ANNEXE 1: ANNEXE TECHNIQUE
ANR-06-SETIN-010

1
2

3

4

Sommaire

ACIONYME €1 TItrE U PIOJEL ...ei ettt ettt e e e st e e e st et e e s snbn e e e e neeas 3
DEeSCriptioN COUE AU PIOJELeeiiuriiee ittt ettt ettt ettt ettt e st e e e st e e e e st e e e e e s bt e e e e sbbe e e e abneeeeanbneeeeanns 3
21 Contexte et MOotivatioN AU PrOJETooiiiiiiiiiii e 3
e o] [=Te1 Ao (XY ol 1] 1o o O TP UPPPR TR 5
3.1 Concurrent programming MOUEIS.eiiiii i e e e e e e e e nbbaeeeaaaeeas 6
3.1.1 Objective 1. Formalization of the JAVA memory model ... 7
3.1.2 Objective 2. On the cooperative programming MOAelccccuiiieeeiiiiiiiieiee e 7
3.1.3 Objective 3. Semantic foundations of a synchronous model..............cccoccvviiineiiiiiiiieene e, 7
3.1.4 ODjJECtiVEe 4. DEIEIMUNACYccciiuiriieiee e e e e ectree e e e e e e s s r e e e e e e s s ata e e e e e aeesssabsreaereaeeesaasaraeeeeaeenas 8
3.2 Y= 1ol 1 YAK= U [0 I o] o Tox U1 =1 Lo V28 PSR 8
3.2.1 Logics for reliable and secure CONCUITeNt Programscccvvveeeeeeesiicrireeeeeeesesnnreeereaeeesennnnes 8
3.2.1.1 Objective 5. Separation logic and relaxed memory models..........ccccceeeviviciiieeeeeeeieinnns 9
3.21.2 Obijective 6. Logics for verifying multi-threaded programs...........cccoeceeeiniieeenniee e, 9
3.2.1.3 Objective 7. Logical characterizations of secure information flowccccccceeen. 10
3.2.2 Secure iNFOrMation fIOWoooiiiie e 10
3.22.1 Objective 8. Improving information flow type systems (1)........ccooiivviieiiiiiniiiiiiieeneeeenne 11
3.2.2.2 Objective 9. Improving information flow type SysStems (2)..........oocoiiieiiiiiniiiiiiieenaaenn. 12
3.2.2.3 Objective 10. Secure information flow as a safety property.........ccccvvveeeiiiiciiiieeeeeen, 12
3.2.2.4 Objective 11. History-based information flow............cccccvviiiiieii i, 12
3.2.25 Objective 12. Information flow and cooperative programming.........cccccceeeevviivvreeeeeennn 13
3.2.2.6 Objective 13. Language-based vs process-calculus-based information flow 13
3.2.3 AcCesS and reSOUICE COMIIOL.......uiiiiiiiiii ittt s e e e 14
3.23.1 Objective 14. Dynamic permission Management..........cc.uuerreeeiiiriireerreeeessninineereeeesans 15
3.2.3.2 Objective 15. Resource consumption analysisccceeeiiiiieeiiiieeeiniiiee e 15
3.2.3.3 Objective 16. Feasible reacCtiVILYcooiiiiiiiiiii e 16

3.3 Machine-checking SECUNLY PrOPEITIESuiii ittt e e 16
3.3.1 Objective 17. A mechanized framework for concurrent separation 10giCccccuvveeeeeenn. 17
3.3.2 Objective 18. Enforcement of information flow poliCiesc..ueeeiiiiiiiiiii e, 17
3.3.3 Objective 19. Type-preserving COMPIAtION.cooiuriiiiiiae it 18
3.4 D= AT = o] o PP PRPPPPPRN 19
3.5 T c=TaTo [=To I TS0 £ PRP RPN 19
T2 =] (=] ot SRR 20

4.1 Bibliographical references of the researchers involved in the project.........ccccccovvvciiieeeeeiiiens 25

1 Acronyme et titre du projet

PARSEC : PARallelism and SECurity

2 Description courte du projet
2.1 Contexte et motivation du projet

Concurrent programming technigques have been eledgbtang ago, with the earliest design of

time-sharing operating systems in the late 60muaneously, security issues appeared with the
advent of multi-users computing systems. The canekp process, with its own address space,
and techniques for access control to shared ressuwere developed, providing satisfactory

solutions to the problems arising in such systems.

The last decade has seen concurrency enteringgmnoggr's everyday life, in particular because
the popular AvAa language imposes programs to use threads, tha ahagntire address space.
Indeed, the concept of a cooperating parallel comapb provides a very attractive idea for
modular design. Moreover, concurrent programmirtpnejues are needed to benefit from new
computing architectures that are now widely sprékd,multicore processors or multiprocessor
machines, and also to program in an efficient wawy applications that are inherently massively
concurrent (but not necessarily distributed), apénoto untrusted parties, like web servers,
multi-player games or Internet-scale storage appbos. In the past few years, it has been
recognized that kernel threads are too restrictind too inefficient to provide a convenient
means for programming these applications, and dahager-level thread facility would provide
better support [Anderson & al, Banga-Druschel-Mogoh Behren & al, Engelschall]. Whether
this should follow a preemptive discipline, or areet-driven model, or else a cooperative style
is still a research matter [Adya & al, von Behreor@it-Brewer, Ousterhout]. Similarly, the
well-established technologies for security are @tpate in the case of applications where a
number of concurrent activities should share amesdspace. It is clear for instance that a sand-
boxing technique is far too restrictive in programgisuch applications. Moreover, access
control has to be complemented with new securitycigs, ensuring for instance that a thread
does not consume common resources in an immoderaye or corrupt them, or disclose
confidential information to other threads having laccess rights.

Our PRSeC! project intends to study concurrent programminghmégques for these new
architectures and applications, focusing on theirsggcissues that arise in multi-threaded sys-
tems. To this end, we have built a coherent groaplemof five teams, namely theoKcur-
RENCY group (R. Amadio) at the PPS Lab of Paris 7 Unierand CNRS, the ¥&EREST (G.
Barthe) and MvosA (G. Boudol, coordinator) teams at INRIA Sophia Awtis, the LaNDE (T.
Jensen) team at IRISA, and theo&tova (J.-J. Levy) team at INRIA Rocquencourt, sharing
their expertise in concurrency and/or security. aAbasic research project, we do not aim at
achieving a pre-competitive objective, and themfaur research activity will span a broad area -
say from bisimulations for a synchronous (in thesseof synchronous languages a $aH#REL)
7r-calculus, to access and resource control fotisthreaded AvA programs in mobile phones -,
and our "deliverables" will essentially consistthreoretical results published in articles. Our
main objective is to understand what could beeéfitient and "security-minded” concurrent

! for PARallelism and SECurity, where "parallelism" alibhere be understood as "concurrency". for adstrative reasons,
these two teams at the same laboratory are notedas two distinct partners, and both appear uh@écoordinator" heading
in the project description.

programming modelSuch a model should both be convenient for progriaagrthe kind of
applications mentioned above, and support mechanisnensure high-level security policies.
To achieve this objective we will have to study Me&lown models, like Ava multi-threading,
Posix threads or shared memory models, as weless dtandard ones, like the cooperative
model which is gaining some popularity in user-leétheead systems, or the synchronous model.
We will have to understand what is the right safatyd security properties to guarantee
regarding multi-threaded systems, like for instathe="non-interference" property, which is not
so clear in this case, or the "availability" prdgemeaning in particular that a single thread
should not monopolize any shared resource. We aislb have to design and study means to
ensure these properties, using and adapting staridals like type systems, program logics
(including Floyd-Hoare logic, temporal logics, oreyRolds' separation logic) or run-time
verification mechanisms.

There are many difficulties in this task. Firstadif the semantics of multi-threaded programming
is not at all well understood. While it is very gde provide a formal "interleaving” semantics
for thread systems with shared memory, this semméever coincides with what is actually
implemented, for various reasons. One reason is thiea grain of atomicity is usually not
preserved by the implementation, and a program beytime-sliced at some point of its
execution which makes no sense at the languagk (B2 [Reynolds 04] for instance). Another
reason is that compilers usually make optimizatithrag are valid for sequential programs, but
break the interleaving semantics when they consbared parts of the memof(gf. [Adve-
Gharachorloo]). Similarly, modern hardware procesgmerform optimizations, rearranging the
code and buffering data in ways that again breakhigh-level concurrent semantics (see again
[Adve-Gharachorloo]). As a result, the memory moaliethe implementation usually does not
correspond to the one of the semantics [Adve-Maiaggh, Boehm, Pugh]. For all these
reasons, and in addition to the fact that syncladion is a delicate matter [Birrel], even at the
language level, classical (i.e. preemptive) miiteaded programming is extremely difficult,
and error prone. It is thus necessary to desigmtgues to analyze concurrent programs in order
to make them "thread safe", avoiding or detectorgristance race conditions [Abadi-Flanagan-
Freund, Flanagan-Qadeer, Grossman], but also taoimpthe interaction with optimizing
compilers and optimizing hardware (using "volatiticlarations for instance). Besides the study
of this classical, preemptive model, one may algplage, as we plan to do, the use of
cooperative threads at the language level (segd@®Boussinot-Serpette]). This is by now
advocated as a better model for applications lilee dnes mentioned above [Adya & al, von
Behren & al], but this programming style is notefref defects. In particular, cooperative
programs have to indeed cooperate, in order naha&e the other threads starving for the
processor, and there is by now no well establisteetinique to guarantee cooperation for
programs written in an expressive language. Theeganwblem arises with the reactive [Hughes-
Pareto-Sabry] or synchronous [Amadio-Dabrowski, Am&Dal Zilio] programming styles.
Another question is how to take advantage of airpuitcessor architecture in a cooperative
style of programming [Boussinot 06]. Summarizirggre is still a lot of basic research to do in
order to design a concurrent model in which prognamy would be reasonably safe.

