \le i \le m}$ such that $\{A, B\} \cap \text{Princ}(\beta_i) = \emptyset$.
- $\{\delta_i\}_{1 \le i \le k'}$: elements of $\{\beta_i\}_{1 \le i \le m}$ such that $\{A, B\} \cap \text{Princ}(\beta_i) \ne \emptyset$.
- If $\beta_i \in \{\delta_i\}_{1 \leq i \leq k'}$, if $\beta_j \in \{\gamma_i\}_{1 \leq i \leq k}$, we have $\beta_i \not\prec \beta_j$, the set of $\beta_i \prec \beta_j$.



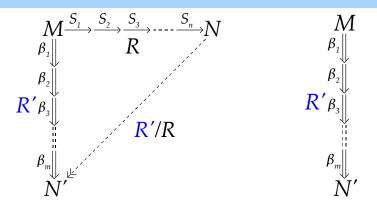


- $\{\gamma_i\}_{1 \le i \le k}$: elements of $\{\beta_i\}_{1 \le i \le m}$ such that $\{A, B\} \cap \text{Princ}(\beta_i) = \emptyset$.
- $\{\delta_i\}_{1 \le i \le k'}$: elements of $\{\beta_i\}_{1 \le i \le m}$ such that $\{A, B\} \cap \text{Princ}(\beta_i) \ne \emptyset$.
- If $\beta_i \in {\delta_i}_{1 \le i \le k'}$, if $\beta_j \in {\gamma_i}_{1 \le i \le k}$, we have $\beta_i \not\prec \beta_j \in \mathbb{R}$ and $\beta_i \neq \beta_j \in \mathbb{R}$

М

R

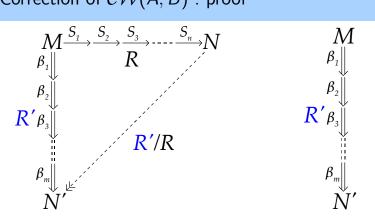
β



• If i < j and $\beta_i \in {\delta_i}_{1 \le i \le k'}$ and $\beta_j \in {\gamma_i}_{1 \le i \le k}$, we have $\beta_i \not\prec \beta_j$ and $\beta_j \not\prec \beta_i$.

Lemma (Permutation)

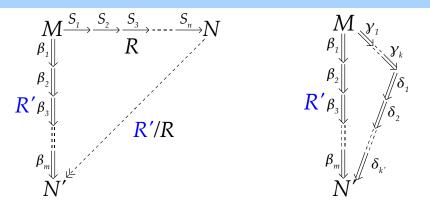
If $\alpha \not\prec \beta$ and $\beta \not\prec \alpha$ and if $R_1 : M \stackrel{\alpha}{\Rightarrow} \stackrel{\beta}{\Rightarrow} N$, then we have $R_2 : M \stackrel{\beta}{\Rightarrow} \stackrel{\alpha}{\Rightarrow} N$ and $R_1 \sim R_2$.



• If i < j and $\beta_i \in {\delta_i}_{1 \le i \le k'}$ and $\beta_j \in {\gamma_i}_{1 \le i \le k}$, we have $\beta_i \not\prec \beta_j$ and $\beta_j \not\prec \beta_i$.

Lemma (Permutation)

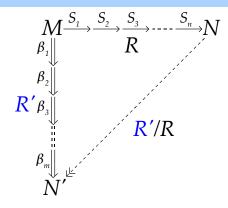
If $\alpha \not\prec \beta$ and $\beta \not\prec \alpha$ and if $R_1 : M \stackrel{\alpha}{\Rightarrow} \stackrel{\beta}{\Rightarrow} N$, then we have $R_2 : M \stackrel{\beta}{\Rightarrow} \stackrel{\alpha}{\Rightarrow} N$ and $R_1 \sim R_2$.

