History based flow analysis in the lambda calculus

Tomasz Blanc  
Jean-Jacques Lévy  

INRIA Rocquencourt and MSR-INRIA Joint Centre

November 13, 2007
Plan

1. Motivations
2. $\lambda$-calculus, principals and independence
3. $\lambda$-calculus and the Chinese Wall
4. Future works
Motivations
Restricting rights of downloaded programs is not sufficient...
... since attackers can borrow privileges from local programs [Hardy].
First approach: stack inspection

- Used in Java and C#.
- Before executing a sensitive action, one inspects the chain of function calls leading to that action.
First approach: stack inspection

- Used in Java and C#.
- Before executing a sensitive action, one inspects the chain of function calls leading to that action.

```
Effacer_fichier
```
First approach: stack inspection

- Used in Java and C#.
- Before executing a sensitive action, one inspects the chain of function calls leading to that action.
First approach: stack inspection

- Used in Java and C#.
- Before executing a sensitive action, one inspects the chain of function calls leading to that action.
First approach: stack inspection

- Used in Java and C#.
- Before executing a sensitive action, one inspects the chain of function calls leading to that action.
First approach: stack inspection

- Used in Java and C#.
- Before executing a sensitive action, one inspects the chain of function calls leading to that action.
- Problem: there remains (indirect) ways of acting outside function calls [Fournet-Gordon].
First approach: stack inspection

- Used in Java and C#.
- Before executing a sensitive action, one inspects the chain of function calls leading to that action.
- Problem: there remains (indirect) ways of acting outside function calls [Fournet-Gordon].
First approach: stack inspection

- Used in Java and C#.
- Before executing a sensitive action, one inspects the chain of function calls leading to that action.
- Problem: there remains (indirect) ways of acting outside function calls [Fournet-Gordon].
First approach: stack inspection

- Used in Java and C#.
- Before executing a sensitive action, one inspects the chain of function calls leading to that action.
- Problem: there remains (indirect) ways of acting outside function calls [Fournet-Gordon].

```
Navigateur
Efface_fichier_TMP
"PlugIn.tmp"
```

```
Efface_fichier_TMP
Navigateur
```

"PlugIn.tmp"
First approach: stack inspection

- Used in Java and C#.
- Before executing a sensitive action, one inspects the chain of function calls leading to that action.
- Problem: there remains (indirect) ways of acting outside function calls [Fournet-Gordon].

```
Navigateur
Efface_fichier_TMP
Efface_fichier
"PlugIn.tmp"
```
First approach: stack inspection

- Used in Java and C#.
- Before executing a sensitive action, one inspects the chain of function calls leading to that action.
- Problem: there remains (indirect) ways of acting outside function calls [Fournet-Gordon].

```
Efface_fichier
Navigateur
Efface_fichier_TMP
"PlugIn.tmp"
```
First approach: stack inspection

- Used in Java and C#.
- Before executing a sensitive action, one inspects the chain of function calls leading to that action.
- Problem: there remains (indirect) ways of acting outside function calls [Fournet-Gordon].
First approach: stack inspection

- Used in Java and C#.
- Before executing a sensitive action, one inspects the chain of function calls leading to that action.
- Problem: there remains (indirect) ways of acting outside function calls [Fournet-Gordon].
First approach: stack inspection

- Used in Java and C#.
- Before executing a sensitive action, one inspects the chain of function calls leading to that action.
- Problem: there remains (indirect) ways of acting outside function calls [Fournet-Gordon].
First approach: stack inspection

- Used in Java and C#.
- Before executing a sensitive action, one inspects the chain of function calls leading to that action.
- Problem: there remains (indirect) ways of acting outside function calls [Fournet-Gordon].
First approach: stack inspection

- Used in Java and C#.
- Before executing a sensitive action, one inspects the chain of function calls leading to that action.
- Problem: there remains (indirect) ways of acting outside function calls [Fournet–Gordon].
First approach: stack inspection

- Used in Java and C#.
- Before executing a sensitive action, one inspects the chain of function calls leading to that action.
- Problem: there remains (indirect) ways of acting outside function calls [Fournet-Gordon].
Second approach: Information Flow

- Data are classified in several categories and their propagation is tracked during program execution.