Multi-threaded applications also raise some difficquestions regarding security. As we
indicated above, in such applications access coh&® to be complemented with information
flow control, and resource usage control. It islskaebwn that secure information flow is diffi-

cult to formalize in a concurrent setting, due lte non-deterministic character of concurrent
systems (see [Ryan & al] for instance), and towhgous kinds of leaks that can arise, like

termination leaks or timing leaksf. [Sabelfeld-Myers]). Moreover, even for weak notiafs
secure information flow, most of the well-knownhagues (e.g. type systems [Smith-Volpano,
Volpano-Smith-Irvine]) for enforcing such securpyoperties are far too restrictive to be of
practical use. We thus have to find means to imgrthis situation. We believe that the
cooperative model for concurrency is better suikeh the preemptive one for a language-based
approach to information flow security, becausehis model the flow of control is determined at
the programming level, but this belief has stillb® proved right by some formal results. As a
matter of fact, some difficult questions regardsgcure information flow already arise in a
purely sequential setting. For instance, we atkelatking an adequate treatment of exception
mechanisms a laaVA; also, secure information flow (non-interferenceduld be made closer,

in one direction or the other, to static analygishhiques (type systems) that are meant to
enforce it. Similarly, although multi-threaded apgtions provide a strong motivation for
studying resource usage control, there is stilivedl-established technique that would provide,
in the sequential case, static means to enforconably accurate bounds on resource usage.
Even the standard issue of access control neetfefunvestigation, to formally understand for
instance what exactly is guaranteed by the run-fiméection mechanisms invA.

Our proposal is to make contributions to solvingthé above mentioned issues, aiming at
achieving, at the end of the project, a good undeding of what could be safe and secure
concurrent programming modddased on theoretical justifications. To this end,skall follow

in the RRSEC proposal a language-based approach to addrestimal way safety and secu-
rity issues such as access control, secure infmm#8ow, and resource usage control, focusing
in particular on concurrent programming construats] especially on cooperative concurrency.
We will, as far as possible, experiment our ideasprototype software, but we do not expect
these to provide pre-competitive technology thatidde directly exploited industrially.

3 Project description
We organize our project into three main tasks, atlspecific temporal or causal order.

- Afirst one deals witltoncurrent programming models,
- asecond and most central one focuseseoarity and concurrency,
- athird is concerned wittnachine-checking security properties.

The second task is divided into three subtaskdimdewith logics for reliable and secure con-
current programs, secure information floand resource and access contna@spectively. For
each of these (sub)tasks, we begin the descriptitnan introduction to the area and then list
the specific research objectives we have in thetsma medium terms. In this description, we
shall not detail the contributions of each teanolagd in the RRSEC proposal. Since many of
our specific objectives are actually shared, samegiwith different approaches, by the various
teams, we expect that active collaborations willrelly emerge and be developed for achieving
these objectives. Let us just list at this poinaivare the areas of expertise of the various teams
as concerns ARSEC's research domainprocess calculi,and more generallysemantics of
concurrency(MIMOSA, MoscovA, PPS),logics of programgEVEREST, LANDE, Moscova) and
static analysis for securitfEVEREST, LANDE, MIMOSA, PPS),formal semantics and verification
of JAvA programs(EVEREST, LANDE).

3.1 Concurrent programming models

The major difficulty in concurrent programming wishared memory lies in the dependency of
program execution on the scheduling. This diffigutises in debugging, testing, analyzing, and
porting concurrent applications. There are basicao ways in which the execution of
concurrent programs can be managed. Inpteemptivemanner, a program, or more precisely
its executable version, can be interrupted at amg tluring its execution by an external device,
the scheduler, and the resources needed for egmacate then given to another concurrent
component for a while. This is the execution mdtet has been adopted in most multithreading
and operating systems, as well as in multi-progeasthitecture. This model is also known as
the interleaving model, which has been adopted in most process ralgetodels. In the
cooperativescheduling discipline on the contrary, a prograncidis, by means of specific
instructions, when to leave its turn to anotherctwrent component, and the scheduling is
distributed among the components.

A specific difficulty for the programmers with sahding is that their programs are executed via
compilers and processors that invest a great tmdesffort optimizing the code and reordering it
to ensure that it is run in the most efficient polesway [Adve-Gharachorloo]. At the same time,
programmers make assumptions about the way the o@secuted. In a single threaded
program, it is fairly easy for a processor to eaghiat program transformations do not interfere
with possible results of the program, and programmell generally not need to reason about
potential optimizations when they write sequentialgrams. When there are multiple threads of
instructions executing at the same time, and thds®ads are interacting, program
transformations can result in bizarre side effd@sehm]. Every hardware and software
interface of a system that admits multithreadedesecto shared memory requires the
specification of how memory actions in a progranil appear to execute to the programmer.
This specification must strike a balance betweese-@d-use for programmers and implementa-
tion flexibility for system designers. The modeaths most commonly assumed and easiest to
understand isequential consistencyhis model basically reflects an interleaving o #ictions

in each thread, at the programming language lé¥alvever, a sequentially consistent system
does not have much freedom to transform memorgrsints within a thread, thus precluding
many important optimizations. Since the 80's, pssoes implement relaxed memory models,
which do not guarantee sequential consistency [A8karachorloo]. It is therefore important to
understand in a formal way these memory modelsrder to be able to define the semantics of
multi-threaded systems, which is the basis for fdrmaasoning and analysis.

The cooperative programming model has been advibeat@ better model than the preemptive
one for programming some modern, massively conotiapplications [Adya & al, von Behren
& al]. Moreover, since cooperative programs areallguicompiled as sequential code, this model
is also better than the preemptive one as reghsdgteractions with optimizing compilers and
hardware. However, the cooperative concurrency inalde has its drawbacks, the main one
being that if the active program runs into an groorraises an un-caught exception, or diverges,
then the model is broken, in the sense that nor @bponent will have a chance to execute.
Then cooperative programming seems to be only ipedate in asafelanguage, like ML, where
errors are, in principle, detected during a statmalysis phase. However, non-terminating
computations cannot be forbidden. Any server fetance should conceptually have infinite life
duration, and should not be programmed to stop afterhile. Still, such a server should not
enter into an infinite loop, it should rather bénnely often waiting for a new request. In other
words, in cooperative programming, programs shdaddcooperative, that is, they should be

guaranteed to either terminate or suspend thenssgifiritely often.

Synchronous programming [Benveniste & al], as imm@ated with various languages such as
LusTREand ESTEREL can be seen as a particular instance of cooperatineurrency. LUSTRE
follows a data-flow approach whereas iSTEREL, program components release the control
when waiting for a signal to be emitted, and resumien this signal is present. The SL
(Synchronous Language) introduced in [BoussinoS#@mone], which can be regarded as a
relaxation of the ETERELmModel where the reaction to the absence of a sigithin an instant
can only happen at the next instant, has gradeatbved into a general purpose programming
language for concurrent applications and has bembedded in various programming
environments such as C [Boussinot 9hAl [Boussinot-Susini], SHEME [Serrano-Boussinot-
Serpette], and &L [Mandel-Pouzet]. However, the semantic theory ois tlamily of
synchronous languages remains largely underdewldfe will then investigate the semantical
issues regarding the preemptive, cooperative andhsgnous concurrent programming styles,
and compare them, in order to get a better undetistg of what could be a good model for
programming modern applications. The main criteriorthis study will be the ability for a
particular style to support analysis and enforcameathanisms for high-level security policies.

3.1.1 Objective 1. Formalization of the J AVA memory model

One of our objectives is to design practical veafion methods for multi-threadedv pro-
grams, and to analyze some security related featiffered with this language. Then we have to
precisely define the semantics ofvd multi-threading, and this requires taking theval
Memory Model [Adve-Manson-Pugh] into account. Warpto formalize this model, using the
Coq proof-assistant, with the objective of proving tliratcase a program is correctly synchro-
nized (meaning that it does not contain race cardit[Abadi-Flanagan-Freund]) the set of its
legal behaviors coincides with the behaviors describy an interleaving semantics (this prop-
erty is claimed by the developers of the/d Memory Model - we intend to verify it formally).
Restricting our attention to verifying correctlyeronized programs will allow us to assume an
interleaving semantics to prove the correctnesgh@®fprogram logic and of the thread modular
verification techniques (see below). Another lifewmrk on this topic, namely the study of
relaxed memory models using Reynold's separatigic,|ts described in the next section.

3.1.2 Objective 2. On the cooperative programming model

One of the aims of the project is to promote coafe programming as an appropriate model
for secure programming. Then a first step is toigiesneans to guarantee that cooperative
programs are indeed cooperative. To this end, we tadefine suspension points in a program,
and to design methods to ensure that a programrdghminates or reaches a suspension point in
finite time. We plan to do that for a higher-ordeaperative core programming language with
cooperative threads, using type systems. We wileha solve a problem for which there is, to
the best of our knowledge, no available solutiothim literature, namely to find an analysis for
guaranteeing termination for programs with a higheler mutable store. In particular, the
analysis will have to rule out circularities thancarise when storing functions in the memory,
while allowing recursion.

