
Exercises

Instructions

There are two exercices.
Most of exercice 1 answer is a program written by completing the templates from the companion

archive http://cambium.inria.fr/~maranget/MPRI/EXO21.tgz.
Answers should be submitted by email to Luc.Maranget@inria.fr before Monday February 14, noon.

Solution to exercice 1 should compile with provided Makefile — make all for 1.1 and make c11 for 1.3.

1 Semaphores

A semaphore is an old fashioned synchronisation primitives that generalises the mutex: the semaphore is
given a capacity and at most capacity threads can be in critical section simultaneously. Hence, a mutex is a
semaphore with capacity 1.

For historical reasons semaphore lock is called “wait” and semaphore unlock is called “post”.
Important: Code template for this exercice is available in directory semaphore from the companion

archive.

1.1 Coding a semaphore

Given a semaphore s initialised to capacity c, critical sections are defined from a call to wait_semaphore (s)
(analog of lock_mutex) to post_semaphore (s) (analog of unlock_mutex). The semaphore uses an inter-
nal counter nfree to count the number of threads allowed to enter critical section. The counter is initialised
to c at semaphore creation time, then:

• wait_semaphore (s) checks that nfree is non-null and decrements it. If nfree is null, the thread
suspends.

• post_semaphore (s) increments nfree and release waiting threads.

One may write a semaphore with a mutex (to protect the modifications of nfree) and a condition variable
(to wait on). Complete the following code:

/* Signature of mutex and condition variable primitives */

pthread mutex t *alloc_mutex(void) ;
void free_mutex(pthread mutex t *p) ;
void lock_mutex(pthread mutex t *p) ;
void unlock_mutex(pthread mutex t *p) ;

pthread cond t *alloc_cond(void) ;
void free_cond(pthread cond t *p) ;
void wait_cond(pthread cond t *c, pthread mutex t *m) ;
void signal_cond(pthread cond t *c) ;
void broadcast_cond(pthread cond t *c) ;

1

http://cambium.inria.fr/~maranget/MPRI/EXO21.tgz

/* Semaphore structure */
typedef struct {

vo la t i l e int nfree ;
pthread mutex t *mutex ;
pthread cond t *cond ;

} semaphore t ;

semaphore t *alloc_semaphore(int capacity) { . . . }

void free_semaphore(semaphore t *p) { . . . }

void wait_semaphore(semaphore t *p) { . . . }

void post_semaphore(semaphore t *p) { . . . }

1.2 Semaphore usage

We consider nprocs threads running function T1 below, with argument described by ctx t below:

typedef struct {
int size ;
pthread barr ier t *b ;
semaphore t *sem ;

} common t ;

typedef struct {
int id ;
common t *common ;

} c t x t ;

void *T1(void *_p) {
c t x t *p = _p ;
common t *q = p->common ;
for (int k = q->size-1 ; k >= 0 ; k--) {
wait_semaphore(q->sem) ;
printf("+") ;
printf("-") ;
post_semaphore(q->sem) ;
wait_barrier(q->b) ;
i f (p->id == 0) printf("\n") ;
wait_barrier(q->b) ;

}
return NULL ;

}

With a semaphore of capacity 2, q->size = 1 and nprocs == 4. Classify the following outputs as legal
or illegal, giving a short explanation in each case:

1. ++--+-+-

2. +++-+---

3. -+-+-+-+

4. +-+-+-+-

5. ++++++++

2

1.3 C11 coding

Write the same program using C11 standard primitives. To that aim, you may need:

• Documentation, see for instance https://en.cppreference.com/w/c/atomic and https://en.cppreference.

com/w/c/thread.

• A C11 compiler and standard library. On Linux, if your distribution defaults are not sufficient (as it
is the case on Ubuntu 18.04 LTS for instance), you can install the musl-tools package and use the
musl-gcc compiler.

The companion archive contains a template sem11.c, with missing parts shighlighted by TODO comments.

2 Sequentially consistent or not?

The following small programs are written in pseudo-C. Following our usual conventions x and y are shared
memory locations, while r0 and r1 are registers. Moreover, *x = 1 is a store; while r0 = *x is a load.
Shared locations and registers hold zero as initial value. By definition, a behaviour is a choice of final values

Figure 1: Four small programs

Test 1 Test 2

---------+--------- ---------+---------

T0 | T1 T0 | T1

---------+--------- ---------+---------

*x = 2 | r0 = *y *x = 2 | *x = 1

*y = 1 | *x = 1 *y = 1 | r0 = *y

---------+--------- ---------+---------

Observe x,r0 Observe: x,r0

Test 3 Test 4

---------+--------- ---------+---------

T0 | T1 T0 | T1

---------+--------- ---------+---------

*x = 1 | *y = 1 *x = 1 | *y = 1

r0 = *y | r1 = *x r0 = *x | r1 = *y

---------+--------- ---------+---------

Observe r0,r1 Observe r0,r1

for some observed locations. That is, shared locations x and r0 for Test 1 and Test 2; registers r0 and r1

for Test 3 and Test 4.
We consider valid behaviours, i.e. behaviours that result from executions such that each load of a memory

cell reads a value written by a store to the same memory cell or the initial value zero. List all valid behavours
of the four tests, identifying sequentially consistent (SC) behaviours.

3

https://en.cppreference.com/w/c/atomic
https://en.cppreference.com/w/c/thread
https://en.cppreference.com/w/c/thread

	Semaphores
	Coding a semaphore
	Semaphore usage
	C11 coding

	Sequentially consistent or not?

