
Information Hiding in the Join Calculus

Qin Ma1 and Luc Maranget2

1 OFFIS, Escherweg 2, 26121 Oldenburg, Germany
Qin.Ma@offis.de

2 INRIA-Rocquencourt, BP 105, 78153 Le Chesnay Cedex, France
Luc.Maranget@inria.fr

Abstract. We aim to provide information hiding support in concur-
rent object-oriented programming languages. We study the issue both
at the object level and class level, in the context of an object-oriented
extension of the Join calculus — a process calculus in the tradition of
the π-calculus. In this extended abstract we focus on the class level and
design a new hiding operation on classes, aimed at preventing part of
parent classes from being visible in client (inheriting) classes. We define
the formal semantics of our new operation in terms of α-converting hid-
den names to fresh names, and its typing in terms of eliminating hidden
names from class types. We study the standard soundness property of
the type system, as well as specific properties concerning hiding.
Our motivation stems from language design, aiming at producing a prac-
tical programming language.

1 Introduction

Object-oriented concepts are often claimed to handle concurrent systems bet-
ter. On the one hand, objects, exchanging messages while managing their in-
ternal states in a private fashion, model a practical view of concurrent systems.
On the other hand, classes, supporting modular and incremental development,
provide an effective way of controlling concurrent system complexity. Numerous
fundamental studies [17, 2, 12, 23, 19, 18, 25, 22], propose calculi that combine ob-
jects and concurrency. By contrast, combining classes and concurrency faces the
well-known obstacle of inheritance anomalies [16], i.e., traditional overriding
mechanism from sequential settings falls short in handling synchronization be-
havior reuse during inheritance. Fournet et al. have made a significant progress
in this direction with their work [11]. They supplement the Join calculus [7, 8]
with objects and classes, of which the main novelty is a class operation for both
behavioral and synchronization inheritance, called selective refinement.

However, Fournet et al.’s model suffers from several limitations. Briefly, their
type system is counter-intuitive and significantly restricts the power of selective
refinement. In prior work [14], we improved Fournet et al.’s model by design-
ing a new type system, where complete synchronization behavior is included in
class types. As a consequence, our class calculus is easier for programmers to
understand, and our typing system accepts more programs.

Our enriched class types carry more information. Thus, they make even more
visible the lack of abstraction in class types, which was already present in [11].
More specifically, it is unlikely that two different classes possess the same type.
This situation hinders information hiding, a key issue while programming in the
large. Generally, information hiding allows the separation between a restricted in-
terface (which we assimilate to types) and implementation. This principle brings
advantages, such as removing irrelevant details from interfaces and protecting
critical details of the implementation. As regards objects, one can easily hide
some components by declaring them to be private, as Fournet et al. and many
others do. These private components do not appear in object interfaces. By con-
trast, information hiding in classes is more involved, especially in the presence
of synchronization inheritance. We are aware of no work on this issue. Specifi-
cally, if we classify users of a class into two categories: object users who create
objects from the class; and inheritance users who derive new class definitions
by inheriting the class, the simple privacy policy applies solely to object users
while always leaving full access to inheritance users.

In this paper, we address the issue of information hiding towards inheritance
users. We do so by introducing a new explicit hiding operation in the class lan-
guage. This amounts to significant changes in both the semantics and the typing
of class operations. Basically, we perform the hiding of names (class components)
by alpha-converting them to fresh names, while, by contrast, hidden names dis-
appear from class types. It is important to notice that, for the sake of simplicity
in semantics, only names already private to object users can be hidden to class
users. We believe that our proposal achieves a reasonable balance of semantical
simplicity and expressiveness, and that it yields a practical level of abstraction in
class types, while preserving safety. Moreover, our suprisingly simple idea of hid-
ing by alpha-conversion should apply equally well to other class-based systems,
provided they rely on structural typing as we do.

