
Exercises by Francesco Zappa-Nardelli, solutions

1 Peterson

It is worthwile to simplify the program a bit, focusing on concurrent execution if the “lock” idiom and getting
rid of loops:

*flag0 = 1 ; *flag1 = 1 ;

*turn = 1 ; *turn = 0 ;

if (*flag1 == 0 || *turn == 0) { if (*flag0 == 0 || *turn == 1) {

// Enter critical section // Enter critical section

... ...

} }

All variables are shared and initialised to zero.

Given the usual left-to-right so called “lazy” semantics of the boolean binary operators, when the left thread
is in critical section, it has either read value 0 in flag1 , or read 1 in flag1 and 0 in turn. Hence considering
the two threads we have the following three cases:

1. Thread 0 reads 0 from flag1 , while thread 1 reads 0 from flag0 .

2. Thread 0 reads 0 from flag1 , while thread 1 reads 1 from flag0 and 1 from turn. And the symmet-
rical case, where thread 1 reads 0 from flag0 , while thread 0 reads 1 from flag1 and 0 from turn.

3. Both threads read 1 from the other thread flag, and both threads read their identifier in turn.

We study those three possibilities, showing that each necessarily leads to a violation of SC.

• When both threads read the initial value of the other thread flag, there are fr arrows from each flag
read event to the other thread write event. As a consequence we witness a violation of SC of the “SB”
kind. See figure 1, left diagram.

• This second case is depicted by the right diagram of figure 1. As thread 0 reads the initial value of
flag1 , there is a fr arrow from event c:Rflag1=0 to the write d:Wflag1=1 by thread 1. Furthermore, as
thread 1 reads 1 from turn after having written 0, the write e:Wturn=0 by thread 1 precedes the write
b:Wturn=1 by thread 0. Finally, we have a R-shape cycle: c -fr-> d -po-> e -co-> a -po-> c.

• The last case is interesting, as it leads to a quite immediate violation of coherence. Figure 2 depicts
the situation where the coherence for turn is from thread 1 write to thread 0 write. As a result we
have a contradiction between po and fr on thread 0. Should the coherence order on turn be reversed,
the contradiction would be on thread 1 between h:Rturn=1 and f:Wturn=0.
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Figure 1: Violation of SC, SB and R shapes.

a: Wflag0=1

b: Wturn=1

c: Rflag1=0

d: Wflag1=1

e: Wturn=0

f: Rflag0=0

po

po

fr

po

po

fr

rf rf

a: Wflag0=1

b: Wturn=1

f: Rflag0=1

c: Rflag1=0

g: Rturn=1

d: Wflag1=1

e: Wturn=0

po

rf

po

rf

fr

po

co

po

po

rf

If Peterson code is executed on a TSO machine, tests SB and R are allowed, as a result mutual exclusion
will fail. Test SB (left diagram of figure 1) can be forbidden by inserting a fence between events a and c on
the one hand and between events d and f on the other hand. Test R (right diagram of figure 1) is forbidden
by inserting a fence between the write b and the read c. While forbidding the symmetric situation calls for
executing a fence between the write to turn and the read of flag0 by thread 1. It is interesting to notice
that case 3. does not call for any fence, as any (reasonable) machine will reject this behaviour.

Finally, inserting fence instructions immediately after the write to turn on both threads will suffice for
Peterson code to function properly, guaranteeing mutual exclusion. Notice that following the simple rule of
executing a fence whenever a read to a shared variable follows a write to a different shared variable would
insert the same fence instructions.

2 RWC (Read to Write Causality)

Let write the test in C:

void P0( int *x) {
*x = 1 ;

}

void P1( int *x, int *y) {
int r0 = *x;
int r1 = *y;

}

void P2( int *y, int *x) {
*y = 1 ;
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Figure 2: Violation of coherence
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int r0 = *x;
}
exists (1:r0=1 /\ 1:r1=0 /\ 2:r0=0)

The final values of registers forces fr and rf arrows. (a) The cycle in figure 3 proves that the behaviour
is not SC. However (b) it is allowed by TSO as po from write to read is not part of ppo (figure 4). For
(c) adding fence instructions in the middle of thread 1 and 2 will forbid the behaviour. In effect, strong
fences sync are necessary.

Figure 3: Read to Write Causality.
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Figure 4: TSO model (excerpt)

TSO

include "x86fences.cat"

include "cos.cat"

irreflexive po;(rf|fr|co)+ as uniproc

...

#ppo

let ppo = [R];po;[R] | [M];po;[W] | [M];po;[MFENCE];po;[M]

let ghb = ppo | rfe | fr | co

acyclic ghb as tso

3 Data race freedom

(a) race on y, (b) DRF, (c) race on x.

4 DRF Semantics

All programs can output 42. First (a) can normally output 42. Programs (b) and (c) are racy can thus have
any behaviour and thus can output 42. . .

5 Valid compiler optimisations

(a) and (b) are invalid. For (a) consider test MP: after transformation there is an additional outcome:
1:r0=1; 1:r1=0;.

C MP

{}

P0 (int* y,int* x) {

*x = 1;

*y = 1;

}

P1 (int* y,int* x) {

int r0 = *y;

int r1 = *x;

}

~exists (1:r0=1 /\ 1:r1=0)

C TR-MP

{}

P0 (int* y,int* x) {

*x = 1;

*y = 1;

}

P1 (int* y,int* x) {

int r1 = *x;

int r0 = *y;

}

exists (1:r0=1 /\ 1:r1=0)
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For (b) consider SB, applying the transformation twice.

C SB

{}

P0 (int* y,int* x) {

*x = 1;

int r0 = *y;

}

P1 (int* y,int* x) {

*y = 1;

int r0 = *x;

}

~exists (0:r0=0 /\ 1:r0=0)

C TR-SB

{}

P0 (int* y,int* x) {

int r0 = *y;

*x = 1;

}

P1 (int* y,int* x) {

int r0 = *x;

*y = 1;

}

exists (0:r0=0 /\ 1:r0=0)

Transformation (c) is correct: to any execution of the transformed program once associate an execution of
the original program by prefixing read event generated by the second load by a copy of it that would be
generated by the elided load.
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