3.1.3 Obijective 3. Semantic foundations of a synchronous model

Regarding synchronous concurrency, the objectivte isuild a semantic theory comparable to

what has been achieved with process algebras ferleaving concurrency. In recent work
[Amadio 05b], we have revisited the synchronouggpmming model, introducing an alterna-
tive design that includes thread spawning and sagairdefinitions. We have defined a CPS
translation to a tail recursive form, and propoaetvel notion of bisimulation equivalence with
good compositionality properties. The original Sinduage as well as the revised one assumes
that signals are pure in the sense that they aaoryalue. Then computations are naturally
deterministic and bisimulation equivalence collapse trace equivalence. However, practical
programming languages that have been developeapoof the model include data types beyond
pure signals, and this extension makes the comepntaton-deterministic, unless significant
restrictions are imposed. Therefore, an issue va@ pb address is whether our preliminary
theory is robust enough to support extension toraedeterministic language with data types and
signal name generation. A first step would be tosaer an extension with first-order values,
including signal names. This should lead us todésign of a synchronous calculus similar to
the 7r-calculus. Regarding the semantic theory, plen to use a notion of contextual
bisimulation in the sense of [Honda-Yoshida 93]jchhas never been applied to a synchronous
language. We expect that the resulting semantioryhfor the SL model will have a positive
fall-out on the development of various static as&lftechniques to guarantee properties such as
reactivity [Amadio-Dal Zilio], determinacy [Mand®&euzet], and non-interference [Almeida-
Boudol-Castellani].

3.1.4 Objective 4. Determinacy

Regarding determinacy, one may observe that, tapessome of the difficulties caused by the
scheduling, researchers have been interested intifideg composition and interaction
mechanisms that, while allowing parallelism, presethe determinacy of the observable
behavior of a program (in this respect, two notabdkamples are Kahn networks and the
languages of the &EeREL family). In the synchronous model with value pagsthe non-
determinism lies in the order in which the valuesiteed on a signal are received (whether
during the instant or at the end of the instanthiclv depends on the choice of the next
component to execute. Accordingly, one may condMerrestrictions to make the computation
deterministic: for signals that can be read duanginstant, then at most one value should be
emitted on that signal during each instant. Fonalighat is read at the end of the instant, one
should process the emitted values in a way thiaidispendent of the emission order. While this
may work in certain cases, it is hard to conceiuehsa "commutative" processing when
manipulating objects such as pointers. It seemisahgeneral notion of deterministic program
should be built upon a suitable notion of prograguiealence. Our planned work here consists
in designing checkable conditions that guarantdetarministic behavior, and in experimenting
the expressivity of these conditions in concreteasions. In another direction, we are also
exploring the semantics of deterministic fragmeaitthe asynchronous 7r-calculus. Specifically
in [Varacca-Yoshida] we identify a linearly typeersion of the 7r-calculus with "internal
mobility,” and we provide semantics for it in evesttuctures that are conflict- and confusion-
free. The fragment of the -zr-calculus consideseslifficiently general to encode the A-calculus.
We plan to study in detail the derived event stiretsemantics and to compare it with a
concurrent game semantics of the A-calculus.

3.2 Security and concurrency

3.2.1 Logics for reliable and secure concurrent programs

Program verification is the "holy grail" of softweareliability: it allows one to formally prove
that, for all possible runs of the program, a propbolds. Floyd and Hoare pioneered the use of
logics for program specification, by relating tlogical descriptions of the states of a machine
before and after the execution of a command. Ded#gitmany advantages, program verification
is rarely used in practice. One key reason forldgk of use is that current program verification
techniques do not scale. References and poiatera particular impediment for scalability, as
they allow apparently unrelated pieces of codeffecaeach other's behavior. However, several
logics (and tools) have been developed to reasontaingle-threaded programs at source code
level [Huisman PhD, Jacobs-Poll, von Oheimb]. Farltrthreaded applications some initial
theoretical investigations have been made intor thefification [Abraham PhD, Abraham-de
Roever-Steffen], though their practical feasibiligfill remains an open issue. Moreover,
O'Hearn, Reynolds and Yang have recently develapedpproach called "local reasoning” that
allows dealing with pointers and references, argltha potential to scale. The key observation
is that separate program texts which work on sépaections of the store can be reasoned about
independently. This idea can be embedded in anopppte substructural logic, called
separation logic[Reynolds 02], that presents a connective to makel disjointness of two
portions of the store. Small but intricate grapharpalating programs can then be specified and
proved correct with relatively little fuss. Prelimairy investigations of extensions of separation
logics to local concurrency [O'Hearn] suggest thit possible to design a logic suited to reason
about concurrent cooperative programming. Separ&igic tracks exactly the resources held at
any time by a program. As a consequence, it isnaaluable tool to detect, on the one hand
resource leaks, on the other which parts of a awecti program share data, potentially
interfering.

3.2.1.1 Obijective 5. Separation logic and relaxed m emory models

Recently, the use of general-purpose logics sudil@sl-Hoare logics or temporal logics, that
provide standard means to specify and verify fumai and/or behavioral properties of pro-
grams, has been advocated to verify security ptiggeof programs. A long term line of investi-
gation might then be the study of techniques basetthese logics, as well as on separation logic
to enforce the security properties that are atdagt of the RRSEC proposal. We conjecture for
instance that it is possible to use a concurrer@nsion of separation logic to prove properties of
concurrent programs running on systems that imphtmelaxed memory models. More
precisely, we conjecture that if a program is ptbgeund supposing strong consistency, then it
is sound even if strong consistency is relaxed. [bge& is expected to play a fundamental role
here: both separation logics for concurrency atakegl memory models are designed to support
easily standard locking mechanisms, and the cantgranposed by the logic should ensure the
soundness of the proof.

3.2.1.2 Obijective 6. Logics for verifying multi-thr eaded programs

One of our more immediate aims consists in desggpiactical verification methods for multi-
threaded programs, and in proving their soundnegsal ongoing work in this direction has
identified a promising approach to the verificatioihmulti-threaded programs, namely that of
augmenting traditional pre- and post-conditiondesgpecifications with atomicity information.
This has the advantage that we can still use agistiethods and tools for verification of single-
threaded code, and that we can separate the mudaded aspects from the functional aspects of
the specification. This approach requires that weéind the semantics of notions such as

atomicity, independence and immutability, and thsd define appropriate proof rules for
verifying them. To this end, we need to formallydst the AvA Memory Model, as described in
the previous section. We will also explore wayssohplifying reasoning, investigating in
particular how one can exploit the fact that aneobjs "local" to a single thread, and how this
can be verified.

3.2.1.3 Obijective 7. Logical characterizations of s ecure information flow

An example of using general-purpose logics to yesécurity properties was first given in
[Barthe-D'Argenio-Rezk, Darvas-Hahnle-Sands], whiens shown that non-interference (see
below) of a progran® can be reduced to a property about single progreenutions (univer-
sally quantified over all possible program inpuijhe progranP; P', whereP' is a "renaming"

of P. This idea ofself-compositiornas then been further exploited in a number of fgaptuis-
manet al [Huisman-Worah-Sunesen] have recently proposedeacterization of observational
determinism using this technique. Furthermore, Naum[Naumann] has extended the tech-
nique to encode secure information flow to mutdidap object structures using ghost fields.
This extension shows a direct application of selhposition to verification of object oriented
languages, both for secure information flow andadafinement. Also for object oriented lan-
guages, Dufay et al. [Dufay-Felty-Matwin] have espented with verification of information
flow using self-composition and JML specificatioimsthe Krakatoa tool that generates proof
obligations in the GQ theorem prover. They have illustrated this approanhdata-mining
algorithms. The idea of self-composition is alsediby Terauchi and Aiken [Terauchi-Aiken]
to formulate a notion of relaxed non-interferenthey also propose a type-directed transfor-
mation as a solution for some safety analysis ttws try to solve problems semantically, and
whose analysis will possibly not terminate in preseof certain predicates, e.g. predicates in-
cluding complex arithmetic. Then an objective waena our project is to pursue this line of
work, aiming at logical characterizations of seanfermation flow for more and more complex
policies and richer languages.

3.2.2 Secure information flow

Security models for mobile code typically rely gqping mechanisms that statically enforce ba-
sic safety policies (e.g. code containment or atesesf pointer arithmetic), and on run-time
mechanisms such as stack inspectiomanJand .NET that dynamically enforce access control
policies. While these mechanisms are intended flares confidentiality and integrity policies, it
is difficult to assess the end-to-end policies tttaty guarantee. In particular, they do not
guarantee information-flow policies that are comiyatesirable in scenarios involving the ex-
ecution of untrusted code. A similar observation ba made regarding the kind of massively
concurrent applications that we mentioned in intidg our proposal. For instance, if requests
sent to an Internet-scale medical database aremgrited as spawning dedicated threads, then
one must have guarantees that a thread issuedrbgted doctor will not inadvertently disclose
confidential information about patients to anothpossibly malicious client, indexing for
instance the database for statistical purposes.