The rest of this paper is organized as follows. First, we informally present our
calculus in Sect. 2. We sketch the privacy policy for object users and introduce
the hiding mechanism for inheritance users. Formal syntax and class semantics
appear next in Sect. 3. Finally, Sect. 4 provides a ML-style type system. We
state the standard soundness property in Sect. 5, as well as some other specific
properties concerning hiding. To meet the page limitation, we focus ourselves
mainly on the new hiding operation, while making available a complementary
technical report [15] for complete details.

2 Classes, objects, and hiding

Basic class definition consists of a join definition and an (optional) init process,
called initializer (analog to constructors or makers in other languages). As an
example, we define the following class for one-place buffers:

class c_buffer =
put(n,r) & Empty() . r.reply() & this.Some(n)

or get(r) & Some(n) . r.reply(n) & this.Empty()

2

init this.Empty()
and instantiate an object from it:

obj buffer = c_buffer

Similar to Join, four channels are collectively defined in this example and
arranged in two reaction rules disjunctively connected by or. We use the two
channels put and get for the two possible operations, and the two channels
Empty or Some for the two possible states of a one-place buffer, namely, being
empty or full. We here follow Fournet et al.’s convention to express privacy:
channels with capitalized names (aka labels) are private; they can be accessed
only through self references; and the privacy policy is enforced statically.

Each reaction rule consists of a join pattern and a guarded process, separated
by .. When there are messages pending on all the channels in a given pattern,
the object can react by consuming the messages and triggering the guarded
process. As a result, this one-place buffer behaves as expected: the (optional)
init process initializes the buffer as empty; we then can put a value when it is
empty, or alternatively retrieve the stored value when it is full.

By contrast with Join— whose values are the channels, the objects now
become the values of the calculus. The basic operation of the calculus remains
asynchronous message sending, but expressed in object-oriented dot notation,
such as in process buffer.put(n,r). Also note that we use the keyword this for
recursive “self” references (aka self-inflicted references in Obliq [4]), while other
references are handled through object names. Compared with the design in [11],
this modification significantly simplifies the privacy control in object semantics.

2.1 Inheritance and hiding

In addition to basic classes, two operations are provided in [11] to support in-
heritance: disjunction to combine class definitions, and selective refinement to
perform term rewriting on existing reaction rules.

At the moment, all labels defined in a class are visible during inheritance.
However, this complete knowledge of class behavior may not be necessary for
building a new class by inheritance. Moreover, exposing full details during in-
heritance sometimes puts program safety at risk, and designers of parent classes
may legitimately wish to restrict the view of inheritance users.

As an example, an inheritance user may attempt to extend the class c_buffer
with a new channel put2 for putting two elements:

class c_put2_buffer =
c_buffer

or put2(n,m,r) & Empty() . r.reply() & this.(Some(n) & Some(m))

Unfortunately, this näıve implementation breaks the invariant of a one-place
buffer. More specifically, the put2 attempt, once it succeeds, sends two messages
on label Some in parallel. Semantically, this means turning a one-place buffer
into an invalid state where two values are stored simultaneously.

In order to protect classes from (deliberate or accidental) integrity-violating
inheritance, we introduce a new operation on classes to hide critical labels. We
reach a more robust definition using hiding:

3

class c_hidden_buffer = c_buffer hide {Empty, Some}
The hiding clause hide {Empty, Some} hides the critical channels Empty and
Some. They are now absent from the class type and become inaccessible during
inheritance. As a result, the previous invariant-violating definition of channel
put2 will be rejected by a “name unbound” static error. Nevertheless, program-
mers still can supplement one-place buffers with a put2 operation as follows:

class c_buffer_bis =
c_hidden_buffer

or put2(n,m,r) . class c_join =
reply() & Next() . r.reply()

or reply() & Start() . this.Next()
init this.Start() in

obj k = c_join in this.(put(n,k) & put(m,k))
In the code above, the (inner) class c_join serves the purpose of consuming two
acknowledgments from the previous one-place buffer and of acknowledging the
success of the put2 operation to the appropriate object r. One may remark that
the order in which values n and m are stored remains unspecified.

