A. Proof of Preservation

Theorem. If Σ ; $\Gamma \vdash H \mid S$ and $H \mid S \longrightarrow H' \mid S'$, then there exist Σ' and Γ' such that Σ, Σ' ; $\Gamma, \Gamma' \vdash H' \mid S'$.

Suppose that Σ ; $\Gamma \vdash H \mid S$ and $H \mid S \longrightarrow H' \mid S'$. We perform a case analysis on the rule used to perform the reduction.

• Rule

$$F(this) = p$$

$$H(p) = C (f_1 = w_1 p_1; ...; f_n = w_n p_n)$$

$$F(x) = w' p'$$

$$H \mid \langle F \mid x = this. f_i; s \rangle S \longrightarrow H \mid \langle F [x \mapsto w' p_i] \mid s \rangle S$$

Since Σ ; $\Gamma \vdash H \mid \langle F \mid x = this f_i$; $s \rangle S$ is valid, it holds that $\Gamma(this) = C$, fields $(C) = t_1 f_1 \dots t_k f_k$, $\Gamma(x) = t'$ and ti <: t'. Let Σ' and F' be empty. We must show that Σ ; $\Gamma \vdash H \mid \langle F[x \mapsto w_i p_i] \mid s \rangle S$. The only non-trivial sub-goal is Σ ; $\Gamma \vdash F[x \mapsto w_i p_i]$, which in turn requires to prove $\Sigma \vdash w_i p_i : t_i$. We know that F(y) = p and H(p) = C $(f_1 = w_1 p_1; \dots; f_n = w_n p_n)$: since $\Sigma \vdash H$ it holds that $\Sigma \vdash w_i p_i: t_i$.

• Rule

$$\begin{array}{l} F(this) = p \\ F(x) = w' \ p' \\ H(p) = C \ (f_1 = sv_1 \ ; \ . \ ; \ f_n = sv_n) \\ fields \ (C) = t_1 \ f_1 \ . \ t_n \ f_n \\ sv = \llbracket t_i \rrbracket \ p' \\ \hline H \ | \ \langle F \ | \ this \ . \ f_i = x \ ; \ s \ \rangle \ S \longrightarrow H \ [p \mapsto (H \ (p) \ . \ f_i \mapsto sv)] \ | \ \langle F \ | \ s \ \rangle \ S \end{array}$$

Since Σ ; $\Gamma \vdash H \mid \langle F \mid this. f_i = x$; $s \rangle S$ is valid, it holds that $\Gamma(this) = C$, fields $(C) = t_1 f_1 \dots t_k f_k$, and $\Gamma(x) <: t_i$. Let Σ' and F' be empty. The non-trivial goal is $\Sigma \vdash H [p \mapsto (H(p) . f_i \mapsto sv)]$, and in particular the two sub-goals $\Sigma(p) = C$ and $\Sigma \vdash sv: t_i$. The first holds because $H(p) = C (f_1 = sv_1; \dots; f_n = sv_n)$ and because $\Sigma \vdash H$. The second holds because F(x) = sv and $\Sigma; \Gamma \vdash F$.

• Rule

$$\begin{split} F(y) &= p \\ \mathbf{ptype} \left(H, \ p\right) &= C \\ \mathbf{mbody} \left(m, \ C\right) &= x_1 \dots x_n \dots s_0 \ ; \ \mathbf{return} \ x_0 \\ \mathbf{mtype} \left(m, \ C\right) &= x_1 \dots x_n \dots s_0 \ ; \ \mathbf{return} \ x_0 \\ \mathbf{mtype} \left(m, \ C\right) &= x_1 \dots x_n \dots s_0 \\ F(y_1) &= w_1 \ p_1 \dots F(y_n) &= w_n \ p_n \\ sv_1 &= \left[\begin{bmatrix} t_1 \end{bmatrix} p_1 \dots sv_n &= \left[\begin{bmatrix} t_n \end{bmatrix} \right] p_n \\ F(x) &= w' \ p' \\ cast &= \mathbf{w2c} \ (w') \\ \hline H \mid \langle F \mid x = y \dots m (y_1 \dots y_n) \ ; \ s \ \rangle S \longrightarrow H \mid \langle [\left[[x_1 \mapsto sv_1 \dots x_n \mapsto sv_n \right] \ [this \mapsto p] \mid s_0 \ ; \ \mathbf{return} \ x_0 \ \rangle \langle F \mid x = cast \ ret \ ; \ s \ \rangle S \end{split}$$

