Semi-automatic proof of Strong connectivity

jean-jacques.levy@inria.fr

journées PPS, 12-10-2017
Plan

- motivation
- algorithm
- formal proof
- other systems
- conclusion

.. joint work (in progress) with Ran Chen [VSTTE 2017]

also cooperation with Cyril Cohen, Laurent Théry, Stephan Merz
Motivation

- nice algorithms \(\rightarrow\) **simple** formal proofs
- **fully** published in articles or journals
- how to publish formal proofs?
- formal proofs should be **exact** and **readable** (by human)
- mix automatic and interactive proofs
- first-order logic is **easy** to understand, but **not** expressive
- algorithms on graphs = a good testbed
One-pass linear-time algorithm

[tarjan 1972]
Depth-first-search

graph

spanning tree (forest)
The algorithm (1/3)

3 SCCs (strongly connected components)

3 vertices are their bases
The algorithm (2/3)

\[
\text{LOWLINK}(x) = \min \left(\{ \text{num}[x] \} \cup \{ \text{num}[y] \mid x \rightarrow^* y \right)
\]
\(\wedge x \text{ and } y \text{ are in same connected component} \}

\[
\text{LOWLINK}(x) = \min \left(\{ \text{num}[x] \} \cup \{ \text{num}[y] \mid x \rightarrow^* y \right)
\]
\(\wedge x \text{ and } y \text{ are in same connected component} \}

The algorithm (3/3)
The program

```ocaml
let rec printSCC (x: int) (s: stack int)
  (num: array int) (sn: ref int) =
    Stack.push x s;
  num[x] <- !sn; sn := !sn + 1;
  let low = ref num[x] in
  foreach y in (successors x) do
    let m = if num[y] = -1
      then printSCC y s num sn
      else num[y] in
    low := Math.min m !low
    done;
  if !low = num[x] then begin
    repeat
      let y = Stack.pop s in
      Printf.Printf "%d " y;
      num[y] <- max_int;
      if y = x then break;
    done;
    Printf.Printf "\n"
    low := max_int;
  end;
  return !low;
```

- print each component on a line
Proof in algorithms books (1/2)

- consider the spanning trees (forest)
- tree structure of strongly connected components
- 2-3 lemmas about ancestors in spanning trees

Lemma 10. Let \(v \) and \(w \) be vertices in \(G \) which lie in the same strongly connected component. Let \(F \) be a spanning forest of \(G \) generated by repeated depth-first search. Then \(v \) and \(w \) have a common ancestor in \(F \). Further, if \(u \) is the highest numbered common ancestor of \(v \) and \(w \), then \(u \) lies in the same strongly connected component as \(v \) and \(w \).

\[
LOWLINK(x) = \min \left(\{num[x]\} \cup \{num[y] \mid x \stackrel{*}{\Rightarrow} y \wedge x \text{ and } y \text{ are in same connected component}\} \right)
\]

Lemma 12. Let \(G \) be a directed graph with LOWLINK defined as above relative to some spanning forest \(F \) of \(G \) generated by depth-first search. Then \(v \) is the root of some strongly connected component of \(G \) if and only if \(LOWLINK(v) = v \).
Proof in algorithms book (2/2)

• give the program

• proof program

• that part of the proof is very informal
Our program (1/3)

let rec dfs1 x e =
 let n = e.sn in
 let (n1, e1) = dfs (successors x) (add_stack_incr x e) in
 let (s2, s3) = split x e1.stack in
 if n1 < n then (n1, e1) else
 (max_int(), {stack = s3; sccs = add (elements s2) e1.sccs;
 sn = e1.sn; num = set_max_int s2 e1.num})

with dfs roots e = if is_empty roots then (max_int(), e) else
 let x = choose roots in
 let roots’ = remove x roots in
 let (n1, e1) = if e.num[x] ≠ -1 then (e.num[x], e) else dfs1 x e in
 let (n2, e2) = dfs roots’ e1 in (min n1 n2, e2)

let tarjan () =
 let e0 = {stack = Nil; sccs = empty; sn = 0; num = const (-1)} in
 let (_, e’) = dfs vertices e0 in e’.sccs

returns LOWLINK(x) and new environment
Formal proof using Why3
Plan of proof (1/2)

- define **reachability** in graphs and SCCs
- prove a few lemmas about positions in stacks (**ranks**)
- define **invariants** on environments
- give **pre-post conditions** for functions
- add a few intermediate **assertions** in function bodies

- avoid paths, prefer edges
Plan of proof (2/2)

• vertices have colors
 - white = unvisited
 - gray = being visited
 - black = visited