3 Formalism: the OJoinH calculus

We formalize our improved object-oriented extension of Join as the OJoinH

calculus, given in Fig. 1. We assume three disjoint sets of identifiers: for class
names c ∈ C, for object names x, y, z, o ∈ O, and for labels l ∈ L. In general, we
write u for either a name from O or the keyword this. Tuples are written ũ. For
privacy purpose, the set of labels L is further partitioned into disjoint subsets,
with f ∈ F for private labels and m ∈ M for public labels. Additionnaly, F
includes the set of hidden labels, written h ∈ H

Objects are created from classes, where classes are defined from a full variety
of constructs: reaction rules, disjunction, selective refinement, hiding, etc. How-
ever, class operations are only for the purpose of incremental class definitions.
They cannot be used directly for object instantiations. As a consequence, we
must resolve those operations into basic class definition, i.e. join definitions (de-
noted by D) together with an optional initializer, by means of class evaluation.
In general, the semantics of the class language evaluates class definitions into
class normal forms: (D or L) init Pv. We write Pv explicitly for processes that
only involve plain object definitions. The additional part L ⊆ L denotes a set of
abstract labels that are declared but not defined in D. Classes with a nonempty
L part are called abstract and should not be instantiated.

In the following, we devote ourselves only to the hiding related semantical
issues. Complete description of the operational semantics can be found in [15].

3.1 The semantics of hiding

How to hide labels? In addition to erasing hidden labels from class types, hid-
ing also involves semantical operations on classes, operations whose design is

4

P, Q ::= Processes

0 null process
x.M message sending
this.M recursive message sending
P1 & P2 parallel composition
obj o = C in P object definition
class c = C hide F in P class binding with hiding

C ::= Classes

c class name
L abstract class
M . P reaction rule
C1 or C2 disjunction
match C with S end selective refinement
C init P initializer

S ::= Refinement Sequences

∅ empty sequence
K1 ⇒ K2 . P | S refinement clause

M ::= Join Patterns

l(ũ) message pattern
M1 & M2 synchronization

K ::= Selection Patterns

0 empty pattern
M join pattern

Fig. 1. Syntax of the OJoinH calculus

governed by two concerns. On one hand, hidden labels disappear. For instance,
redefining a new label homonymous to a previously hidden label yields a totally
new label. On the other hand, hidden labels still exist. For instance, objects cre-
ated by instantiating the class c_hidden_buffer from Sect. 2.1 must somehow
possess labels to encode the state of a one-place buffer.

The formal evaluation rule for hiding appears as follows:

Eval-Hide

Γ ² C ⇓C Cv (fi defined in Cv, hi fresh) i∈I

Γ + (c 7→ Cv{hi/fi
i∈I}H) ² P ⇓P Pv

Γ ² class c = C hide {fi
i∈I} in P ⇓P Pv

Here judgment Γ ² C ⇓C Cv evaluate classes, and Γ ² P ⇓P Pv evaluate
processes, under the environments Γ that bind class names to class normal forms.

Hiding applies only to class normal forms, and only at class binding time. The
hiding procedure {hi/fi

i∈I}H is implemented by α-converting the hidden chan-
nels {fi

i∈I} to fresh labels {hi
i∈I}. Fig. 2 defines α-conversion formally, where

we simply write σH for {hi/fi
i∈I}H in inductive cases. Such an α-conversion ap-

plies to both definition occurrences (in join patterns) and reference occurrences
(in guarded processes and in the init process) of the hidden names in the normal
form. It is important to notice that this simple mechanism can only handle mes-