Since Σ ; $\Gamma \vdash H \mid \langle F \mid x = y . m(y_1 ... y_n)$; $s \rangle S$ is valid, it holds that $\Gamma(y) = C$ and $\mathbf{mtype}(m, C) = t_1 ... t_n \rightarrow t'$. For all i such that $\mathbf{concr}(t_i)$ holds, we have $\Gamma \vdash y_i <: t_i$; otherwise we have $G \mid -wipi : t_i$. Also, let $\Gamma(x) = t$: we have $\Sigma \vdash w'p' : t$, and if $\mathbf{concr}(t)$, then t' <: t. Let Σ' be empty. Let $\Gamma' = x_1 : t_1, ..., x_n : t_n, this: C, ret: t'$. After some unfoldings, the non-trivial goals left are

1) $\Sigma; \Gamma, \Gamma' \vdash [] [x_1 \mapsto sv_1 \dots x_n \mapsto sv_n] [this \mapsto p]$ 2) $\Gamma, \Gamma' \vdash s_0$ 3) $\Gamma, \Gamma' \vdash x = cast ret$

For the goal 1), for each $1 \le i \le n$, we distinguish two cases. If concr (t_i) , since $\Gamma \vdash y_i <: t_i$ and $F(y_i) = p_i$ (the wrapper w_i is empty) and Σ ; $\Gamma \vdash F$, we have $\Sigma \vdash p_i : t_i$. If not, then by construction of [-], it holds $\Sigma \vdash [t_i] p_i : t_i$. We conclude that for all *i* it holds Σ ; $\Gamma, \Gamma' \vdash [] [x_i \mapsto [t_i]] p_i]$ by construction of Γ' . The constraint Σ ; $\Gamma, \Gamma' \vdash [] [this \mapsto p]$ is satisfied instead because **ptype** (H, p) = C. The goal follows.

The goal 2) is true because the method body s_0 was well-typed in (a subset of) the environment Γ' .

For the goal 3), we distinguish two cases. If concr (t), then 3) holds because $\Gamma' \vdash ret : t'$ and t' <: t, where t is the type of x in Γ . Otherwise, w' is not empty, and by definition of w2c and since $\Sigma \vdash w' p' : t$, we conclude $\Gamma, \Gamma' \vdash x = cast ret$.

Rule

F(y) = (**like** C) p $\mathbf{ptype}\left(H,\ p\right)=D$ $\mathbf{mbody}(m, D) = x_1 \dots x_n \dots s_0; \mathbf{return} x_0$ $\begin{aligned} \mathbf{mtype} &(m, C) = t_1 \dots t_n \to 0, \text{ reduct} \\ \mathbf{mtype} &(m, C) = t_1 \dots t_n \to t \\ \mathbf{mtype} &(m, D) = t'_1 \dots t'_n \to t' \\ \forall i \cdot t_i <: t'_i \lor t'_i = \mathbf{dyn} \\ &(\mathbf{concr} &(t) \land \mathbf{concr} &(t')) \Rightarrow t' <: t \end{aligned}$ $F(y_1) = w_1 p_1$... $F(y_n) = w_n p_n$ $sv_1 = \llbracket t'_1 \rrbracket p_1 \quad \dots \quad sv_n = \llbracket t'_n \rrbracket p_n$ F(x) = w' p' $cast = \mathbf{w2c}(w')$