Secure information flow, that is the property tidormation is only flowing from a security
level to another if this is allowed by the givertggty policy, is usually formalized asreon-
interferenceproperty, relating several executions of a progmrthe context of memories that
contain the same public information (this is adju@lohen'sstrong dependencggee [Sabelfeld-

Myers]). In an imperative language this propertyoants to the absence of dependency between
the values of secret variables and the values bfipuariables. Besides direct flows, arising
from writing confidential values in the low part tife memory, one may identify several kinds
of leaks: indirect flow, arising from the branchistjucture of the program, termination leaks,
when performing a low write depends on the ternmmadf a piece of code, that in turn depends
on confidential information, or timing leaks, whebserving the duration of the computation
may reveal confidential information (see again Stdd-Myers]). The last two kinds of leaks
typically occur in the concurrent execution of tate using a shared memory, and may depend
on the scheduling strategy [Smith-Volpano]. In agass calculus setting, one is concerned with
public events not being influenced by secret evetiite processes communicate. Here different
security properties have been proposed, mostlydbasetrace equivalence or bisimulation,
among whichnondeducibility on compositicend persistent nondeducibility on compositiare

the most populafcf. [Focardi-Gorrieri] for a review).

To enforce secure information flow, informationvfladype systems, that provide a means to
track data flows and control dependencies, have kgely used, starting from the pioneering
work by Volpano, Smith and Irvine on a core seqiaminperative language [Volpano-Smith-
Irvine] Since then, this methodology has becomeeatmw classical and several type systems
and other static analysis techniques have beefopuard for increasingly complex languages,
including features like higher order, dynamic tlreaeation, scheduling policies, exceptions
etc., and culminating with type systems for remitinguages such aswh [Myers] or CamL
[Pottier-Simonet]. As regards the calculus-basepr@gch, some work on methods for static
detection of insecure processes appears in [CrassiRHennessy-Riely, Honda-Yoshida 02,
Pottier]. However, this by now well-established ay@zh has not yet been largely used in
practice, for several reasons. The notion of noerarence itself has been often criticized [Ryan
& al], from various viewpoints. Its extension tomdeterministic systems, and in particular to
concurrent ones, for instance, is problematic.I3$b dorbids the use of any declassification
mechanism, without which however a security-mingdemjramming language would be useless.
A generalization of non-interference dealing witkclssification has recently been proposed
[AImeida-Boudol].

It is a well-known fact that, while information flotype systems provide an attractive means
to enforce non-interference, they often turn oubéooverly conservative in practice, mainly
because they usually reject many programs thaserxere from the non-interference point of
view. On the one hand, this is unavoidable: typstesys usually provide a computable
approximation for a generally undecidable propedpnd cannot therefore be complete.
Moreover, type systems are usually compositionati therefore reject code that contains
insecure fragments, even if these fragments arerrexecuted. On the other hand, the line of
research that aims at improving the type systenigiding more precise means to ensure the
property to guarantee cannot be neglected. Thisnmivated some work to propose program
analysis methods that are closer to the propertgnsure (e.g. [Barthe-D'Argenio-Rezk]).
Several of the research objectives described bpéatains to this line of work.

3.2.2.1 Objective 8. Improving information flow typ e systems (1)

For instance, the type system of [Barthe-Rezkhierently imprecise in its treatment of ex-
ceptions, because all instructions that can threeegtions are considered as branching state-
ments, and thus many secure programs are rejdntedder to retain some acceptable degree

of precision and not to reject too many programs,intend to let the type system depend on
previous analyses, including a control dependeag®n (cdr) analysis - already considered in
[Barthe-Rezk] - a class analysis and an exceptralyais. Although the need for auxiliary
analyses has been recognized earlier, in partityldhe implementers of Jif [Myers], we are
not aware of any proof of soundness for an inforomaflow type system parameterized by
other static analyses.

3.2.2.2 Objective 9. Improving information flow typ e systems (2)

In a similar vein, we plan to improve type systeasng termination leaks into account. In
[Boudol] we have shown that one can considerablyrave some previous solutions to the
static analysis of such leaks. One of these seolstaonsists in recording the security level of
the predicate in a branching construct, so thaassignment in the low part of the memory
cannot follow a conditional branching with a higéstt [Boudol-Castellani]. However, this is
still quite restrictive, and we have shown in [Boljdhat in the case where both branches are
known to terminate, one can remove this constraimte still ensuring secure information
flow. However, we left open the question of deterimg, by a static analysis technique, an
interesting class of terminating programs. Somehrtiees are available for showing
termination of recursive programs over inductivéadstructures for instance, but very little is
known regarding imperative (first-order) prograraed, as we said above, nothing is known
about this problem for higher-order imperative peogs. Then we plan to apply to the typing
of termination leaks in an expressive, ML-like laage, the techniques that we will develop
for proving that programs are cooperative, as desdrin Section 2.1.

3.2.2.3 Obijective 10. Secure information flow as a safety property

As we said some work has been done [Barthe-D'AcgBeizk, Darvas-Hahnle-Sands] to find
logical characterizations of non-interference, tbhpening the way to more precise methods than
type systems for ensuring this property. Howevee may also think that type systems, and
especially implicit ones, supporting type inferenege a very useful means to help the
programmer to program in a "safe" way, and thaiild therefore be interesting to look for
stronger properties than non-interference, thatlavéwe closer to what is actually ensured by
static analysis. To this end, we plan to formahzean operational way what it means for
information to flow, during the execution of a pram, from one security level to another. Then
the intention is to define secure information flaw asafetyproperty, meaning that no security
error occurs at run-time, where it is an error tores a value that has been computed using
confidential information. We think that we can ihist way deal with declassification
mechanisms, and perhaps some other ways of mansggugity, like revoking security policies,
in a natural manner. We will also have to see wdresiaich a notion of secure information flow is
adequate to deal with various notions of secueks, and especially those arising in concurrent
systems.

3.2.2.4 Obijective 11. History-based information flo w

A related research objective is to design a hisbaged notion of information flow, to formalize
the dependence of interactions of sub-terms irgalt® of programs. This follows hints given by
Abadi and Fournet in [Abadi-Fournet] to enforceesafby inclusion of history into the JVM

stack inspection mechanism. A typical example oatvne would like to treat is the Chinese

Wall policy where a result may depend upon two vitlials A and B, but not upon the
interaction between A and B. Another similar exaenpd the password example, where
individual A can access to the data of B if andyahlA has previously interacted with C. The
old theory of the labeled A-calculus [Levy] canus®d to track history of computations in a core
ML language. In his forthcoming PhD Thesis [Blar@f, Blanc shows the expressivity of this
approach; for instance, the formal semantics ofGhmese Wall or the password examples can
be defined. Moreover an operational descriptiomhef policy can be expressed without labels
thanks to the Church-Rosser property. By extendimey A-calculus with constants and delta
rules, it seems feasible to address history-basedmation flow in non-confluent calculi with
side-effects, and to capture at least the stanmu@idn of non-interference or to get as a corollary
the static analysis based on types of [Pottier-8gtip without exceptions. The objectives of this
work are, first to get more flexible checks fordmhation flow by mixing run-time information
due to history with static information; second, design a simple logic for reasoning about
history of creation of redexes in the A-calculusobinteractions in more complex languages. A
longer term goal would be to connect history-basdgdrmation flow with static analysis on
traces as already done in first-order imperatingleages.

3.2.2.5 Obijective 12. Information flow and cooperat ive programming

Regarding more specifically secure information fleaw concurrent systems, we plan to show
that cooperative concurrency is better suited ppett precise analysis on information flow than
preemptive concurrency (this will extend some wddae in the CRISS project of the ACI
Sécurité Informatique [Almeida-Boudol-Castellani]jhe fact is that, unlike with preemptive
scheduling, the points where scheduling decisioagaken during the execution are explicitly
located in the code of the threads. Then an obvidesa is to assign security levels to these
suspension points, and to analyse the flow of médion that may pass through these control
points. We think that this should allow for an egplanalysis of confidentiality leaks arising
from the scheduling strategy. (By contrast, suclamalysis is notoriously difficult with preemp-
tive scheduling.) Another related line of reseatzdsed on a model where interactions between
the threads and the scheduler are made explictd®R&abelfeld], is described in Section 2.3.

3.2.2.6 Objective 13. Lanquage-based vs process-cal culus-based information
flow

Still regarding concurrency and security, we plarcompare the language-based approach to
secure information flow with process calculi formmations of the same problem. The two lines
of research have been developed to a large extéepéendently, and in the current state of
research, there is not much work bridging the gaveen the two. A recent contribution in this
direction was given by Focardi, Rossi and SabelielfFocardi-Rossi-Sabelfeld]. This paper
considers a sequential imperative language equipptd a (time-sensitive) notion of non-
interference and, using Milner's encoding of tlaeduage into CCS, proves that an external
observer cannot infer any secret from (the imageafecure program. However, a limitation of
this work is that the language is purely sequengtthough Milner's encoding was originally
defined for a parallel language and various deéfing of non-interference now exist for multi-
threaded languages [Smith-Volpano, Sabelfeld-SaBdadol-Castellani]. We also believe that
the notion of security adopted for value-passingSAR this paper as well as in other papers
(namely, persistent bisimulation-based nondedutyilwin composition), is rather restrictive and
not fully in accordance with that of non-interfecenfor programming languages. Taking this

work as our starting point, we propose to develmp dcomparison between the language-based
approach and the calculus-based approach. We dbahis for a concurrent and imperative
language [Boudol-Castellani], elaborating a sudéabbtion of non-interference for the target
process calculus. This might involve exploiting thgymmetry between inputs and outputs,
which are mostly treated on an equal footing irsiéxg studies. Then we plan to show that the
translation is correct with respect to non-intezfere, by relating type systems for secure
information flow in the source and target models.