5

((D or L) init Pv)σH

def
= (DσH or L) init PvσH

f(ũ){hi/fi
i∈I}H

def
=

{

hj(ũ) f = fj , j ∈ I
f(ũ) otherwise

(M1 & M2)σH

def
= M1σH & M2σH

(M . P)σH

def
= MσH . PσH

(D1 or D2)σH

def
= D1σH or D2σH

0σH

def
= 0

(this.M)σH

def
= this.MσH

(x.M)σH

def
= x.M

(P1 & P2)σH

def
= P1σH & P2σH

(obj x = D init P in Q)σH

def
= obj x = D init P in QσH

Fig. 2. α-converting hidden names to fresh names in class normal forms

sages sent through self-inflicted references. As a consequence, we require hidden
labels to be private, a condition which is checked by typing, in order to guarantee
the renaming of all occurrences of hidden labels. Moreover, we do not rename
under nested object definitions because they rebind this. To give some intuition,
the normal form of class c_hidden_buffer from Sect. 2.1 looks as follows:

class c_hidden_buffer =
get(r) & Some′(n) . r.reply(n) & this.Empty′()

or put(n,r) & Empty′() . r.reply() & this.Some′(n)
init this.Empty′()

Here, we assume Empty′ and Some′ to be the two fresh labels that replace Empty

and Some respectively.
This design meets the two concerns described at the beginning of this section:

on the one hand, freshness guarantees hidden names not to be visible during
inheritance; on the other hand, hidden names are still present in class normal
forms but under fresh identities.

How to inherit a class with hidden labels? Another impact of hiding on semantics
manifests itself during class inheritance. Classes are inherited by their names,
which is rendered in semantics by substituting class normal forms for class names.
However, to avoid two subclasses of the same class overlapping on the hidden
labels, class normal forms should not be used directly. Instead, we require the
re-freshening of the hidden names whenever a class is substituted.

Eval-CName

Γ (c) = Cv {hi
i∈I} = dl[Cv] ¹ H (h′

i fresh) i∈I

Γ ² c ⇓C Cv{h
′
i/hi

i∈I}H

Where dl[Cv]¹H stands for the set of those labels defined by Cv that are hidden.

6

τ ::= α | [ρ] Object type

ρ ::= ∅ | % | m : τ̃ ; ρ Row type

τ̃ ::= (τi
i∈I) Tuple type

τ c ::= ζ(τ)BW,V Class type

B ::= ∅ | l : τ̃ ; B Internal type

Fig. 3. Syntax of the type algebra

4 The typing of hiding

We define a ML-style type system to type objects and classes, focussing on the
new hiding operation.

4.1 Type algebra

The grammar of type expressions appears in Fig. 3. There are two kinds of type
variables: object type variables, ranged over by α; and row type variables, ranged
over by %. We use θ for type variables, regardless their kinds, and X to range over
sets of type variables. As in the ML type system, polymorphism is parametric
polymorphism, obtained essentially by generalizing the free type variables.

Object types τ = [ρ] list the types of public channels. They may end with a
row variable, which means that, besides channels listed in ρ, there may be some
other channels. Such trailing row variables enable a useful degree of subtyping
polymorphism by structure.

Class types τ c = ζ(ρ)BW,V consist of four parts. Objects created from the
class have type [ρ]. Internal type B collects the types of all (non-hidden) channels
in the class, defined or declared, public or private. We shall describe V , the set
of dangerous type variables, soon. Finally, W reflects synchronization amongst
channels. Component W is a set of sets of channel names, with one member
set w ⊆ L corresponding to one join pattern, and all together representing the
whole structure of join patterns in the class normal form. Intuitively, by the effect
of hiding, hidden labels are eliminated from B and W . However, wild elimination
endangers safe polymorphism. As an example, the type of class c_buffer from
Sect. 2 is:

class c_buffer: object
label get: ([reply: (θ); %]) ;
label put: (θ,[reply: (); %′]) ;
label Some: (θ) ; label Empty: () ;

end W = {{get, Some}, {put, Empty}}
As detailed in [14, 10, 5], labels from the same join patterns are identified as
correlated and any free type variables shared by correlated labels cannot be gen-
eralized in object types. In this example, because θ is shared by two correlated
labels get and Some (from the same member set of W), it should not be gener-

7

alized. By contrast, class c_hidden_buffer from Sect. 2.1 hides labels Some and
Empty and has type:

class c_hidden_buffer: object
label get: ([reply: (θ); %]) ;
label put: (θ,[reply: (); %′]) ;

end W = {{get}, {put}}
The two hidden labels disappear from both the label list and W . Without other
restriction, this type would allow the generalization of θ in object types because
labels get and put are not correlated (coming from two different member sets
of W). Generalized θ then could be instantiated incompatibly for get and put,
for instance, as integer and string, which would result in a runtime type error:
attempting to retrieve a string when an integer is present.