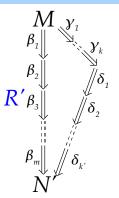


• If i < j et $\beta_i \in {\delta_i}_{1 \le i \le k'}$ and $\beta_j \in {\gamma_i}_{1 \le i \le k}$, we have $\beta_i \not\prec \beta_j$ et $\beta_j \not\prec \beta_i$.

Lemma (Permutation)

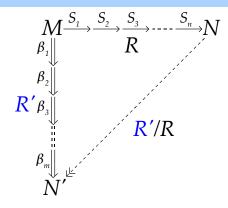
If $\alpha \not\prec \beta$ and $\beta \not\prec \alpha$ and if $R_1 : M \stackrel{\alpha}{\Rightarrow} \stackrel{\beta}{\Rightarrow} N$, then we have $R_2 : M \stackrel{\beta}{\Rightarrow} \stackrel{\alpha}{\Rightarrow} N$ and $R_1 \sim R_2$.

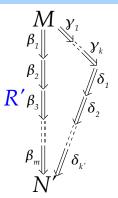




- $\{\eta_i\}_{1 \le i \le p}$: elements of $\{\delta_i\}_i$ such that $\{A, B\} \cap \text{Princ}(\delta_i) = \{A\}$.
- $\{\theta_i\}_{1 \le i \le p'}$: elements of $\{\delta_i\}_i$ such that $\{A, B\} \cap \text{Princ}(\delta_i) = \{B\}$.

• For every *i*, *j*, we have $\eta_i \not\prec \theta_j$ and $\theta_j \not\prec \eta_i$.

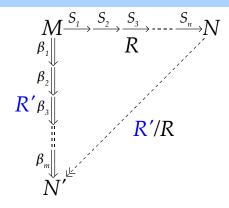


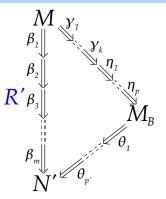


・ロト ・ 一下・ ・ ヨト

Sac

- $\{\eta_i\}_{1 \le i \le p}$: elements of $\{\delta_i\}_i$ such that $\{A, B\} \cap \text{Princ}(\delta_i) = \{A\}$.
- $\{\theta_i\}_{1 \le i \le p'}$: elements of $\{\delta_i\}_i$ such that $\{A, B\} \cap \text{Princ}(\delta_i) = \{B\}.$
- For every *i*, *j*, we have $\eta_i \not\prec \theta_j$ and $\theta_j \not\prec \eta_i$.



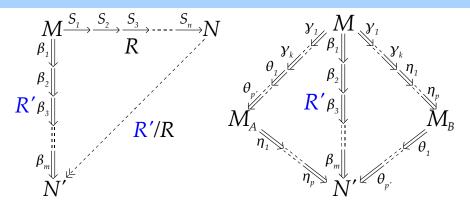


 $\exists \rightarrow$

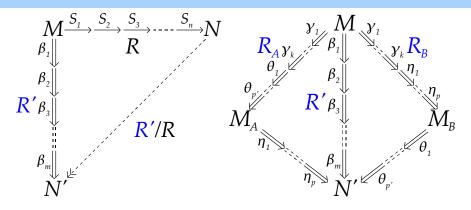
< ロト < 同ト < 三ト

Sac

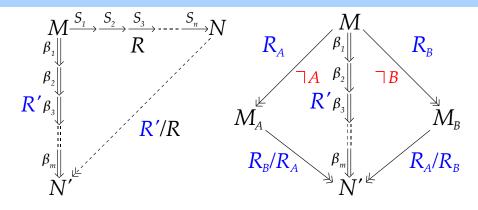
- $\{\eta_i\}_{1 \le i \le p}$: elements of $\{\delta_i\}_i$ such that $\{A, B\} \cap \text{Princ}(\delta_i) = \{A\}$.
- $\{\theta_i\}_{1 \le i \le p'}$: elements of $\{\delta_i\}_i$ such that $\{A, B\} \cap \text{Princ}(\delta_i) = \{B\}.$
- For every *i*, *j*, we have $\eta_i \not\prec \theta_j$ and $\theta_j \not\prec \eta_i$.