 $\overline{H \mid \langle F \mid x = y \cdot m(y_1 \dots y_n); s \rangle S} \longrightarrow H \mid \langle [] [x_1 \mapsto sv_1 \dots x_n \mapsto sv_n] [this \mapsto p] \mid s_0; \mathbf{return} x_0 \rangle \langle F \mid x = cast(t) ret; s \rangle S$

Since Σ ; $\Gamma \vdash H \mid \langle F \mid x = y . m(y_1 ... y_n); s \rangle S$ is valid, it holds that $\Gamma(y) =$ like C. For all i such that concr (t_i) holds, we have $\Gamma \vdash y_i <: t_i$; otherwise we have $\Sigma \vdash w_i p_i: t_i$ (and the w_i wrapper is not empty). Let $\Gamma' = x_1: t'_1, ..., x'_n: t'_n, this: D, ret: t$. After some unfoldings, the non-trivial goals left are

> $\Sigma; \Gamma, \Gamma' \vdash [] [x_1 \mapsto sv_1 \dots x_n \mapsto sv_n] [this \mapsto p]$ 1)2) $\Gamma, \Gamma' \vdash s_0$ 3) $\Gamma, \Gamma' \vdash x = cast(t) ret$

For the goal 1), for each $1 \le i \le n$, we distinguish two cases. If **concr** (t_i) , since $\Gamma \vdash y_i <: t_i$ and $F(y_i) = p_i$ (the wrapper w_i is empty) and Σ ; $\Gamma \vdash F$, we have $\Sigma \vdash p_i : t_i$ and in turn $\Sigma \vdash p_i : t'_i$. If not, then by construction of [-], it holds $\Sigma \vdash [t_i] p_i : t_i$. We conclude that for all i it holds Σ ; $\Gamma, \Gamma' \vdash [] [x_i \mapsto [t'_i]] p_i]$ by construction of Γ' . The constraint Σ ; $\Gamma, \Gamma' \vdash [] [this \mapsto p]$ is satisfied instead because ptype(H, p) = C. The goal follows.

The goal 2) is true because the method body s_0 was well-typed in (a subset of) the environment Γ' .

For the goal 3), we distinguish two cases. If **concr** $(t) \wedge$ **concr** (t'), then let t'' be the type of x in Γ . 3) holds because $\Gamma' \vdash ret: t$ and t' <: t <: t''. Otherwise, w' is not empty, and by definition of **w2c** and since $\Sigma \vdash w' p': t$, we conclude $\Gamma, \Gamma' \vdash x = cast(t)$ ret.

Since Σ ; $\Gamma \vdash H | \langle F | x = y . m (y_1 ... y_n)$; $s \rangle S$ is valid, it holds that $\Gamma(y) =$ **like** C, **mtype** $(m, C) = t_1 ... t_n \rightarrow t'$, $\Gamma \vdash y_i <: t_i$ for all $1 \le i \le k$, and $\Gamma(x) = t$ where t' <: t. The condition **mtype**(m, C) = **mtype**(m, D) guarantees that the method actually invoked offers the same type interface than the method expected. It is then possible to conclude with the same argument of the previous case.

• Rule

 $F(y) = (\mathbf{dyn}) p$ ptype(H, p) = C**mbody** $(m, C) = x_1 \dots x_n \dots s_0$; return x_0 $\mathbf{mtype}\left(m,\ C\right) = t_1 \dots t_n \ \rightarrow \ t$ $F(y_1) = w_1 p_1$... $F(y_n) = w_n p_n$ $\forall i. \operatorname{concr}(t_i) \Rightarrow \operatorname{svtype}(H, w_i p_i) <: t_i$ $\frac{sv_1 = \llbracket t_1 \rrbracket p_1 \quad \dots \quad sv_n = \llbracket t_n \rrbracket p_n}{H \mid \langle F \mid x = y \cdot m (y_1 \dots y_n); s \rangle S \longrightarrow H \mid \langle [] [x_1 \mapsto sv_1 \dots x_n \mapsto sv_n] [this \mapsto p] \mid s_0; \mathbf{return} x_0 \rangle \langle F \mid x = (\mathbf{dyn}) ret; s \rangle S$