3.2.3 Access and resource control

Access control is a well-established technologyppérating systems, which however has been
renewed with the advent of global computing systdmshis project we shall focus on specific
issues regarding access control in new applicatasshe ones previously mentioned. As usual,
the problem is to control access to resources i@ential data, computing time, external de-
vices. ..), in such a way that only code thatutharized to perform a certain operation can do
so. The programmer is faced with the task of emfigrsuch security requirements by combining
a number of programming language and operatingesy$tatures such as strong typing, scope
reduction of variables, sand-boxing, run-time clsechk the state of execution, etc. The options
are diverse and it may be difficult to estimate ¢basequences of a particular choice. The\J
language for instance proposes a variety of mesh@nfor controlling the access to resources.
One of our aims is to develop models for these misims. The well-known stack inspection
mechanism for instance is intended to support accestrol for applications in which code
components from different protection domains havedoperate. With this mechanism, one can
enable a component to obtain information aboutctde that (directly or indirectly) invokes the
component's methods, by letting it inspect the stk of the run-time environment. Based on
this information, the component can decide whetnarot the callers have the right to access a
given resource. This mechanism has been formaligiest [Bartoletti-Degano-Ferrari, Besson-
Jensen-Le Métayer, Jensen-Le Métayer-Thorn, Fo@nedon], but only limited formal results
regarding the properties guaranteed by stack itigmelsave been obtained. Fournet and Gordon
[Fournet-Gordon] for instance proved a securityothen that demonstrates that stack inspection
only guarantees a weak safety property. For intexadevices such as mobile telephonesal
proposes a security architecture [SUN] which usésractive querying of the user to grant on-
the-fly permissions to the applet executing on aileophone so that it can make Internet
connections, access files, send SMSs, etc. An it@apbfeature of this MIDP (Mobile Interactive
Device Profile) model is the "one-shot" permissitimst can be used only once for accessing a
resource. This quantitative aspect of permissioaises several questions of how such
permissions should be modeled (e.g., "do they aatate®?" or "which one to choose if several
permissions apply?"), and how to program with spehmissions in a way that respects both
usability and security principles such as Leastilege.

Besides access control, we are also interesteleiavailability aspect of security, and more
precisely in means to control the use of resoubyeshe various components. Mastering the
computational complexitgf programs is an important aspect of computer régcin modern
applications. For instance, in smartcards appboatiand more generally in embedded software,
one has to deal with bounded resources, and it lmeagritical to control that resource usage
stays within certain bounds. Another example is ilrotode. In this case, the hosting system
providing computing resources needs guaranteelseotinhe and space that incoming code might
use. One approach to this problem is to monitorréds®urce consumption at run-time and to

raise an exception when some bound is reachedriAmiaf this approach is to instrument the
code so that bounds are checked at a given tintepliriously, although they offer a great
flexibility and precision, such run-time checks aot always appropriate (think for instance of a
critical embedded system that would crash becatssexecution is aborted by a resource
monitor). An alternative approach is to staticallyalyze the program to guarantee that during
the execution it will respect certain resource lomumhe advantages of static analysis are that it
does not introduce any overhead at run time andape more importantly, that it allows an
early detection of buggy or malicious programs.

In this project we will focus on static analysesiet offer more challenging problems, while
keeping in mind that the two approaches are comgieany. (For instance, static analyses may
be helpful in reducing the frequency of dynamicifigations.) When addressing the issue of
resource control, there is a variety of propertiea program that one may check. Termination is
probably the first one that comes to mind. Howeuethe context of interacting programs, this
property should be refined into the one of "reagtiv(similar to the "productivity" property in
[Hughes-Pareto-Sabry]). If a program manipulatda sglalues of variable size such as lists, trees,
or graphs, then the analysis can go beyond repcawid, for instance, it can establish that the
program "reacts" while usingfaasibleamount of resources. Our starting point in thipees is
the work on the automatic extraction of resourcaenals for (first-order) functional languages.
One can trace back the origin of this line of wéokCobham's characterization [Cobham] of
polynomial time functions by bounded recursion otation. Later work (e.g. [Bellantoni-Cook,
Hofmann, Jones, Leivant]) has developed variousranfce techniques that allow for efficient
analyses while capturing a large range of practadgbrithms. In [Bonfante-Marion-Moyen,
Marion] it has been shown that polynomial time pace bounds can be obtained by combining
traditional termination techniques for term rewrgi systems with an analysis of the size of
computed values based on the notion of quasi-ird&pon. Thus, in a nutshell, resource control
relies on termination and bounds on data size. &l@hge here is to design static analysis
techniques that would be practicable, in the sefdmeing feasible and not rejecting too many
programs, and precise in the sense of providirexast bounds as possible.

3.2.3.1 Obijective 14. Dynamic permission management

A specific objective we have regarding access obrgrto develop a formal model of the above-
mentioned protection mechanisms offered by the Janguage in a fully concurrent setting -the
references cited above are all limited to the setgiesubset of this language. One concrete
result of the success of this effort would be tlesedopment of a semantically well-founded
general model that could provide an alternativettier AvA MIDP security model. We propose
to define the semantics of the model's programmostructs, and a logic for reasoning about
the flow of permissions in programs using thesestroits. This logic will notably allow us to
prove the basic security property that a prograrh méver attempt to access a resource for
which it does not have permission. Initial stepwamds this goal will appear at this year's
ESORICS conference [Besson-Dufay-Jensen].

3.2.3.2 Objective 15. Resource consumption analysis

Controlling the way in which a program accesses @mbumes resources usually requires ad-
ditional information about the program's flow oftalaand control. For example, the certified
memory usage analysis fomwh Card developed by the Lande group [Cachera-Jensen-

Pichardie] requires a precise model of the programtra- and inter-procedural control flow, and
can be further enhanced by being coupled withiozlat data flow analyses such as the classical
polyhedral analysis of relations between integerabdes. We will be concerned with extending
existing resource analyses to a concurrent sedtigigwith examining their interaction with other
static analyses such as those used for analyzicg canditions in AVA programs [Abadi-
Flanagan-Freund], and the resource bound analgsedaped in the next objective.

3.2.3.3 Obijective 16. Feasible reactivity

Regarding "feasible reactivity”, we have previouajdressed this issue in the context of the
ACI Crissproject [Amadio-Dal Zilio]. In this work, we havesbn extending and adapting the
above mentioned results regarding implicit compaiteti complexity to a concurrent framework
of synchronous parallel threads interacting onesthasariables. Our analysis goes in three main
steps. A first step is to guarantee that eachnhséaminates. A second step is to bound the size
of the computed values as a function of the siz@ijparameters at the beginning of the instant.
A third step is to combine the termination and saralyses. In particular, we show how to
obtain polynomial bounds on the space and time eckéar the execution of the system during
an instant as a function of the size of the parametat the beginning of the instant. A
characteristic of the analyses is that to a gretné they make abstraction of the memory and
the scheduler. This means that each thread candbgzad separately, that the complexity of the
analyses grows linearly in the number of threads] that an incremental analysis of a
dynamically changing system of threads is possiblegoing [Amadio-Dabrowski] and planned
work aims at extending the analysis to a more ggn@nguage based on a synchronous version
of the 7r-calculugcf. Section 2.1), at designing reasonable conditioas alow to predict the
size of the system after arbitrarily many instaatg] finally at experimenting the static analysis
conditions on a certain number of synchronous agfitins. In a different direction, we plan to
explore the connections between reactivity in acByonous and an asynchronous framework.
Proving reactivity in a synchronous framework appda be easier because the programs are
naturally structured into instants. Then what wedeo prove is simply that each instant
terminates. By contrast, termination of an asynebus concurrent program is a less structured
task and may involve proving a complicated invar@mthe global structure of the system.

3.3 Machine-checking security properties

Enforcing and verifying properties of programs lbhsays been a major concern for computer
science. We have mentioned the use of programdagnc static analyses, together with their
correctness proofs, for this purpose. As these oastigradually come closer to real applications,
the need for a machine-checked formalization, diegitool correctness or specific program
verifications, is emerging. A first motivation ig gain increased assurance in the results. Indeed,
large scale proofs are generally intrinsically cbogted, from a methodological or
combinatorial point of view, and therefore theivel®pment is error-prone. Moreover, in some
applications one would like to run only programatthave been proved correct according to
some criterion, but one should not have to redgtbef of correctness, which should come as a
certificate attached to the code, that can be aatioally checked. This is the paradigmpobof
carrying code,which relies on the development and use of aut@r@tiinteractive theorem
provers. In this section we describe our resealgbctives that pertain to this line of work, on
machine-checked security or reliability properties.

3.3.1 Objective 17. A mechanized framework for concurrent s eparation logic

At the time of writing, an ongoing research prdjeds building a mechanized framework to
prove the correctness of sequential programs writtea large subset of C using separation
logics. Focusing on a realistic programming languagises new challenges, related to the
presence of side-effects in expressions and fumgtiand to the complexity of the semantics. At
the same time this makes it possible to prove ptigseof real programs. The development is
done inside the @theorem prover. We propose to extend this framewmgkove properties of
concurrent programs using a concurrent extensioeepfiration logic. We will focus on the
Posix thread model, shared memory, and tradititoeding mechanisms and we will put our
framework at work by proving the correctness of somell-known concurrent algorithms
(possibly including some lockfree algorithms). A®qfs done in concurrent separation logic
seem to fit well to cooperative and/or synchronmisraction models, we plan, in a second
phase, to study how to extend this work to otheltithtceaded programming patterns developed
in the RRSEC project.