To tackle the problem, we keep track of such dangerous type variables in class
types, denoted by V . In this example, the complete type of class c_hidden_buffer
looks like:

class c_hidden_buffer: object
label get: ([reply: (θ); %]) ;
label put: (θ,[reply: (); %′]) ;

end W = {{get}, {put}} V = {θ}
We shall now discuss formally the collection, maintenance, and usage of danger-
ous type variables.

4.2 Typing rules

We focus on the typing rules related to hiding, and do not elaborate on rules
for simple processes [10], nor on rules for old class operations [14]. All those
appeared in previous work and are available in [15].

How to type hiding? Hiding occurs while binding classes to names, the rule for
hiding is thus an elaboration over the rule for class binding in [14]:

Type-Hide

A + this : [ρ]; this : (B ¹ F) ` C :: ζ(ρ)BW,V

B′ = B \ F

A + c : ∀Gen(ρ,B′, A).ζ(ρ)B′W ′,V ∪ftv[B¹F] ` P

ρ = B ¹ M; %
W ′ = W \ F

F ⊆ W

A ` class c = C hide F in P

Here judgment A ` C :: τ c types classes, and A ` P types processes, under
the typing environments A that bind class names, object names, or this to
corresponding polymorphic types.

The class definition is first typed, under the extended environment A with
two complementary bindings for the recursive self reference — this : [ρ] (where
ρ = B ¹M; %) for public labels, and this : (B ¹F) for private ones. Here B ¹M
and B ¹F restrict the domain of B respectively to public and private labels. Note
that with the same B appearing on both sides of the judgment, the compatibility
between the defined types of labels (on the right side) and the expected types

8

of labels (on the left side) is explicitly expressed. Moreover, as a side note, the
condition ρ = B ¹ M; % also allows us to merge the ρ component into the B
component in the presentation of our class type examples.

F ∈ F stands for the set of hidden names. With W listing all the labels
defined by class C, the condition F ⊆ W in the premise checks whether all the
hidden labels are actually defined, in particular abstract labels cannot be hidden.
Hiding has no impact on the type of objects created from the class (object user
interface [ρ]), because ρ contains only public labels. However, the interface for

inheritance users, namely BW is restricted to B′W
′

, where B′ = B \ F , and
W ′ = W \ F . W \ F is defined as {wi \ F | wi ∈ W}, where wi \ F refers
to usual set difference. Moreover, to assure safe polymorphism, all the free type
variables of the hidden channels (ftv[B ¹F]) are considered as dangerous, and are
appended into V . One might wonder why not only add those correlated free type

variables that disappear from the hidden interface, namely ctv[BW] \ ctv[B′W
′

],
where ctv[BW] computes the free type variables in B that are common to types
of at least two correlated channels according to W . At first glance, it seems
feasible and would allow more polymorphism. Unfortunately, we cannot because
this would not be safe (See [15, page 22]).

With the notion of dangerous type variables, the polymorphism control of
object types elaborates into two parts as in the following rule for typing objects:

Type-Object

A + this : [ρ]; this : (B ¹ F) ` C :: ζ(ρ)BW,V

X = Gen(ρ,B,A) \ ctv[BW] \ V
A + x : ∀X.[ρ] ` P

ρ = B ¹ M

dom[B] = W

A ` obj x = C in P

In addition to the common free type variables that are shared by correlated
channels (i.e. computed by ctv[BW]), the set of dangerous type variables V is
also prevented from generalization.

