Relaxed-Memory Concurrency
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Quiz 1.

Quiz 5.

Moscova Project-Team, INRIA & Computer Laboratory, U. of Cambridge

In the system below, the two threads run in parallel on an x86 multiprocessor and share the memory
locations x and y, which initially hold 0:

SB

Thread 0 Thread 1
MOV [x]«+1 MOV [y]+1
MOV EAX<y] MOV EBX<—[x]

Can you guess all the possible final states? How many final states are there?

In the system below, the two threads run in parallel on an x86 multiprocessor and share the memory
locations x and y, which initially hold O:

nb
Thread 0 Thread 1
MOV [x]«+1 MOV [y]+2
MOV EAX<+[X] MOV [x]«2
MOV EBX<«|y]

Can the system reach a final state where register 0:EAX holds 1, register 0:EBX holds 0, and the the
memory location x holds 17

In the system below, the two threads run in parallel on a Power multiprocessor and share the memory
locations x and y, which initially hold O:

LB

Thread 0 Thread 1
lwz r1<—[x] lwz r2<—[y]
stw [y]«1 stw [x]<—1

Can the system reach a final state where both registers 0:r1 and 1:r2 hold 17

Is this behaviour possible on an x86 multiprocessor?

The code below attempts to implement a common message passing strategy: Thread 0 updates a data
structure (at memory location x, initially 0) and then sets a flag (at memory location vy, initially 0), while
Thread 1 checks the flag and then accesses the data structure:

MP

Thread 0 Thread 1
stw [x]<—1 lwz rO<—|y]
stw [y] «1 lwz rl<—(x]

Suppose that at the end of the execution Thread 1 has seen the update to the flag, that is, 1:r0 = 1.
Are we guaranteed that 1:rl1 holds 17

If not, can you propose a way to insert memory barriers in the code so that the message passing idiom
works implemented correctly? The available barrier instructions are sync, lwsync, and isync.

Consider the following Java program where x and y are global variables initially holding O:

Java
Thread 0 Thread 1
rl = x 2=y
y = rl x = (r2==1)7%y:1
print r2

Can this program print 17 What if you compile it with HotSpot or G¢j?

1. There are 4 possible final states. In the unexpected final state, the memory locations hold 1 while the
registers all hold 0 (that is, 0:EAX = 0 and 1:EBX = 0). This test highlights that x86 multiprocessors
implement store buffering. See [3,5].

2. The answer is yes. However an accurate reading of the Intel 64 Architecture Memory Ordering
White Paper suggests that such final state is forbidden. This example shows that the informal prose
documentation should be trusted only to a limited extent, and rigorous models of weak memory models
must rely on formal mathematics and actual testing of the processors. See [1,7].

3. Yes. Power multiprocessors exhibit a memory model much more relaxed than x86 multiprocessors:
unless precise conditions are met, loads and stores can be rearranged arbitrarily by each thread. See [4,6].

Answers

Summary of scientific results

e A formal model of the x86 relaxed memory model. Joint publications [5] and [9];

e A formal model of the Power relaxed memory model. Joint publications [3], [6] and [8].
The tool ppcmen is available online: http://www.cl.cam.ac.uk/ " pes20/ppcmen;

e Tools to explore the memory model of modern processors. Joint publications [4] and [6].
The diy tool suite is available as free software from http://diy.inria.fr;

e CompCertTSO, a verified compiler from ClightTSO to x86. Joint publication [2].
Compiler available from http://www.cl.cam.ac.uk/ " pes20/CompCertTSO

e Tools for semantics: Ott and Lem. Joint publications [7] and [1].
Both vailable as free software from http://moscova.inria.fr/ zappa/software/ott
and http://www.cl.cam.ac.uk/"s0294/lemn.
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IRIW
Thread 0 Thread 1 Thread 2 Thread 3
stw [x]<1 stw [y]«1 lwz rl<—[x] lwz r3<y]
lwz r2<—|y] lwz rd<—[x]

Can the system reach a final state where register 2:r1 holds 1 and 2:r2 holds 0 (that is, thread 2 sees
the write to x but not the write to y) while register 3:r3 holds 1 and 3:r4 holds 0 (that is, thread 3 sees
the write to y but not the write to x)?

Is this behaviour possible on an x86 multiprocessor?

5. The behaviours illustrated by Quiz 3 and 4 imply that the given code does not implement cor-
rectly message passing. It is possible to recover a correct behaviour by inserting sync or lwsync barrier
instructions between the two stores and the two loads (but isync barriers will not suffice). More efficient
implementations can rely on an address dependency between the two reads and an lwsync between the
two write. See [4,6]. A strategy to insert barriers to recover sequential consistency is given in [4].

6. The program should not print 1 (even according to the JSR-133 memory model), but it does when
compiled with HotSpot or Gcj. We investigate concurrent high-level programming languages and com-
pilation in [3,9].

.S. Owens, P. Bohm, F. Zappa Nardelli, P. Sewell: Lem: A Lightweight Tool for Heavyweight Semantics,
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