Since Σ ; $\Gamma \vdash H \mid \langle F \mid x = y . m(y_1 ... y_n); s \rangle S$ is valid, it holds that $\Gamma(x) = \mathbf{dyn}$. Let Σ' be empty, and let $\Gamma' = x_1 : t_1, ..., x_n :$ t_n , this: C, ret:t'. After some unfoldings (and ignoring the cases proved by the same argument that the concrete type case) the non-trivial goals left are:

1)
$$\Sigma; \Gamma, \Gamma' \vdash [] [x_1 \mapsto sv_1 \dots x_n \mapsto sv_n] [this \mapsto p]$$

2) $\Gamma, \Gamma' \vdash x = (\mathbf{dyn}) ret$

for some Γ'' ; Γ''' . Goal 1) holds because for all *i* such that **concr** (t_i), the proper type constraint is enforced by the dynamic check $svtype(H, sv_i) <: t_i$, while for the other indexes the type constraint is satisfied because of the wrapper [[t_i]]. Goal 2) is true because of the (\mathbf{dyn}) cast.

• Rule

$$\begin{array}{l} p \text{ fresh for } H \\ fields \left(C \right) = t_1 f_1 \dots t_n f_n \\ F(y_1) = w_1 p_1 \dots F(y_n) = w_n p_n \\ sv_1 = \llbracket t_1 \rrbracket p_1 \dots sv_n = \llbracket t_n \rrbracket p_n \\ H \mid \langle F \mid x = \mathbf{new} \ C \left(y_1 \dots y_n \right); \ s \rangle S \longrightarrow H \left[p \mapsto C \left(f_1 = sv_1; \dots; f_n = sv_n \right) \right] \mid \langle F \left[x \mapsto p \right] \mid s \rangle S \end{array}$$

Since Σ ; $\Gamma \vdash H \mid \langle F \mid x = \mathbf{new} \ C(y_1 \dots y_n); s \rangle S$ is valid, it holds that $\Gamma(x) = C$, fields $(C) = t_1 f_1 \dots t_n f_n$, and for all i such that concr $(t_i), \Gamma \vdash y_i <: t_i$. Let $\Sigma' = p : C$ for p fresh, and let $\Gamma' = x : t$. The environments Σ, Σ' and Γ, Γ' are well-formed. After some unfoldings, the non-trivial goals left are:

1) $\Sigma, \Sigma'; \Gamma, \Gamma' \vdash F[x \mapsto p]$ 2) $\Sigma, \Sigma' \vdash H[p \mapsto C(f_1 = sv_1; ..; f_n = sv_n)]$

Goal 1) amounts to show that Σ , $\Sigma' \vdash p: C$, which is true because of the static semantics. For goal 2) we must show that Σ , $\Sigma' \vdash sv_i: t_i$. This follows from Σ , Σ' ; Γ , $\Gamma' \vdash F$, $\Gamma \vdash y_i <: t_i$ and $F(y_i) = sv_i$.

• Rule

 $\overline{H \mid \langle F_0 \mid \mathbf{return} \, x \, \rangle \, \langle F_1 \mid s_1 \, \rangle \, S \, \longrightarrow \, H \mid \langle F_1 \left[\mathit{ret} \mapsto F_0(x) \right] \mid s_1 \, \rangle \, S}$

Since Σ ; $\Gamma \vdash H \mid \langle F_0 \mid \mathbf{return} x \rangle \langle F_1 \mid s_1 \rangle S$ is valid, it holds that $\Gamma(x) = \Gamma(ret)$. Let Σ' and Γ' be empty. Since Σ ; $\Gamma \vdash F_0$ and $\Gamma(x) = \Gamma(ret)$, it holds that Σ ; $\Gamma \vdash F_1[ret \mapsto F_0(x)]$. The result follows.