How to type classes with hidden labels? Not surprisingly, the set of typing rules
for classes are almost kept the same as before in [14], except for the transmission
of the set V . Dangerous type variables only come from hiding at class binding
time (i.e. outside class definitions). However, for the sake of safe polymorphism,
they should be preserved during class operation. Moreover, we have the following
rule to type class names:

Type-CName

c : ∀X.ζ(ρ)BW,V ∈ A

A ` c :: η(ζ(ρ)BW,V)

When making an instants of the polymorphic class type by a substitution η for
type variables, we define η(ζ(ρ)BW,V) = ζ(η(ρ))η(B)W,η(V) where:

η(V) = (V \ dom[η]) ∪
⋃

θ∈(V ∩dom[η])
ftv[η(θ)]

Intuitively, this means when a dangerous type variable is replaced by a type, all
the free type variables in that type are dangerous.

9

5 Properties of the Type System

5.1 The type system is sound

One of the main goals of static typing is to exclude programs that will cause
errors at runtime. Our type system is sound as stated in the following theorem.

Theorem 1 (Soundness). Let P be a process (with class definitions). If P is
well-typed, then P evaluates to Pv (without class definitions), and Pv is not an
error. Moreover, putting Pv in the chemical machine, the chemical reduction of
the initial solution and all the successive ones never fail.

As can be seen from the theorem formulation, our class semantics includes
“error rules” to model failed class evaluation. Thus, for instance, the type system
guarantees: no unbound class names; no attempts to instantiate from abstract
classes; etc.

Although standard is the type soundness, the proof technique is non-trivial.
Briefly, the use of big-step evaluation semantics demands to type evaluation
environments polymorphically. Moreover, the impact of hiding on semantics and
on type system differ significantly — i.e. α-conversion against erasing. To bridge
the gap, we introduce the new notion of revealing, which intuitively reflects the
reverse idea of hiding. Technically, revealing is expressed as an ordinary, specific,
typing rule, but not as a subtyping relation. In addition, checking against the
set of dangerous type variables in class types also plays an important role.

5.2 Our hiding is “hiding”

Besides the basic soundness property, the type system and the hiding seman-
tics conform to what common sense suggests about hidden names. We argue
informally in this section, through examples.

First, the type system rules out any inheritance that tries to access a hidden
name, for example, in the following definitions:

class c1 = a() . this.Ch() or Ch() . P hide {Ch}
class d1 = c1 or b() . this.Ch()

Although channel Ch is defined in class c1, it is hidden. Hence in the derived
class d1, Ch is not accessible. The type system will report a “unbound name”
error when typing class d1.

Moreover, once a name is hidden, it is reasonable to define an unrelated
channel that happens to have the same name, such as the following code:

class c2 = a(x) . this.Ch(x) or Ch(i) . out.print_int(i) hide {Ch}
class d2 = c2 or Ch(s) . out.print_string(s) or b(x) . this.Ch(x)

Both classes c2 and d2 are well-typed despite the fact that the two definitions of
label Ch have incompatible types and behaviors: one receives and prints an inte-
ger and the other receives and prints a string. In addition, our hiding semantics
guarantees that late-binding is not applicable during the inheritance. Suppose o

is an object of class d2. Message o.a(x) is actually consumed by calling the fresh

10

name corresponding to the hidden Ch, which requires x be an integer, and will
print out this integer. In comparison, o.b(x) calls the newly defined channel Ch,
which waits for a string argument x, and will print out this string.

Finally, the exact name of the hidden channel does not matter. For example,
if we define a variant class for class c2 as follows:

class c′2 = a(x) . this.A′(x) or A′(i) . out.print_int(i) hide {A′}
Then both c2 and c′2 are well-typed, and provide the same interfaces to their
users. Replacing c2 by c′2 in the definition of class d2 makes no difference.

6 Related work

The idea of using join patterns for class synchronization abstraction in object-
oriented programming is also followed by other language designers, such as the
authors of polyphonic C] [1] and Join Java [13]. However, classes in those only
support limited inheritance of Join abstractions. Fournet et al. study this prob-
lem based on a theoretical foundation in [11]. They extend the Join calculus with
a class language, in which various operations are designed to support a variety of
inheritance paradigms. Our previous work [14] improves their model by propos-
ing a more expressive type system. This paper introduces further improvement
from another angle. We enrich Fournet et al.’s calculus with information hiding.
To draw a comparison, the model presented in this paper on one hand allows
more precise and flexible visibility control of classes than in [11], on the other
hand it allows more degree of type abstraction than in [14].