3.3.2 Objective 18. Enforcement of information flow policies

We plan to pursue the work of [Barthe-Rezk], maektheck it in ©Q, and improve it in
several respects. As indicated above, a motivdtioformalizing and proving the results of this
work in CoqQ lies in the fact that the type system of [BarthedRas intricate, because stack
manipulation can lead to illegal flows, and becaitselefinition relies on a control dependence
region (cdr) analysis that computes the scopeariditing statements. In addition, the soundness
proof involves some lengthy and error-prone prdnfscase analysis, as well as some unusual
induction principle on the execution of prograntsisl therefore important to resort to proof
assistants for managing the complexity of the da#dims and proofs involved in establishing
non-interference for this language. We also aingerteralizing the results we obtained in
[Barthe-Rezk], dealing with more expressive pocaad more realistic languages. We intend to
allow arbitrary lattices of confidentiality leveland, more critically, to follow more closely the
JVM in its treatment of exceptions. (A related imyEment, regarding the type system, has been
described in Section 2.2.) Further, we plan to aigeformalization as a starting point for an
investigation of information-flow policies for th&/M. In particular, we would like to extend
our formalization in two ways. First, we wish tape the soundness of an information flow type
system that enforces the non-disclosure policy (N[P¥meida-Boudol], a bisimulation-based
policy that deals with declassification. The fisgep will be to select a notion of control de-
pendence region that enforces termination-sensitoreinterference, and use progress lemmas
to move from input-output security policies to hisilation-based policies. Once this is done,
introducing constructs for local flows and adaptthg type system to enforce NDP should be
rather direct. A second line of investigations Wil concerned with dealing with multi-threading
along the lines of [Russo-Sabelfeld]. The semardfcgrograms is extended to multi-threading
in a non standard fashion, namely by introducinglieitly a scheduling function that picks the
new thread to be executed, and by using instrugtibat swap threads between pools of threads,
the idea being to have a pool of threads per dgclerrel. The security policy is expressed in
terms of input/output behavior of programs, andgbendness of the type system is shown using
simulation lemmas akin to those of [Barthe-Rezkpei, we intend to study the impact of
synchronization on information flow. A much more [@tious goal would be to use the

2 involving Francesco Zappa Nardelli (MOSCOVA, INRIA Roencourt), Andrew Appel (Princeton U., US), SameliBlazy
(GALLIUM, INRIA Rocquencourt) and Matthew Parkins@@ambridge U., UK).

formalization as a basis to machine-check the tesd@[Barthe-Naumann-Rezk].

3.3.3 Objective 19. Type-preserving compilation

JFlow is an extension ofada with a flexible and expressive information flow &/system
[Myers]. The flexibility and expressiveness of infation flow policies supported by JFlow has
been exploited for modeling and analyzing the pedichat underlie battleship and mental poker
games [Aslarov-Sabelfeld]. Despite the richnesissdanguage, the information-flow policies of
JFlow can be enforced automatically by a constiad@sed algorithm that rejects programs that
may violate their policy. However, the flexibilityf the type system, especially with respect to
de-classification, makes it difficult to charackeriformally the security properties that are
verified by typable programs. Thus, subsequent wfB&nerjee-Naumann 02, Banerjee-
Naumann 05] has focused on developing for a fragneénJavAa that includes objects,
inheritance, and methods, an information-flow tygystem that enforces non-interference. The
benefits provided by JFlow (and [Banerjee-NaumaB]) @o not directly address mobile code
security since they apply to source code, wher@as dpplets are deployed in compiled form as
JVM bytecode programs. Thus, it is desirable toettgy information flow type systems at
bytecode level. An extended bytecode verifier isvisted by [Barthe-Rezk]; the type system
guarantees secure information flow for a fragmetlavA bytecode that includes obijects,
inheritance, methods, and (a simplified mechanisr éxceptions. The type systems of JFlow
and of [Barthe-Rezk] have been developed and appliésolation: JFlow offers a practical tool
for developing secure applications, and in paréictibr ensuring to developers that applications
meet high-level policies about APl usage. In caifrdhe type system of [Barthe-Rezk]
augments theaVA security architecture to provide assurance to ubatsapplets respect high-
level policies about APl usage. These two linewoifk have recently been connected via a type
preservation result [Barthe-Naumann-Rezk], showihgt programs typable in a suitable
fragment of JFlow are compiled into bytecode protwgahat pass information-flow bytecode
verification. The interest of such a result is kmw on the one hand that applications written
with JFlow can be deployed in a mobile code archite that fulfills the promises of JFlow in
terms of confidentiality, and on the other handt ttiee enhanced security architecture from
[Barthe-Rezk] can benefit from practical tools @mveloping applications that meets the policy
it enforces. The results of [Barthe-Naumann-Rezé&yec a fragment of the JVM with a
simplified treatment of exceptions, no method cafisl no multi-threading. Then we propose to
extend our results in [Barthe-Naumann-Rezk, BaRbek] to a more complete treatment of the
JVM.

3.4 Deliverables

Delivrables
Title Type Teams Date
| |PARSECweb site Web site All TO+6
2 |Design of cooperative and reactive Technical paperd MiMOSA, PPS TO+12
programming models (objectives 2,
3,4)
3 |Logics for reliability and security |Technical paperdEVEREST, LANDE, |TO+12
of concurrent systems (objectives MoscovA
5,6,7, 14)
4 |Improved static analysis for Technical paperdEVEREST, MIMOSA |TO+12

secure information flow
(objectives 8, 9)

5 [Notions of secure information flow |Technical paperdMIMOSA, MOSCOVA |TO+12
(objectives 10, 11)

6 |[Mechanizing the verification of Technical paperdEVEREST, LANDE |TO+18

security properties (objectives MOSCOVA
1,17, 18, 19)
7 |Secure information flow for |Technical paperdMimMosA, PPS TO+24

cooperative and reactive systems
(objectives 12, 13)

8 [Analysis for resource control Technical paperdLANDE, PPS TO+24
(objectives 15, 16)

3.5 Intended results

We recall that the main aim of the project is thiage a good understanding of what could be a
safe and secure concurrent programming moblased on theoretical justifications. We plan to
make contributions regarding two of the three dtads aspects of security, namely
confidentiality (access control, secure information flow) aadailability (resource usage
control), following a language-based approach, addressing specifically security issues
arising in concurrent systerns. Although we expmotresults to be essentially of a theoretical
character, our motivation i® provide the basis for tools that are neededrmgpam in a safe
and secure way massively concurrent applicatiorsg #re open to untrusted partieShese
tools will be program logics,possibly supported by proof assistants, and progidiupport for
verifiable software securitystatic analysis technique® assist the programmer in avoiding
security errors and preventing execution of insequograms, angrotection mechanismsith

a well-understood semantics to achieve run-timeckhevhenever a sufficiently complete
analysis is not available.

Our more specific objectives are summarized indée above. Since the list of the deliverables
of the project is supposed to be established eaahfpr the next phase of the project, we only
give this list for the first year and, tentativefgr the next one, indicating the relevant progect'
objectives from Section 2. Among the final reswits expect to achieve is a PhD thesis for
which we are requiring financial support. The thesill focus on Task 1 (concurrent pro-
gramming models) and Task 2.2.2 (secure informdtmm) taking as programming model the
synchronous calculus which is currently under dgwelent. Concerning Task 1, it will explore
in particular the issue of determinacy both in $gachronous and asynchronous context. Con-
cerning Task 2.2.2, it will develop suitable nosasf information flow for the considered model
and relate them to the standard notions developexassical approaches based on imperative
languages. We are planning to recruit a "MastehBexhe" student in the Fall 2006 and start the
thesis work in the Fall 2007. In this way, the thesill benefit from the exploratory work and
the collaborations that will be carried on durihg first year of the project. The thesis work will
be directed by R. Amadio (PPS).

4 Références

[Abadi-Flanagan-Freund] M. gabi, C.FLANAGAN, S.N. FREUND, Types for safe locking: static
race detection for JavahCM TOPLAS Vol. 28 No. 2 (2006) 207-255.

[Abadi-Fournet] M. MBADI, C. FOURNET, Access control based on execution histtiipSS'03
(2003) 107-121.

[Abraham PhD] E. BRAHAM, An Assertional Proof System for Multithreaded JaVaeory and
Tool SupportPhD Thesis, University of Leiden (2004).

[Abraham-de Roever-Steffen] E.BRAHAM, W.-P. DE ROEVER, M. STEFFEN Tool-supported
proof system for multithreaded JavisilFCO'02, Lecture Notes in Comput. Sci. 2852
(2003) 1-32.

[Adve-Gharachorloo] S.A. BVE, K. GHARACHORLOO, Shared memory consistency models: a
tutorial, IEEE Computer Vol. 29 No. 12 (1996) 66-76.

[Adve-Manson-Pugh] S.A. BVvE, J. MANSON, W. PUGH, The Java memory modd?OPL'05
(2005) 378-391.

[Adya & al] A. ADYA, J. HOWELL, M. THEIMER, W. J. BoLoskY, H.R. Douceur Cooperative
task management without manual stack managememivent-driven programming is not
the opposite of threaded programmitgsenix ATC (2002).

[AImeida-Boudol] A. ALMEIDA MATOS, G. BouboL, On declassitcation and the non-disclosure
policy, CSFW'05 (2005) 226-240.