• Rule

 $\overline{H \mid \langle F \mid x = y \, ; \, s \, \rangle \, S \longrightarrow H \mid \langle F [x \mapsto F(y)] \mid s \, \rangle \, S}$

Since Σ ; $\Gamma \vdash H | \langle F | x = y; s \rangle S$ is valid, it holds that $\Gamma(y) = \Gamma(x)$. Let Σ', Γ' be empty. The only non-trivial goal is Σ ; $\Gamma \vdash F[x \mapsto F(y)]$. Since Σ ; $\Gamma \vdash F$, we know that $\Sigma \vdash sv \colon \Gamma(y)$, and the result follows because $\Gamma(y) = \Gamma(x)$.

• Rule

 $\begin{array}{l} F(y) = w \ p \\ \mathbf{ptype} \ (H, \ p) = D \\ D <: \ C \\ H \mid \langle F \mid x = (C) \ y \ ; \ s \ \rangle \ S \longrightarrow H \mid \langle F \ [x \mapsto p] \mid s \ \rangle \ S \end{array}$

Since Σ ; $\Gamma \vdash H \mid \langle F \mid x = (C) y$; $s \rangle S$ is well-typed, it holds that $\Gamma(x) = C$. It is trivial to satisfy the goal Σ ; $\Gamma \vdash F[x \mapsto p]$ since **ptype**(H, p) = D and D <: C. The cases for cast to **like** C and **dyn** are similar.

B. Proof of Progress

Theorem. If a well-typed configuration Σ ; $\Gamma \vdash H \mid \langle F \mid s \rangle S$ is stuck, that is $H \mid \langle F \mid s \rangle S \not\rightarrow$, then the statement s is of the form $x = y \cdot m(y_1 \dots y_n)$; s' and $\Gamma(y)$ is **dyn** or **like** C for some C, or s is of the form x = (C)y; s' and F(y) = w p with **ptype** $(H, p) \not\prec$: C.

The proof is by structural induction on the length of s (again, we treat statements as lists).

 $x = this \, . \, f_i$; s By unfoldings of the initial assumption due to the well-formedness rules (a), $\Sigma \vdash H$, (b) $\Sigma; \Gamma \vdash F$, (c) $\Gamma \vdash x = this. f_i$, and (d) $\Sigma; \Gamma \vdash H \mid S$. By (c), $x, this \in dom(\Gamma)$ so by (b) and $F(x) = sv_1$ and $F(y) = sv_2$. Remark that $sv_2 = p$ (as bindings for this in the stack are created only when a method is invoked). We then also know that $\Gamma(y) = C$, that the field f_i exists in C and that H(p) = D[...], where D <: C. This guarantees that the field f_i exists in the object pointed to by p, and the rule RED_FIELD can reduce.

this $f_i = x$; s Same reasoning as above.

 $x = y_0.m(y_1..y_n)$; s By unfoldings of the induction hypothesis due to the well-formedness rules (a) $\Sigma \vdash H$, (b) $\Sigma; \Gamma \vdash F$, (c) $\Gamma \vdash x = y.m(y_1..y_n)$; s, and (d) $\Sigma; \Gamma \vdash H \mid S$. By (c) and trivial unfoldings, $y_0..y_n \in dom(\Gamma)$, so by (b), $F(y_i) = sv_i$ for i = 1..n, i.e., all local variables referred to by the statement exist on the current stack frame.

If $sv_0 = p$, then, by WF-rules for frames $\Gamma(y_0) = C$ for some C and $\Sigma \vdash p : C$. By WF-rule for heaps, H(p) = C'(...) s.t. C' <: C, i.e., ptype(H, p) = C'. By subclassing rules, C has method m implies C' has method m with same signature. Thus, the **mbody** lookup will succeed. And arities will be correct from (c). So the rule RED_CALL_LIKE can reduce. If $sv_0 = (dyn) p$, then either the rule RED_CALL_DYN reduces, or one of tests $svtype(H, w_i p_i)$ fails, and in this case the configuratin is stuck, and the first conclusion of the theorem applies. If $sv_0 = (like C) p$, then either the rule RED_CALL_LIKE reduces, or mtype(m, C) and mtype(m, D) are not compatible, the configuration is stuck, and the first conclusion of the theorem applies.