Non-interference: public output does not rely on secret inputs. Static analysis is doable even on complete languages (FlowCaml, JIF).
Second approach: Information Flow

- Data are classified in several categories and their propagation is tracked during program execution.
Second approach: Information Flow

- Data are classified in several categories and their propagation is tracked during program execution.
Second approach: Information Flow

- Data are classified in several categories and their propagation is tracked during program execution.
Second approach: Information Flow

- Data are classified in several categories and their propagation is tracked during program execution.

- Non-interference: public output does not rely on secret inputs.

- Static analysis is doable even on complete languages (FlowCaml, JIF).
Second approach: Information Flow

- Data are classified in several categories and their propagation is tracked during program execution.
Second approach: Information Flow

- Data are classified in several categories and their propagation is tracked during program execution.

Efface_fichier
"mon_fichier"
Efface_fichier_TMP
Navigateur
Second approach : Information Flow

- Data are classified in several categories and their propagation is tracked during program execution.
- **Non-interference** : public output does not rely on secret inputs.
Second approach : Information Flow

- Data are classified in several categories and their propagation is tracked during program execution.
- **Non-interference** : public output does not rely on secret inputs.
- Static analysis is do-able even on complete languages (FlowCaml, JIF).
Third approach : the Chinese Wall

- Conflicts of interest in « economy » [Brewer-Nash].
- Alice and Bob compete for a contract; Charlie is the buyer.
- Alice and Bob fix the price of the contract.
- Charlie wants to negotiate the price.

- Charlie may interact with Alice and Bob.
Third approach: the Chinese Wall

- Conflicts of interest in « economy » [Brewer-Nash].
- Alice and Bob compete for a contract; Charlie is the buyer.
- Alice and Bob fix the price of the contract.
- Charlie wants to negotiate the price.

Charlie may interact with Alice and Bob.
But as soon as Charlie interacts with Alice...
Third approach: the Chinese Wall

- Conflicts of interest in « economy » [Brewer-Nash].
- Alice and Bob compete for a contract; Charlie is the buyer.
- Alice and Bob fix the price of the contract.
- Charlie wants to negotiate the price.

Charlie may interact with Alice and Bob.
But as soon as Charlie interacts with Alice, Charlie may no longer interact with Bob.
Third approach: the Chinese Wall

- Conflicts of interest in "economy" [Brewer-Nash].
- Alice and Bob compete for a contract; Charlie is the buyer.
- Alice and Bob fix the price of the contract.
- Charlie wants to negotiate the price.

Charlie may interact with Alice and Bob.
- But as soon as Charlie interacts with Alice, Charlie may no longer interact with Bob.
### Summary

<table>
<thead>
<tr>
<th>Safety policy</th>
<th>Safety property</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stack Inspection</td>
<td>-</td>
</tr>
<tr>
<td>Flow Information</td>
<td>Non interference</td>
</tr>
<tr>
<td>Chinese Wall</td>
<td>?</td>
</tr>
</tbody>
</table>

**Objectives:**
- define the Chinese Wall in the $\lambda$-calculus.
- examine the safety property of the Chinese Wall policy.
Summary

<table>
<thead>
<tr>
<th>Safety policy</th>
<th>Safety property</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stack Inspection</td>
<td>-</td>
</tr>
<tr>
<td>Flow Information</td>
<td>Non interference</td>
</tr>
<tr>
<td>Chinese Wall</td>
<td>?</td>
</tr>
</tbody>
</table>

Objectives:

- define the Chinese Wall in the \( \lambda \)-calculus.
- examine the safety property of the Chinese Wall policy.
\[\lambda\]-calculus, principals and independence
Alice, Bob, Charlie are principals.

\[ A, B, \ldots \]

Terms of \( \lambda_n \)-calculus:

\[ M, N ::= x \text{ Variable} \]
\[ \ | \ (\lambda x. M)^A \text{ Abstraction} \]
\[ \ | \ (MN)^A \text{ Application} \]

Values:

\[ V ::= (\lambda x. M)^A \]

Remark: principals differ from labels in the labelled \( \lambda \)-calculus.
\( \lambda_n \)-calculus: a \( \lambda \)-calculus with principals

- Alice, Bob, Charlie are principals.
  