- $\{\eta_i\}_{1 \le i \le p}$: elements of $\{\delta_i\}_i$ such that $\{A, B\} \cap \text{Princ}(\delta_i) = \{A\}$.
- $\{\theta_i\}_{1 \le i \le p'}$: elements of $\{\delta_i\}_i$ such that $\{A, B\} \cap \text{Princ}(\delta_i) = \{B\}.$
- For every *i*, *j*, we have $\eta_i \not\prec \theta_j$ and $\theta_j \not\prec \eta_i$.



- $\{\eta_i\}_{1 \le i \le p}$: elements of $\{\delta_i\}_i$ such that $\{A, B\} \cap \text{Princ}(\delta_i) = \{A\}$.
- $\{\theta_i\}_{1 \le i \le p'}$: elements of $\{\delta_i\}_i$ such that $\{A, B\} \cap \text{Princ}(\delta_i) = \{B\}.$
- For every *i*, *j*, we have $\eta_i \not\prec \theta_j$ and $\theta_j \not\prec \eta_i$.





- Safety property : independence
- **②** Correspondence between labelled lambda calculus and independence

Safety policy	Safety property
Stack inspection	-
Information flow	Non interference
Chinese Wall	Independence

Future works

Objectives

• Static information flow in the λ -calculus

▶ labelled \u03c4-calculus and DCC [Riecke], FlowCaml as [Simonet, Pottier], DCC+ [Abadi], etc

Reduction strategies

- call-by-value λ -calculus
- weak λ -calculus

Adding delta rules

- Imperative features and exceptions
- Safety rules (safety operators : uses or binds)

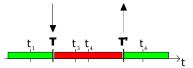
Concurrent features

- Permutation equivalence and Event structures
- Reversible processes (backtracking) [Jean Krivine]

(日) (日) (日) (日) (日) (日) (日) (日)

Conclusion : non interference

- Non interference : the labels of the λ -calculus express functional interference.
- In the $\lambda\text{-calculus}$ with references, labels have to also capture interference with memory.
 - ► A memory cell interferes within some time interval.



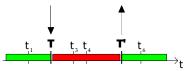
・ロト ・ 同ト ・ ヨト ・ ヨト - ヨー

Dac

 We can use irreversibility of contexts in the labelled λ-calculus [Blanc].

Conclusion : non interference

- Non interference : the labels of the λ-calculus express functional interference.
- In the λ -calculus with references, labels have to also capture interference with memory.
 - A memory cell interferes within some time interval.

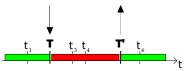


◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

We can use irreversibility of contexts in the labelled λ-calculus [Blanc].

Conclusion : non interference

- Non interference : the labels of the λ-calculus express functional interference.
- In the λ -calculus with references, labels have to also capture interference with memory.
 - A memory cell interferes within some time interval.



◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

 We can use irreversibility of contexts in the labelled λ-calculus [Blanc].

• Created principals and extended independence.

- 2 Link between non-interference and independence : express these properties within a common framework.
- Oynamic labels are a good starting point for an analysis mixing static and dynamic checks.

・ロト ・ 同ト ・ ヨト ・ ヨト

Imple proofs for safety properties.

- Created principals and extended independence.
- Link between non-interference and independence : express these properties within a common framework.
- Oynamic labels are a good starting point for an analysis mixing static and dynamic checks.

Simple proofs for safety properties.

- Created principals and extended independence.
- Link between non-interference and independence : express these properties within a common framework.
- Oynamic labels are a good starting point for an analysis mixing static and dynamic checks.
- Simple proofs for safety properties.

- Created principals and extended independence.
- Link between non-interference and independence : express these properties within a common framework.
- Oynamic labels are a good starting point for an analysis mixing static and dynamic checks.

◆□▶ ◆□▶ ★∃▶ ★∃▶ → 三 - のへで

Simple proofs for safety properties.