[AImeida-Boudol-Castellani] A.AMEIDA MATOS, G. BoubDoL, I. CASTELLANI, Typing nonin-
terference for reactive programagcepted for publication in the J. of Logic and éldgaic

Programming (2006).

[Amadio 05a] R. AMADIO, Synthesis of max-plus quasi-interpretatiofsndamenta Informati-
cae Vol. 65 No. 1-2 (2005) 29-60.

[Amadio 05b] R. AADIO, The SL synchronous language, revisitééchnical report PPS,
November 2005. To appear in the J. of Logic anceBigic Programming (2005).

[Amadio & al] R. AvaDIO, G. BouDoL, F. BoussINOT, I. CASTELLANI, Reactive programming
revisited, Proc. Workshop om\lgebraic Process Calculi: the fir’5 years and beyond,
Bertinoro. To appear in ENTCS (2005).

[Amadio-Dabrowski] R. AMADIO, F. DABROWSKI, Feasible reactivity for synchronous coopera-
tive threadsEXPRESS'05, to appear in ENTCS (2005).

[Amadio-Dal Zilio] R. AvADIO, S. DaL-ZILIO, Resource control for synchronous cooperative
threads,CONCUR'04, Lecture Notes in Comput. Sci. 3170 (208482.

[Anderson & al] T.E. ADERSON B.N. BERSHAD, E.D. LAzowskA, H.M. LEvy, Scheduler ac-
tivations: effective kernel support for the userde management of parallelis/CM
Trans, on Computer Systems Vol. 10 No. 1 (19927%3-

[Aslarov-Sabelfeld] A. AKAROvV, A. SABELFELD, Security-typed languages for implementation
of cryptographic protocols: A case studySORICS'05, Lecture Notes in Comput. Sci.
3679 (2005) 197-221.

[Banerjee-Naumann 02] A.ABIERJEE D. A. NAUMANN, Secure information flow and pointer
confinement in a Java-like languageSFW'02 (2002).

[Banerjee-Naumann 05] A.BIERJEE D. A. NAUMANN, Stack-based access control for secure
information flow,JFP Vol. 15, special issue on Language-Based $g¢R605) 131-177.

[Banga-Druschel-Mogul] G. BNGA, P. DRUSCHEL J.C.MOGUL, Better operating system fea-
tures for faster network server&CM SIGMETRICS Performance Evaluation Review
Vol. 26 No. 3 (1998) 23-30.

[Barthe-D'Argenio-Rezk] G. BRTHE, P. D'ARGENIO, T. REzK, Secure information flow by self-
compositionCSFW'04 (2004).

[Barthe-Naumann-Rezk] G. ARTHE, D. NAUMANN, T. Rezk, Deriving an information flow
checker and certifying compiler for JaBymposium on Security and Privacy (2006).

[Barthe-Rezk] G. BRTHE, T. REzK, Secure information flow for a JVM-like languagdé,DI'05
(2005) 103-112.

[Bartoletti-Degano-Ferrari] M. BRTOLETTI, P. DEGANO, G.L.FERRAR], Static analysis for stack
inspectionENTCS Vol. 54 (2001).

[von Behren-Condit-Brewer] RioN BERHEN, J. GONDIT, E. BREWER Why events are a bad idea
(for high-concurrency serverdproceedings of HotOS IX (2003).

[von Behren & al] RvoN BERHEN, J. GONDIT, F. ZHou, G. C. NecuLA, E. BREWER Cappric-
cio: scalable threads for Internet servic&)SP'03 (2003).

[Bellantoni-Cook] S. BLLANTONI, S. GOK, A new recursion-theoretic characterization of the
poly-time functionsComputational Complexity 2 (1992) 97-110.

[Benveniste & al] A. BENVENISTE, P. CasPl, S.A. EDWARDS, N. HALBWACHS, P. Le GUERNIC, R.
de SMONE, The synchronous languages twelve years |&wso¢. of the IEEE, Special Issue
on the Modeling and Design of Embedded Softwaré, ¥bNo. 1 (2003) 64-83.

[Besson-Dufay-Jensen] FEBsSON G. DuUFAY, T. ENSEN A formal model of access control for
mobile interactive deviceESORICS'06 (2006).

[Besson-Jensen-Le Métayer] FEESON T. ENSEN D. LE METAYER, Model checking security
properties of control flow graphd, of Computer Security Vol. 9 (2001) 217-250.

[Birrel] A.D. BIRREL, An introduction to programming with threadSRC Report 35, DEC
(1989).

[Blanc PhD] T. BANC, Politiques de sécurité dans le lambda calcllhése, Ecole
Polytechnique (2006).

[Boehm] H.-J. BEHM, Threads cannot be implemented as a libréyDI'05 (2005) 261-268.

[Bonfante-Marion-Moyen] G. BNFANTE, J.-Y.MARION, J.-Y. MOYEN, On termination methods
with space bound certification®erspectives of System Informatics, Lecture Notes i
Comput. Sci. 2244 (2001).

[Boudol] G. BouboL, On typing information Bowintern. Coll. on Theoretical Aspects of Com-
puting, Lecture Notes in Comput. Sci. 3722 (200&5-380.

[Boudol-Castellani] G. BuboL, I. CASTELLANI, Non-interference for concurrent programs and
thread systemsn "Merci, Maurice, A mosaic in honor of Mauricevdi" (P.-L. Curien,
Ed), Theoretical Comput. Sci. Vol. 281, No. 1 (2p029-130.

[Boussinot 91] F. BuUssSINOT, Reactive-C: an extension of C to program reactisesns Soft-
ware Practice and Experience Vol. 21, No. 4 (19411)-428.

[Boussinot 06] F. BussiNOT, FairThreads: mixing cooperative and preemptive #u® in C,
Concurrency and Computation: Practice and Expegieviol. 18 (2006) 445-469.

[Boussinot-de Simone] F.d&JSSINOT, R de SvONE, The SL synchronous languadfeEE Trans,
on Software Engineering Vol. 22, No. 4 (1996) 2%-2

[Boussinot-Susini] F. BussINOT, J.-F. SsINI, The SugarCubes tool box: a reactiyeva

framework Software Practice and Experience, Vol. 28, No0.1998) 1531-1550.

[Cachera-Jensen-Pichardie] DAGEERA, T. ENSEN D. PCHARDIE, Certified memory usage
analysis,FM'05, Lecture Notes in Comput. Sci. 3582 (2005)196.

[Cobham] A. ®BHAM, The intrinsic computational difficulty of functigrBroceedings Logic,
Methodology, and Philosophy of Science II, Northigied (1965).

[Crafa-Rossi] S. €AFA, S. Ross| A theory of noninterference for the ir-calculd$$G'05, Lec-
ture Notes in Comput. Sci. 3705 (2005).

[Darvas-Hahnle-Sands] A. ARvAs, R. HAHNLE, D. SanNDs, A theorem proving approach to
analysis of secure information flowW/ITS'03 (2003).

[Dufay-Felty-Matwin] G. DUFAY, A. FELTY, S. MATWIN, Privacy-sensitive information flow with
JML, CADE'05, Lecture Notes in Comput. Sci. 3632 (20085§-130.

[Engelschall] R.S. EGELSCHALL, Portable multithreading, the signal stack trick faser-space
thread creationUsenix ATC (2000).

[Flanagan-Qadeer] CLENAGAN, S. QADEER, Types for atomicityTLDI'03 (2003) 1-12.

[Focardi-Gorrieri] R B©CARDI, R GORRIER], A classification of security properties for process
algebras,J. of Computer Security, Vol. 3 No. 1 (1995) 5-33.

[Focardi-Rossi-Sabelfeld] R.J€ARDI, S.Ross| A. SABELFELD, Bridging language-based and
process calculi securitfOSSACS'05, Lecture Notes in Comput. Sci. 3441%200

[Fournet-Gordon] C. BURNET, A. GORDON, Stack inspection: theory and varianBOPL'02
(2002).

[Grossman] D. @ossMAN Type-safe multithreading in Cyclong,DI'03 (2003) 13-25.

[O'Hearn] P. O'lHARN, Resources, concurrency and local reasoni@@NCUR'04, Lecture
Notes in Comput. Sci. 3170 (2004) 49-67.

[Hennessy-Riely] M. HNNESSY, J. RELY, Information flow vs resource access in the asyn-
chronous 7i-calculushACM TOPLAS Vol. 24 No. 5 (2002) 566-591.

[Hofmann] M. HOFMANN, The strength of non size-increasing computatR@PL'02 (2002).

[Honda-Yoshida 93] K. HNDA, N. YOSHIDA, On reduction-based process semantieS,T-
TCS'93, Lecture Notes in Comput. Sci. 761 (1993)-387.

[Honda-Yoshida 02] K. ENDA, N. YOSHIDA, A uniform type structure for secure information
flow, POPL'02 (2002) 81-92.

[Hughes-Pareto-Sabry] J.UdHES L. PARETO, A. SABRY, Proving the correctness of reactive
systems using sized typBPPL'96 (1996) 410-423.

[Huisman PhD] M. KisMAN, Reasoning about Java programs in higher order lagiog PVS
and IsabellePhD Thesis, Computing Science Institute, Universftilijmegen (2001).

[Huisman-Worah-Sunesen] M. utbMAN, P. Wo RAH, K. SUNESEN A temporal logic
characterisation of observational determinigmappear in CSFW'06 (2006).