  \( A, B, \ldots \)

- Terms of \( \lambda_n \)-calculus:
  
  \[
  M, N ::= \ x \quad \text{Variable} \\
  \quad \mid (\lambda x. M)^A \quad \text{Abstraction} \\
  \quad \mid (MN)^A \quad \text{Application}
  \]

- Values:
  
  \[
  V ::= (\lambda x. M)^A
  \]

- **Remark**: principals differ from labels in the labelled \( \lambda \)-calculus.
Reduction in $\lambda_n$-calculus

$$(\beta) \quad ((\lambda x.M)^A N)^B \rightarrow M\{x\backslash N\}$$
An example of reduction in the $\lambda_n$-calculus

\[
(((\lambda x. (\lambda y. y)^C)^C z)^A z)^B
\]
An example of reduction in the $\lambda^n$-calculus

\[
(((\lambda x.(\lambda y.y)^C)^C z)^A z)^B \quad \rightarrow \quad ((\lambda y.y)^C z)^B
\]
An example of reduction in the $\lambda_n$-calculus

$((\lambda x. (\lambda y. y)^C)^C z)^A z)^B \rightarrow ((\lambda y. y)^C z)^B$
An example of reduction in the $\lambda_n$-calculus

$$(((\lambda x. (\lambda y.y)^C)C z)^A z)^B \rightarrow (\lambda y.y)^C z)^B \rightarrow z$$
Basic properties of the $\lambda_n$-calculus

- Confluence
- Finite Developments
- Standardisation
Definition

The reduction \( M \xrightarrow{((\lambda x. N)^B P)^C} M' \) ignores A iff \( A \notin \{B, C\} \).

- Also written \( M \xrightarrow{\neg A} M' \).
- We write \( M \xrightarrow{\neg A} M' \) if every reduction step ignores A.
Reduction ignoring a principal

**Definition**

The reduction $M \xrightarrow{((\lambda x. N)B P)C} M'$ ignores $A$ iff $A \not\in \{B, C\}$.

- Also written $M \xrightarrow{\neg A} M'$.
- We write $M \xrightarrow{\neg A} \neg A M'$ if every reduction step ignores $A$.

**Example:**

```
@B
@A
@A
@C
@C
@C
@C
@C
@C
@C
```
Reduction ignoring a principal

Definition

The reduction $M \xrightarrow{((\lambda x. N)^B P)^C} M'$ ignores $A$ iff $A \notin \{B, C\}$.

- Also written $M \xrightarrow{\neg A} M'$.
- We write $M \xrightarrow{\neg A} M'$ if every reduction step ignores $A$.

Example:

```
\[
\lambda x^C z \lambda y^C y \, @A \, @B \xrightarrow{\neg B} \lambda y^C y \, @B \]
```

```
\[
\lambda x^C z \lambda y^C y \, @A \, @B \xrightarrow{\neg B} \lambda y^C y \, @B \]
```

```
\[
\lambda x^C z \lambda y^C y \, @A \, @B \xrightarrow{\neg B} \lambda y^C y \, @B \]
```

```
\[
\lambda x^C z \lambda y^C y \, @A \, @B \xrightarrow{\neg B} \lambda y^C y \, @B \]
```
**Reduction ignoring a principal**

**Definition**

The reduction \( M \xrightarrow{((\lambda x. N)^B P)^C} M' \) ignores \( A \) iff \( A \not\in \{B, C\} \).

- Also written \( M \xrightarrow{\neg A} M' \).
- We write \( M \xrightarrow{\neg A} M' \) if every reduction step ignores \( A \).

**Example:**

\[
\begin{array}{c}
\lambda x^C z \\downarrow \\
\lambda y^C y \\downarrow \\
y \\
\end{array}
\xrightarrow{\neg B}
\begin{array}{c}
\lambda y^C z \\downarrow \\
y \\downarrow \\
\end{array}
\xrightarrow{\neg A}
\begin{array}{c}
\lambda y^C z \\downarrow \\
\end{array}
\]

\[
\begin{array}{c}
\lambda x^C z \\downarrow \\
\lambda y^C y \\downarrow \\
y \\
\end{array}
\xrightarrow{\neg B}
\begin{array}{c}
\lambda y^C z \\downarrow \\
y \\downarrow \\
\end{array}
\xrightarrow{\neg A}
\begin{array}{c}
\lambda y^C z \\downarrow \\
\end{array}
\]

\[
\begin{array}{c}
\lambda x^C z \\downarrow \\
\lambda y^C y \\downarrow \\
y \\
\end{array}
\xrightarrow{\neg B}
\begin{array}{c}
\lambda y^C z \\downarrow \\
y \\downarrow \\
\end{array}
\xrightarrow{\neg A}
\begin{array}{c}
\lambda y^C z \\downarrow \\
\end{array}
\]