 \mathbf{skip} ; s The statement \mathbf{skip} always reduce.

- $x = \mathbf{new} C(y_1 ... y_n)$; s By unfoldings of the initial assumption, (a) there exists Γ, Γ' s.t., $\Gamma \vdash t x = \mathbf{new} C(y_1 ... y_n)$ and (b) $\Sigma; \Gamma \vdash F$. By (a) NEW and TS-VAR, $y_i \in dom(\Gamma)$ for i = 1..n. By (b) and WF-SF-STACK-FRAME, $y_i \in dom(F)$ for i = 1..n. Thus, all the necessary variables are present in F, and rule RED_NEW can reduce.
- x = y; s Similar to the case above: the well-formedness constraints ensure that y is defined in the current stackframe.
- x = (t) y; s By unfoldings of the initial assumption due to the well-formedness rules, (a) exists Γ s.t., $\Gamma \vdash x = (t) y \triangleright \Gamma$, and (b) Σ ; $\Gamma \vdash F$. All matching type rules require (indirectly, via T-VAR) $x \in dom(\Gamma)$ and $y \in dom(\Gamma)$. By (b) and WF-SF-STACK-FRAME, F(y) = w p for some w p. If t is **like** C or **dyn**, then the rule RED_CAST_OTHER can reduce. If t is a concrete type C and (**ptype**(H,p) <: C, then the rule RED_CAST_CLASS_OK can reduce; otherwise the configuration is stuck because s is of the form x = (C)y; s' and F(y) = w p with **ptype**(H, p) \prec : C.
- return y We can show that F(y) from the well-formedness conditions, following the same reasoning as above. Then, the rule RED-RETURN can reduce.

C. Proof of Compilation

Theorem. Let Σ ; $\Gamma \vdash H \mid S$ be a well-typed source configuration':

 $I. if H \mid S \longrightarrow H' \mid S', then \llbracket \Gamma, H \mid S \rrbracket \longrightarrow \llbracket \Gamma, H' \mid S' \rrbracket;$

2. conversely, if $\llbracket \Gamma, H \mid S \rrbracket \longrightarrow H'' \mid S''$, then there exists a well-typed source configuration $\Sigma'; \Gamma' \vdash H' \mid S'$ such that $H \mid S \longrightarrow H' \mid S'$ and $\llbracket \Gamma', H' \mid S' \rrbracket = H'' \mid S''$.

Given a well-typed source configuration Σ ; $\Gamma \vdash H \mid S$, we perform a case analysis on the reduction rules that apply.

• Rule

F(this) = p F(x) = w' p' $H(p) = C (f_1 = sv_1; ...; f_n = sv_n)$ $fields (C) = t_1 f_1 ... t_n f_n$ $sv = \llbracket t_i \rrbracket p'$ $H \mid \langle F \mid this. f_i = x; s \rangle S \longrightarrow H [p \mapsto (H(p), f_i \mapsto sv)] \mid \langle F \mid s \rangle S$

In the compiled configuration $[\Gamma, H | \langle F | this.f_i = x; s \rangle S]$, it holds that F(this) = p, F(x) = p', H(p) = C(f1 = p1; ...; fn = pn) where $sv_i = w_i p_i$ for some w_i . The compiled configuration then reduces to the compilation of $H[p \mapsto (H(p).f_i \mapsto sv)] | \langle F | s \rangle S$.

Conversely, if the compiled configuration reduces, since compiled reductions are deterministic, the source configuration can reduce via RED_ASSIGN, and the simulation diagram commutes.