[Jacobs-Poll] BAcoss, E.PoLL, A logic for the Java Modeling Language JMEASE'01,
Lecture Notes in Comput. Sci. 2029 (2001) 284-299.

[Jensen-Le Métayer-Thorn] TENSEN D. LE METAYER, T. THORN, Verification of control flow
based security propertie®roceedings of the 20th IEEE Symp. on Security Rridacy
(1999) 89-103.

[Jones] N. &NES Computability and complexity, from a programmingspective, MIT Press
(2997).

[Leivant] D. LEIVANT, Predicative recurrence and computational complekityord recurrence
and poly-time,Feasible Mathematics Il, Birkhauser (1994) 320-343.

[Levy] J.-J. LEVY, Réductions correctes et optimales dans le lambdiaitarhese, Université
Paris 7 (1978).

[Mandel-Pouzet] L. MNDEL, M. PouzeT, ReactiveML, a reactive extension to MEPDP'05
(2005) 82-93.

[Marion] J.-Y. MARION, Complexité implicite des calculs, de la théorieagptatique,Habilita-
tion a diriger des recherches, Université de NgR690).

[Myers] A. MYERs, JFlow: practical mostly-static information flow cwal, POPL'99 (1999).

[Naumann] D. A. MUMANN, From coupling relations to mated invariants for ckig informa-
tion Bow,ESORICS'06 (2006).

[von Oheimb] D.voN OHEIMB, Analyzing Java in Isabelle/HOL: formalization, typafety and
Hoare Logic,PhD Thesis, Technische Universitat Miinchen (2001).

[Ousterhout] J. OsTERHOUT, Why threads are a bad idea (for most purpospsdsentation
given at the 1996 Usenix ATC (1996).

[Pottier] F. ®TTIER, A simple view of type-secure information flow ia thcalculus,CSFW'02
(2002) 320-330.

[Pottier-Simonet] F. BTTIER, V. SIMONET, Information flow inference for MLACM TOPLAS
Vol. 25 No. 1 (2003) 117-158.

[Pugh] W. RIGH, The Java memory model is fatally flawé&tncurrency Practice and Experi-
ence, Vol. 12 No. 1 (2000) 1-11.

[Reynolds 02] J.C.RvNOLDS, Separation logic: a logic for shared mutable datauctures,

LICS'02 (2002) 55-74.

[Reynolds 04] J.C.RvrNoLDs, Toward a grainless semantics for shared-variablactorency,
FST-TCS'04, Lecture Notes in Comput. Sci. 3328 {2(35-48.

[Russo-Sabelfeld] A. Russo, AAEELFELD, Securing interaction between threads and the
schedulerCSFW'06 (2006).

[Ryan & al] P. RAN, J. McLEAN, J. MILLEN, V. GLIGOR, Non-interference, who needs it?,
CSFW'01 (2001).

[Sabelfeld-Myers] A. 8BELFELD, A.C.MYERS, Language-based information-flow security,
IEEE J. on Selected Areas in Communications VoIN211 (2003) 5-19.

[Sabelfeld-Sands] A. &BELFELD, D. SANDS, Probabilistic noninterference for multi-threaded
programs,CSFW'OO (2000).

[Serrano-Boussinot-Serpette] MERRANO, F. BoussINOT, B. SERPETTE Scheme fair threads,
PPDP'04 (2004) 203-214.

[Smith-Volpano] G. &1TH, D. VOLPANO, Secure information flow in a multi-threaded impera-
tive languagePOPL'98 (1998).

[SUN] SUN MIcrosYSTEMS INC., MIDP: Mobile Information Device ProfileSpecification for
Java 2 Micro Edition, Version 2.0, Palo Alto/CA, N§2002).

[Terauchi-Aiken] T. ERAUCHI, A. AIKEN, Secure information Bow as a safety probl&AS'05
(2005).

[Varacca-Yoshida] D. WXRACcA, N. YOsHIDA, Typed event structures and the ir-calculus,
MFPS'06, to appear (2006).

[Volpano-Smith-Irvine] D. \bLPANO, G. SMITH, C. IRVINE, A sound type system for secure flow
analysis,J. of Computer Security, Vol. 4 No 3 (1996) 167-187

4.1 Bibliographical references of the researchers involved i n the project

R. AvMADIO, Synthesis of max-plus quasi-interpretatioiendamenta Informaticae Vol. 65 No.
1-2 (2005) 29-60.

R. AMADIO, The SL synchronous language, revisiteechnical report PPS, November 2005. To
appear in the J. of Logic and Algebraic Programn(2@p5).

R AmMADIO, S. DaL-ZILIO, Resource control for synchronous cooperative thse@@ON-CUR'04,
Lecture Notes in Comput. Sci. 3170 (2004) 68-82.

G. BARTHE, L. PRENSANIETO, Formally verifying information flow type systems ¢oncurrent
and thread systemBMSE'04 (2004).

G. BARTHE, T. RezK, Secure information flow for a JVM-like languadé,DI'05 (2005).
G. BARTHE, T. REZK, A. SAABAS, Proof obligations preserving compilatioRAST'05 (2006).

G. BARTHE, T. RezK, A. BAsu, Security types preserving compilatidnternational Journal of
Computer Languages, Systems and Structures (2005).

G. BARTHE, P. D'ARGENIO, T. RezK, Secure information flow by self-compositi€d®@SFW'04
(2004).

F. BEssoN T. ENSEN D. LE METAYER, T. THORN, Model ckecking security properties of control
flow graphsJ. of Computer Security Vol. 9 (2001) 217-250.

F. BEssoN T. BLANC, C. FOURNET, A. GORDON, From stack inspection to access control: a
security analysis for librariesCSFW'04 (2004).

F. BEssoN T. DE GRENIER DE LATOUR, T. ENSEN Interfaces for stack inspectiod, of
Functional Programming Vol. 15 No. 2 (2005) 179-217

F. BEssoN G. DuUFAY, T. ENSEN A formal model of access control for mobile intdnae
devicesESORICS'06 (2006).

A. ALMEIDA MATOS, G. BoubpoL, On declassiBcation and the non-disclosure pol@8FW'05
(2005) 226-240.

G. BoupoL, ULM, a core programming model for global computirlgSOP'04, Lecture
Notes in Comput. Sci. 2986 (2004) 234-248.

G. BoubpoL, On typing information Bowintern. Coll. on Theoretical Aspects of Computing,
Lecture Notes in Comput. Sci. 3722 (2005) 366-380.

G. Boupol, I. CASTELLANI, Non-interference for concurrent programs and thregdtemsn
"Merci, Maurice, A mosaic in honour of Maurice NiVgP.-L. Curien, Ed), Theoretical
Comput. Sci. Vol. 281, No. 1 (2002) 109-130.

A. ALMEIDA MATOS, G. BoubpoL |. CASTELLANI, Typing noninterference for reactive
programs,accepted for publication in the J. of Logic and&dgaic Programming (2006).

R. AmMADIO, G. BoupoL, F. BoussiNOT, I. CASTELLANI, Reactive programming revisited,
Proc. Workshop orlgebraic Process Calculi: the fir&5 years and beyondBertinoro.
To appear in ENTCS (2005).

G. Boupol, I. CASTELLANI, Non-interference for concurrent programs and thregdtemsn
"Merci, Maurice, A mosaic in honour of Maurice NiVgP.-L. Curien, Ed), Theoretical
Comput. Sci. Vol. 281, No. 1 (2002) 109-130.

M. HuismAN, P. WoRAH, K. SUNESEN A temporal logic characterisation of observational

determinismCSFW'06 (2006).

M.PAVLOVA, G. BARTHE, L. BURDY, M. HUISMAN, J.-L. LANET, Enforcing high-level security
properties for appletSCARDIS'04 (2004).

M. HuismAaN, D. Gurov, C. S’ RENGER G. CHUGUNOV, Checking absence of illicit applet
interactions: a case studifASE'04, Lecture Notes in Comput. Sci. 2984 (2@%p8.

F. BEssON T. ENSEN D. LE METAYER, T. THORN, Model checking security properties of
control Bow graphs]. of Computer Security Vol. 9 (2001) 217-250.

F. BEssoN T. DE GRENIER DE LATOUR, T. JENSEN Interfaces for stack inspectiod, of
Functional Programming Vol. 15 No. 2 (2005) 179-217

F. BEssoN G. DuUFAY, T. ENSEN A formal model of access control for mobile intdnae
devicesESORICS'06 (2006).

M. ABADI, B.W. LAMPSON, J.-J. LEVY, Analysis and caching of dependenci€;P'96
(1996) 83-91.

J.-J. LlEvy, Réductions correctes et optimales dans le lambdiautalrhese, Université
Paris 7 (1978).

G. CASTAGNA, R. DE NicoLA, D. VARACCA, Semantic subtyping for the-calculus,
LICS'05 (2005).

G. CASTAGNA, M. DEzANI, D. VARACCA, Encoding CDuce in the Cir-calculu§ON-
CUR'06, to appear (2006).

D. VARACCA, N. YOSHIDA, Typed event structures and the ir-calculM&PS'06, to ap-
pear (2006).

M. MERRQ, F. ZAPPA NARDELLI, Behavioural theory for Mobile Ambient3ournal of
ACM Vol. 52 No. 6 (2005) 961-1023.

P. SwELL, J. J. lEIFER, F. ZAPPANARDELLI, M. ALLEN-WILLIAMS , P. HABOUZIT, V. VAFEIADIS,
Acute: High-level programming language design &bstributed computation)CFP'05
(2005).