\[
\begin{array}{c}
\lambda x^C z \\downarrow \\
\lambda y^C y \\downarrow \\
y \\
\end{array}
\xrightarrow{\neg B}
\begin{array}{c}
\lambda y^C z \\downarrow \\
y \\downarrow \\
\end{array}
\xrightarrow{\neg A}
\begin{array}{c}
\lambda y^C z \\downarrow \\
\end{array}
\]

\[
\begin{array}{c}
\lambda x^C z \\downarrow \\
\lambda y^C y \\downarrow \\
y \\
\end{array}
\xrightarrow{\neg B}
\begin{array}{c}
\lambda y^C z \\downarrow \\
y \\downarrow \\
\end{array}
\xrightarrow{\neg A}
\begin{array}{c}
\lambda y^C z \\downarrow \\
\end{array}
\]
Actions of $A$ and $B$ are \textit{independent} if they commute.
• Actions of $A$ and $B$ are independent if they commute.
Independence

- Actions of $A$ and $B$ are independent if they commute.
Independence

- Actions of $A$ and $B$ are independent if they commute.
Independence

- Actions of $A$ and $B$ are independent if they commute.
Actions of $A$ and $B$ are independent if they commute.
Acts of $A$ and $B$ are independent if they commute.
Independence

Actions of $A$ and $B$ are **independent** if they commute.
Independence

- Actions of $A$ and $B$ are **independent** if they commute.
Actions of $A$ and $B$ are independent if they commute.
Independence

Definition (Independence)

The reduction $R : M \rightarrow N$ is **independent** of the interaction between $A$ and $B$ iff there exists $R_A : M \xrightarrow{\gamma A} M_A$ and $R_B : M \xrightarrow{\gamma B} M_B$ such that $R \leq R'$ (i.e. $R/R'$ is empty) with $R' = R_A; (R_B/R_A) = R_B; (R_A/R_B)$.
Definition (Independence)

The reduction $R : M \rightarrow N$ is **independent** of the interaction between $A$ and $B$ iff there exists $R_A : M \xrightarrow{\neg A} M_A$ and $R_B : M \xrightarrow{\neg B} M_B$ such that $R \leq R'$ (i.e. $R/R'$ is empty) with $R' = R_A; (R_B/R_A) = R_B; (R_A/R_B)$.
Definition (Independence)

The reduction $R : M \rightarrow N$ is independent of the interaction between $A$ and $B$ iff there exists $R_A : M \xrightarrow{\neg A} M_A$ and $R_B : M \xrightarrow{\neg B} M_B$ such that $R \leq R'$ (i.e. $R/R'$ is empty) with $R' = R_A; (R_B/R_A) = R_B; (R_A/R_B)$.
Definition (Independence)

The reduction $R : M \rightarrow N$ is independent of the interaction between $A$ and $B$ iff there exists $R_A : M \xrightarrow{\neg A} M_A$ and $R_B : M \xrightarrow{\neg B} M_B$ such that $R \leq R'$ (i.e. $R/R'$ is empty) with $R' = R_A; (R_B/R_A) = R_B; (R_A/R_B)$. 

![Independence Diagram]
**Independence**

**Definition (Independence)**

The reduction $R : M \rightarrow N$ is independent of the interaction between $A$ and $B$ iff there exists $R_A : M \xrightarrow{\neg A} M_A$ and $R_B : M \xrightarrow{\neg B} M_B$ such that $R \leq R'$ (i.e. $R/R'$ is empty) with $R' = R_A; (R_B/R_A) = R_B; (R_A/R_B)$.
This reduction is not independent of the interaction between $A$ and $B$. 
This reduction is independent of the interaction between $A$ and $B$. 
This reduction is independent of the interaction between $A$ and $B$. 
The $\lambda_n$-calculus : summary

- A $\lambda$-calculus with principals.
- A safety property : independence.
- How to express the Chinese Wall policy in the $\lambda_n$-calculus?
  - This policy relies on history.
  - We use the labelled $\lambda$-calculus to track history of interactions.
- Which safety property is guaranteed by the Chinese Wall policy?
  - We show that a reduction following the Chinese Wall policy between $A$ and $B$ is independent of the interaction between $A$ and $B$. 
The $\lambda_n$-calculus: summary