- Rules RED_NEW, RED_COPY, RED_RETURN, RED_CAST_CLASS_OK, RED_CAST_OTHER, and RED_CALL follow using the same argument.
- Rule

 $\begin{array}{l} F(y) = p \\ \mathbf{ptype} \left(H, p\right) = C \\ \mathbf{mbody} \left(m, C\right) = x_1 \dots x_n \dots s_0 \text{ ; return } x_0 \\ \mathbf{mtype} \left(m, C\right) = t_1 \dots t_n \to t \\ F(y_1) = w_1 p_1 \dots F(y_n) = w_n p_n \\ sv_1 = \llbracket t_1 \rrbracket p_1 \dots Sv_n = \llbracket t_n \rrbracket p_n \\ F(x) = w' p' \\ cast = \mathbf{w2c} \left(w'\right) \\ \overline{H \mid \langle F \mid x = y \dots m(y_1 \dots y_n); s \rangle S \longrightarrow H \mid \langle \llbracket [x_1 \mapsto sv_1 \dots x_n \mapsto sv_n] [this \mapsto p] \mid s_0 \text{ ; return } x_0 \rangle \langle F \mid x = cast ret ; s \rangle S \end{array}$

In the compiled configuration, it holds that F(y) = p and $F(y_i) = p_i$. The statement $x = y . m (y_1 ... y_n)$ has been compiled to $x = y @ m (y_1 ... y_n)$, because since the configuration was well-typed and F(y) = p, it must hold that $\Gamma(y) = C$. The compiled configuration can reduce via REC_CALL_TARGET into the compiled outcome.

Conversely, if the target configuration reduces, since the source configuration was well-typed and compiled reductions are deterministic, the source configuration can reduce via RED_CALL, and the simulation diagram commutes.

• Rule

 $F(y) = (\mathbf{like} \ C) \ p$ $\mathbf{ptype} (H, \ p) = D$ $\mathbf{mbody} (m, \ D) = x_1 \dots x_n \dots s_0; \mathbf{return} \ x_0$ $\mathbf{mtype} (m, \ C) = t_1 \dots t_n \rightarrow t$ $\mathbf{mtype} (m, \ D) = t'_1 \dots t'_n \rightarrow t'$ $\forall i \ t_i <: \ t'_i \ \lor \ t'_i = \mathbf{dyn}$ $(\mathbf{concr} \ (t) \ \land \ \mathbf{concr} \ (t')) \Rightarrow t' <: \ t$ $F(y_1) = w_1 \ p_1 \ \dots \ F(y_n) = w_n \ p_n$ $sv_1 = \llbracket t'_1 \rrbracket p_1 \ \dots \ sv_n = \llbracket t'_n \rrbracket p_n$ $F(x) = w' \ p'$ $cast = \mathbf{w2c} \ (w')$

 $\frac{cast - w_2 c(w)}{H \mid \langle F \mid x = y \cdot m(y_1 \dots y_n); s \rangle S \longrightarrow H \mid \langle [] [x_1 \mapsto sv_1 \dots x_n \mapsto sv_n] [this \mapsto p] \mid s_0; \mathbf{return} x_0 \rangle \langle F \mid x = cast(t) ret; s \rangle S$

In the compiled configuration, it holds that F(y) = p and $F(y_i) = p_i$. The statement $x = y \cdot m(y_1 \dots y_n)$ has been compiled to $x = y \otimes (like C) m(y_1 \dots y_n)$, because since the configuration was well-typed and F(y) = (like C) p, it must hold that $\Gamma(y) = like C$. All the type verifications required by the rule CALL_LIKE_TARGET are satisfied since they were satisfied for the rule CALL_LIKE. The rule CALL_LIKE_TARGET can then reduce into the compiled outcome.

Conversely, if the target configuration reduces via RED_CALL_LIKE_TARGET, since the source configuration was well-typed and compiled reductions are deterministic, the source configuration can reduce via RED_CALL_LIKE because the type verifications were already satisfied by RED_CALL_LIKE_TARGET, and the simulation diagram commutes.

• The case for the rule CALL_DYN is analogous to that of CALL_LIKE. Again, the key point is that the type verifications performed by CALL_DYN_TARGET have already been performed by CALL_DYN, and vice-versa.