Our hiding mechanism is inspired by the design of its counterpart for sequen-
tial classes in OCaml, which is not described in its theoretical calculus [20] but is
present in its real system. Briefly, in the sequential case, hiding amounts to freez-
ing method names, while our extension additionaly performs a similar action on
synchronizations policies defined by a class. From typing point of view, hiding
method names in OCaml also amounts to removing the hidden names from class
types. However, hiding in OCaml (and in MOBY [6]) is performed implicitely
by specifying restricted class types. Given the sophisticated class types of our
class language, such an option would not be convenient for concurrent classes.
In particular, it seems impractical to deprive programmers from compiler help
in figuring out the impact of hiding on synchronization and, above all, polymor-
phism. Thus, in contrast to OCaml, we provide an explicit class operator for
hiding, and the type of the resulting class is inferred automatically.

Fisher and Reppy design a ML style module system to take care of the visi-
bility control of classes in MOBY [6]. One significant difference between MOBY
and our design is in the hiding of public members of a class. Such a difference
originates in the problems between hiding public names and supporting advanced
features, such as selftype (also known as mytype) and binary methods [3]. As ob-
served by Rémy and Vouillon [20, 24], and also by Fisher and Reppy [6], these
two aspects do not trivially get along without endangering type soundness. A
simple solution to these problems is to support either. We choose to support
the notion of selftype while limit hiding to private channels, as is the case with

11

OCaml. By contrast, Fisher and Reppy choose complete visibility control over
selftype in MOBY. However, notice that Vouillon proposes a comprehensive so-
lution [24]. All those works [6, 24] use Riecke-Stone style dictionaries [21] to
capture the dynamic semantics of hiding. It is worth noticing that dictionaries,
which basically are bindings from labels to labels, appear explicitely in these cited
calculi, moreover also in the language of [24], thereby adding significant com-
plexity. Compared with their approach, our semantics of hiding by α-conversion
is simpler, and sufficient for the purpose of hiding private names only.

7 Conclusion

We have extended the hiding mechanism from sequential to concurrent object-
oriented settings. Along with the privacy mechanism, the hiding mechanism
provides a flexible way to control class accessibility, both at object level and
class level. We designed the hiding mechanism as an additional operation on
classes. The semantics is formally defined by α-converting hidden names to fresh
names, which exploits the usage of the keyword this. We believe our semantics
of hiding could also be easily adapted to formalize the corresponding mechanism
in OCaml, and thus could be applied to the theoretical model of OCaml [20].

We also designed a type system in the tradition of ML to accompany the
hiding operation. Hiding has been achieved by eliminating the hidden names
from class types. However, wild elimination endangers safe polymorphism. As a
solution, we equipped class types with a set of “dangerous variables” to recover
some of the polymorphism impaired by hiding. We claim that types for hidden
classes can be automatically inferred. Although lacking a formal treatment, we
prototyped a type inferer to demonstrate the idea.

We proved the soundness of our type system, both at the class evaluation level
and the chemical machine level, through non-trivial proof technique. Besides the
standard soundness property, we informally argued that our mechanism deserves
the name “hiding”.

We have achieved significant improvements over the original design of Fournet
et al. [11]: in [14] as regards the class system expressiveness, and in this paper as
regards visibility control and simplification of runtime semantics. We claim that
those improvements yield a calculus mature enough to act as the model of a full-
scale implementation, which we plan as the integration of our class-based design
into the JoCaml system [9]. We have not yet performed this extension, but rather
wrote a prototype system from which we draw some precise implementation
guidelines [15]. More precisely, we explain how to perform class operations in a
separate compilation setting and how to implement message sending to objects
over ordinary message sending in Join with a small additional price.