- A $\lambda$-calculus with **principals**.
- A safety property: **independence**.
- How to express the Chinese Wall policy in the $\lambda_n$-calculus?
  - This policy relies on history.
    - We use the labelled $\lambda$-calculus to track history of interactions.
- Which safety property is guaranteed by the Chinese Wall policy?
  - We show that a reduction following the Chinese Wall policy between $A$ and $B$ is independent of the interaction between $A$ and $B$. 
The $\lambda_n$-calculus: summary

- A $\lambda$-calculus with principals.
- A safety property: independence.
- How to express the Chinese Wall policy in the $\lambda_n$-calculus?
  - This policy relies on history.
  - We use the labelled $\lambda$-calculus to track history of interactions.
- Which safety property is guaranteed by the Chinese Wall policy?
  - We show that a reduction following the Chinese Wall policy between $A$ and $B$ is independent of the interaction between $A$ and $B$. 
The $\lambda_n$-calculus: summary

- A $\lambda$-calculus with principals.
- A safety property: independence.
- How to express the Chinese Wall policy in the $\lambda_n$-calculus?
  - This policy relies on history.
  - We use the labelled $\lambda$-calculus to track history of interactions.
- Which safety property is guaranteed by the Chinese Wall policy?
  - We show that a reduction following the Chinese Wall policy between $A$ and $B$ is independent of the interaction between $A$ and $B$. 
The $\lambda_n$-calculus: summary

- A $\lambda$-calculus with principals.
- A safety property: independence.
- How to express the Chinese Wall policy in the $\lambda_n$-calculus?
  - This policy relies on history.
  - We use the labelled $\lambda$-calculus to track history of interactions.
- Which safety property is guaranteed by the Chinese Wall policy?
  - We show that a reduction following the Chinese Wall policy between $A$ and $B$ is independent of the interaction between $A$ and $B$. 
\( \lambda \)-calculus

and

the Chinese Wall
The labelled $\lambda_n$-calculus

Terms

\[ M, N ::= x \]
\[ \quad | \quad (\lambda x. N)^A \]
\[ \quad | \quad (MN)^A \]
\[ \quad | \quad a : M \]

Atomic labels

\[ a, b ::= [\alpha] \mid [\alpha] \]

Compound labels

\[ \alpha, \beta ::= A a_1 a_2 \cdots a_n B \quad n \geq 0 \]

Values

\[ V, W ::= (\lambda x. N)^A \mid a : V \]
Labelled reduction

\[
\lambda x^B M \xrightarrow{\alpha} M \{x \setminus [\alpha] : N\}
\]

\[
R = (a_1 : \ldots : a_n : (\lambda x. M)^B N)^A \rightarrow [\alpha] : M\{x \setminus [\alpha] : N\}
\]

\[
\alpha = Aa_1 \ldots a_n B
\]

The redex name is \(\text{name}(R) = \alpha\).
Labelled reduction : an example

$$(((\lambda x.(\lambda y.y)^C)^Az)^Cz)^B$$
Labelled reduction: an example

\[
(((\lambda x.(\lambda y.y)^C)^A z)^C z)^B \rightarrow ([CA] : (\lambda y.y)^C z)^B
\]
Labelled reduction: an example

\[
(((\lambda x.(\lambda y.y)^C)^A z)^C z)^B \rightarrow ([CA]:(\lambda y.y)^C z)^B
\]
Labelled reduction: an example

\[
(((\lambda x.(\lambda y.y)^C)^A z)^C z)^B \rightarrow ([CA] : (\lambda y.y)^C z)^B \\
\]
Independence and labels

- **Head sequence**: \( \tau(x) = \tau((\lambda x. M)^A) = \tau((MN)^A) = 0 \)
  \[ \tau(a : M) = a\tau(M) \]
Independence and labels

- Head sequence: \( \tau(x) = \tau((\lambda x. M)^A) = \tau((MN)^A) = 0 \)
  \( \tau(a : M) = a \tau(M) \)

  - Example: \( \tau(a : b : c : (\lambda x. x)^A) = abc \)
Independence and labels

- Head sequence: \( \tau(x) = \tau((\lambda x. M)^A) = \tau((MN)^A) = 0 \)
  \( \tau(a : M) = a\tau(M) \)