• invariant on environment

vertex in stack reaches all vertices with higher rank
Invariants

def type env = {ghost blacks: set vertex; ghost grays: set vertex;
stack: list vertex; sccs: set (set vertex);
sn: int; num: map vertex int}
let rec dfs1 x e =

requires {mem x vertices} (* R1 *)
requires {access_to e.grays x} (* R2 *)
requires {not mem x (union e.blacks e.grays)} (* R3 *)

\[
\begin{align*}
\text{e.sccs} & \subseteq \text{e'.sccs} \\
\text{e.blacks} & \subseteq \text{e'.blacks} \\
\text{e.grays} & = \text{e'.grays}
\end{align*}
\]
let n = e.sn in
let (n1, e1) =
 dfs' (successors x) (add_stack_incr x e) in
let (s2, s3) = split x e1.stack in

if n1 < n then begin
 (n1, add_blacks x e1) end
else begin
 (max_int(), {blacks = add x e1.blacks; grays = e.grays;
 stack = s3; sccs = add (elements s2) e1.sccs;
 sn = e1.sn; num = set_max_int s2 e1.num}) end

[http://jeanjacqueslevy.net/why3/graph/abs/scct/1-7/scc.html]
Assertions

assert {forall y. in_same_scc y x -> lmem y s2};

- proof by contradiction: \(\exists y, \ in_same_scc\ y\ x \land y \notin s2 \)
- \(\exists x' y', \ reachable\ x\ x' \land edge\ x'\ y' \land reachable\ y'\ y \land x' \in s2 \land y' \notin s2 \)
- 3 cases:

 [1] \(y' \) is white
 \(x' = x \) then \(y' \in successors\ x \rightarrow y' \) is black
 \(x' \neq x \) then \(x' \) is black \(\rightarrow \) \(\neg \) no_black_to_white \(b_1 g_1 \)

 [2] \(y' \in e1.sccs \) then \(in_same_scc\ y'\ x \rightarrow x \) is black

 [3] \(y' \in s3 \rightarrow rank\ y'\ s1 < rank\ x\ s1 \rightarrow e1.num[y'] < e1.num[x] = e.num[x] = n \)
 \(x' = x \) then \(y' \in successors\ x \rightarrow n1 \leq e1.num[y'] \)
 \(x' \neq x \) then \(xedge_to\ s1\ (Cons\ x\ s3)\ y' \)
Proof stats

<table>
<thead>
<tr>
<th>prover</th>
<th>Alt-Ergo</th>
<th>CVC3</th>
<th>CVC4</th>
<th>Coq</th>
<th>E-prover</th>
<th>Spass</th>
<th>Yices</th>
<th>Z3</th>
<th>all</th>
<th>#VC</th>
<th>#PO</th>
</tr>
</thead>
<tbody>
<tr>
<td>38 lemmas split</td>
<td>2.35</td>
<td>0.23</td>
<td>5.79</td>
<td>0.66</td>
<td>0.75</td>
<td>0.21</td>
<td>9.99</td>
<td>77</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>add_stack_incr</td>
<td>0.01</td>
<td>0.2</td>
<td></td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>add_blacks</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>set_max_int</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dfs1</td>
<td>53.52</td>
<td>12.88</td>
<td>36.39</td>
<td>3.06</td>
<td>28.06</td>
<td>9.01</td>
<td>142.92</td>
<td>218</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dfs</td>
<td>4.6</td>
<td>0.23</td>
<td>11.63</td>
<td></td>
<td>0.31</td>
<td>16.77</td>
<td>51</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tarjan</td>
<td>0.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.44</td>
<td>16</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>61.04</td>
<td>13.54</td>
<td>53.81</td>
<td>3.06</td>
<td>28.72</td>
<td>0.75</td>
<td>0.21</td>
<td>9.32</td>
<td>170.45</td>
<td>371</td>
<td>112</td>
</tr>
</tbody>
</table>

[http://jeanjacqueslevy.net/why3/graph/abs/scct/1-7/scc.html]
Other systems
Coq / ssreflect

[cyril cohen, laurent théry, J JL]

- port in 1 week
- graphs and finite sets already in mathematical components
- problems with termination (hacky & higher-order)
- 920 lines

[http://github.com/CohenCyril/tarjan]
Isabelle / HOL

[stephan merz]

• port in 1 month
• use many strategies (metis, blast, sledgehammer)
• still problems with proving termination
• 31 pages

F*

[kenji maillard, catalin hritcu]

- start discuss with them
- Z3 single automatic prover
- ??
Future work

- library for formal proofs on graphs
- other graph algorithms
- **beyond** graphs …
- teaching formal methods on **test cases**
- **imperative** programs

[http://jeanjacqueslevy.net/why3]