References

1. N. Benton, L. Cardelli, and C. Fournet. Modern concurrency abstractions for C].
ACM Transactions on Programming Languages and Systems, 26(5):769–804, 2004.

12

2. P. D. Blasio and K. Fisher. A calculus for concurrent objects. In Proceedings of

CONCUR’96, pp.655–670, 1996.
3. K. Bruce, L. Cardelli, G. Castagna, G. T. Leavens, and B. Pierce. On binary

methods. Theory and Practice of Object Systems, 1(3):221–242, 1995.
4. L. Cardelli. Obliq: A language with distributed scope. Computing Systems, 8(1):27–

59, 1995.
5. G. Chen, M. Odersky, C. Zenger, and M. Zenger. A functional view of join. Tech-

nical Report ACRC-99-016, University of South Australia, 1999.
6. K. Fisher and J. Reppy. The design of a class mechanism for moby. In Proceedings

of PLDI’99, pp.37–49, 1999.
7. C. Fournet. The Join-Calculus: a Calculus for Distributed Mobile Programming.

PhD thesis, Ecole Polytechnique, Nov. 1998.
8. C. Fournet and G. Gonthier. The reflexive chemical abstract machine and the

join-calculus. In Proceedings of POPL’96, pp.372–385, 1996.
9. C. Fournet, F. Le Fessant, L. Maranget, and A. Schmitt. The JoCaml system. Soft-

ware and documentation available at http://pauillac.inria.fr/jocaml, 2001.
10. C. Fournet, L. Maranget, C. Laneve, and D. Rémy. Implicit typing à la ML for

the join-calculus. In Proceedings of CONCUR’97, pp.196–212, 1997.
11. C. Fournet, L. Maranget, C. Laneve, and D. Rémy. Inheritance in the join calculus.

Journal of Logic and Algebraic Programming, 57(1-2):23–69, 2003.
12. A. D. Gordon and P. D. Hankin. A concurrent object calculus: reduction and

typing. In Proceedings of HLCL’98, 1998.
13. G. S. Itzstein and D. Kearney. Join Java: An alternative concurrency semantics

for Java. Technical Report ACRC-01-001, University of South Australia, 2001.
14. Q. Ma and L. Maranget. Expressive synchronization types for inheritance in the

join calculus. In Proceedings of APLAS’03, pp.20–36, 2003.
15. Q. Ma and L. Maranget. Information hiding, inheritance and concurrency. In-

ria Rocquencourt Research Report RR-5631, 2005. http://pauillac.inria.fr/
~maranget/papers/hide-tr.ps.

16. S. Matsuoka and A. Yonezawa. Analysis of inheritance anomaly in object-oriented
concurrent programming languages. Research Directions in Concurrent Object-

Oriented Programming, pp.107–150. MIT Press, 1993.
17. O. Nierstrasz. Towards an object calculus. In Proceedings of ECOOP’91 Satellite

Workshop on Object-Based Concurrent Computing, pp.1–20, 1991.
18. M. Odersky. Functional nets. In Proceedings of ESOP’00, pp.1–25, 2000.
19. B. C. Pierce and D. N. Turner. Concurrent objects in a process calculus. In

Proceedings of TPPP 94, pp.187–215, 1995.
20. D. Rémy and J. Vouillon. Objective ML: An effective object-oriented extension to

ML. Theory And Practice of Object Systems, 4(1):27–50, 1998.
21. J. G. Riecke and C. A. Stone. Privacy via subsumption. Information and Compu-

tation, 172(1):2–28, 2002.
22. D. Sangiorgi. An interpretation of typed objects into typed π-calculus. Information

and Computation, 143(1):34–73, 1998.
23. V. T. Vasconcelos. Typed concurrent objects. In Proceedings of ECOOP’94 Work-

shop on Object-Based Concurrent Computing, pp.100–117, 1994.
24. J. Vouillon. Combining subsumption and binary methods: an object calculus with

views. In Proceedings of POPL’01, pp.290–303, 2001.
25. D. J. Walker. Objects in the pi-calculus. Information and Computation,

116(2):253–271, 1995.

13