- Principals contained in atomic or compound labels:
  \[
  \Princ(Aa_1\ldots a_nB) = \{A, B\} \cup_{1 \leq i \leq n} \Princ(a_i) \\
  \Princ([\alpha]) = \Princ([\alpha]) = \Princ(\alpha)
  \]
Independence and labels

- **Head sequence**: \( \tau(x) = \tau((\lambda x. M)^A) = \tau((MN)^A) = 0 \)
  \( \tau(a : M) = a\tau(M) \)

- **Principals contained in atomic or compound labels**: 
  \[ \text{Princ}(Aa_1 \ldots a_nB) = \{A, B\} \cup _{1\leq i \leq n} \text{Princ}(a_i) \]
  \[ \text{Princ}(\lceil \alpha \rceil) = \text{Princ}(\lfloor \alpha \rfloor) = \text{Princ}(\alpha) \]
  
Independence and labels

- **Head sequence**: \( \tau(x) = \tau((\lambda x. M)^A) = \tau((MN)^A) = 0 \)
  \[ \tau(a : M) = a\tau(M) \]

- **Principals contained in atomic or compound labels**:
  \[
  \text{Princ}(Aa_1 \ldots a_nB) = \{A, B\} \cup_{1 \leq i \leq n} \text{Princ}(a_i)
  \]
  \[
  \text{Princ}([\alpha]) = \text{Princ}(\lfloor \alpha \rfloor) = \text{Princ}(\alpha)
  \]

**Definition (Separation)**

A sequence of atomic labels \( a_1 \ldots a_n \) separates the principals \( A \) and \( B \) iff, for every \( 1 \leq i \leq n \), we have \( \{A, B\} \not\subseteq \text{Princ}(a_i) \).
Independence and labels

- **Head sequence:** \( \tau(x) = \tau((\lambda x.M)^A) = \tau((MN)^A) = 0 \)
  \[ \tau(a : M) = a \tau(M) \]

- **Principals contained in atomic or compound labels:**
  \[ \text{Princ}(Aa_1...a_nB) = \{A, B\} \cup_{1 \leq i \leq n} \text{Princ}(a_i) \]
  \[ \text{Princ}(\lceil \alpha \rceil) = \text{Princ}([\alpha]) = \text{Princ}(\alpha) \]

**Definition (Separation)**

A sequence of atomic labels \( a_1 \ldots a_n \) separates the principals \( A \) and \( B \) iff, for every \( 1 \leq i \leq n \), we have \( \{A, B\} \not\subseteq \text{Princ}(a_i) \).

**Examples:**
- \[ [AC][C[DE]B] \] separates \( A \) et \( B \).
- \[ [DC][C[AE]B] \] does not separate \( A \) et \( B \).
Independence and labels : separation

Theorem (Separation)

*If M is an unlabelled term and if the reduction $M \rightarrow V$ is independent of the interaction between A and B, then $\tau(V)$ separates A and B.*
Theorem (Separation)

If $M$ is an unlabelled term and if the reduction $M \rightarrow V$ is independent of the interaction between $A$ and $B$, then $\tau(V)$ separates $A$ and $B$. 

\[
\begin{array}{c}
\lambda x^C \quad \lambda y^C \\
A \\
@ \\
y \quad u
\end{array}
\rightarrow
\begin{array}{c}
\lambda x^C \quad [AC]^u \\
\quad \lambda u^C \\
B \\
@ \\
z
\end{array}
\rightarrow
\begin{array}{c}
\quad [BC] \\
\quad [AC] \\
\quad [AC] \\
\lambda u^C \\
\quad u
\end{array}
\]
Theorem (Separation)

If \( M \) is an unlabelled term and if the reduction \( M \rightarrow V \) is independent of the interaction between \( A \) and \( B \), then \( \tau(V) \) separates \( A \) and \( B \).
Independence and labels: separation

Theorem (Separation)

If $M$ is an unlabelled term and if the reduction $M \rightarrow V$ is independent of the interaction between $A$ and $B$, then $\tau(V)$ separates $A$ and $B$.

The head sequence $[BC][AC][AC]$ separates $A$ and $B$. 
Independence and separation

**Theorem**

If $M \rightarrow V$ and if $\tau(V)$ separates $A$ and $B$, then there is a reduction $\mathcal{R} : M \rightarrow W$ independent of the interaction between $A$ and $B$. 

⋆ The label $\lceil AA \rceil$ separates $A$ and $B$.

⋆ This reduction is not independent of the interaction between $A$ and $B$. 
Theorem

If $M \rightarrow V$ and if $\tau(V)$ separates $A$ and $B$, then there is a reduction $\mathcal{R} : M \rightarrow W$ independent of the interaction between $A$ and $B$. 
Independence and separation

Theorem

If $M \rightarrow V$ and if $\tau(V)$ separates $A$ and $B$, then there is a reduction $R : M \rightarrow W$ independent of the interaction between $A$ and $B$.

★ The label $[AA]$ separates $A$ et $B$. 
Independence and separation

**Theorem**

*If* $M \rightarrow V$ *and if* $\tau(V)$ *separates* $A$ *and* $B$, *then there is a reduction* $\mathcal{R} : M \rightarrow W$ *independent of the interaction between* $A$ *and* $B$.

- The label $\langle AA \rangle$ separates $A$ and $B$.
- This reduction *is not* independent of the interaction between $A$ and $B.
Independence and separation

Theorem

If $M \rightarrow V$ and if $\tau(V)$ separates $A$ and $B$, then there is a reduction $R : M \rightarrow W$ independent of the interaction between $A$ and $B$.

★ The label $[AA]$ separates $A$ et $B$.

★ This reduction is independent of the interaction between $A$ and $B$. 
Expressing Chinese Wall in the $\lambda_n$-calculus

- The Chinese Wall between $A$ and $B$ is written $CW(A, B)$.

**Definition (Chinese Wall)**

A reduction follows $CW(A, B)$ iff every redex $R$ contracted by this reduction is such that:

$$\{A, B\} \not\subseteq \text{Princ}(\text{name}(R))$$
Chinese Wall in the $\lambda_n$-calculus: example 1/2

Princ(name($R_1$)) = \{A, C\}
Princ(name($R_2$)) = \{A, B, C\}

This reduction does not follow $\mathcal{CW}(A, B)$. 
Chinese Wall in the $\lambda_n$-calculus: example 2/2

\[ \Princ(name(R_1)) = \{ A, C \} \]
\[ \Princ(name(R_2)) = \{ B, C \} \]

This reduction follows $\mathcal{CW}(A, B)$. 
Correction of $\mathcal{CW}(A, B)$

Theorem (Correction)

If $R : M \rightarrow N$ follows $\mathcal{CW}(A, B)$, then $R$ is independent of the interaction between $A$ and $B$.

The Chinese Wall guarantees the independence.
Correction of $CW(A, B)$: example

The reduction follows $CW(A, B)$...
Correction of $\mathcal{CW}(A, B)$: example

...hence it is independent of the interaction between $A$ and $B$
Correction of $\mathcal{CW}(A, B)$ : proof

- Sublabel of a compound label :

  \[
  \alpha \leq \alpha \\
  \alpha \leq Aa_1 \ldots a_n B \text{ si } \exists i . \ a_i = [\beta] \text{ and } \alpha \leq \beta \\
  \alpha \leq Aa_1 \ldots a_n B \text{ si } \exists i . \ a_i = [\beta] \text{ and } \alpha \leq \beta
  \]

- Example : $\alpha \leq A[\alpha][\gamma]B$
Correction of $\mathcal{CW}(A, B)$: proof

- Sublabel of a compound label:
  \[
  \alpha \preceq \alpha \\
  \alpha \preceq Aa_1 \ldots a_nB \text{ si } \exists i \ . \ a_i = [\beta] \text{ and } \alpha \preceq \beta \\
  \alpha \preceq Aa_1 \ldots a_nB \text{ si } \exists i \ . \ a_i = [\beta] \text{ and } \alpha \preceq \beta
  \]

- Example: $\alpha \preceq A[\alpha][\gamma]B$
Correction of $\mathcal{CW}(A, B)$: proof

$M \xrightarrow{S_1} \xrightarrow{S_2} \xrightarrow{S_3} \ldots \xrightarrow{S_n} N$

$\quad R$
Correction of $\mathcal{CW}(A, B)$ : proof

For $1 \leq i \leq n$, we write $\alpha_i = \text{name}(S_i)$.
We have $\{A, B\} \cap \text{Princ}(\alpha_i) \neq \{A, B\}$.
Correction of $\mathcal{CW}(A, B)$ : proof

For $1 \leq i \leq n$, we write $\alpha_i = \text{name}(S_i)$.
We have $\{A, B\} \cap \text{Princ}(\alpha_i) \neq \{A, B\}$. 
Correction of $CW(A, B)$ : proof

For $1 \leq i \leq n$, we write $\alpha_i = \text{name}(S_i)$.
We have $\{A, B\} \cap \text{Princ}(\alpha_i) \neq \{A, B\}$. 
Correction of $\mathcal{CW}(A, B)$ : proof

For $1 \leq i \leq n$, we write $\alpha_i = \text{name}(S_i)$. We have $\{A, B\} \cap \text{Princ}(\alpha_i) \neq \{A, B\}$.

**Lemma (Completion)**

If $R : M \xrightarrow{S_1} \ldots \xrightarrow{S_n} N$ and if for every $i$, we have $\text{name}(S_i) = \alpha_i$, then $R_1 : M \xrightarrow{\alpha_1} \ldots \xrightarrow{\alpha_n} N_1$ and $R \leq R_1$. 
Correction of $CW(A, B)$: proof

For $1 \leq i \leq n$, we write $\alpha_i = \text{name}(S_i)$. We have $\{A, B\} \cap \text{Princ}(\alpha_i) \neq \{A, B\}$.

**Lemma (Completion)**

If $R : M \xrightarrow{S_1} \ldots \xrightarrow{S_n} N$ and if for every $i$, we have $\text{name}(S_i) = \alpha_i$, then $R_1 : M \xrightarrow{\alpha_1} \ldots \xrightarrow{\alpha_n} N_1$ and $R \leq R_1$. 

\[ M \xrightarrow{S_1} S_2 \xrightarrow{S_3} \ldots \xrightarrow{S_n} N \]
\[ R \]
\[ R_1 \]
\[ R/R_1 = \emptyset^n \]
\[ R_1/R \]
\[ M \xrightarrow{\alpha_1} \ldots \xrightarrow{\alpha_n} N_1 \]
Correction of $\mathcal{CW}(A, B)$: proof

For $1 \leq i \leq n$, we write $\alpha_i = \text{name}(S_i)$.
We have $\{A, B\} \cap \text{Princ}(\alpha_i) \neq \{A, B\}$.

**Lemma (Completion)**

If $R : M \xrightarrow{S_1} \ldots \xrightarrow{S_n} N$ and if for every $i$, we have $\text{name}(S_i) = \alpha_i$, then $R_1 : M \xrightarrow{\alpha_1} \ldots \xrightarrow{\alpha_n} N_1$ and $R \leq R_1$. 
Correction of $\mathcal{CW}(A, B)$: proof

For $1 \leq i \leq n$, we write $\alpha_i = \text{name}(S_i)$. We have $\{A, B\} \cap \text{Princ}(\alpha_i) \neq \{A, B\}$.

Lemma (Reordering)

If $R : M \xrightarrow{\alpha_1} \ldots \xrightarrow{\alpha_n} N$, there is a reduction $R' : M \xrightarrow{\beta_1} \ldots \xrightarrow{\beta_m} N'$ such that

1. $\{\beta_i\}_{1 \leq i \leq m} \subseteq \{\alpha_i\}_{1 \leq i \leq n}$
2. if $i < j$, then $\beta_j \nleq \beta_i$
3. $R \leq R'$
Correction of $C\mathcal{W}(A, B)$: proof

For $1 \leq i \leq n$, we write $\alpha_i = \text{name}(S_i)$.
We have $\{A, B\} \cap \text{Princ}(\alpha_i) \neq \{A, B\}$.

Lemma (Reordering)

*If $R : M \xrightarrow{\alpha_1} \ldots \xrightarrow{\alpha_n} N$, there is a reduction $R' : M \xrightarrow{\beta_1} \ldots \xrightarrow{\beta_m} N'$ such that*

1. $\{\beta_i\}_{1 \leq i \leq m} \subseteq \{\alpha_i\}_{1 \leq i \leq n}$
2. if $i < j$, then $\beta_j \not\preceq \beta_i$
3. $R \leq R'$
Correction of $\mathcal{CN}(A, B)$: proof

If $i < j$, we have $\beta_j \not≺ \beta_i$.

- $\{\gamma_i\}_{1 \leq i \leq k}$: elements of $\{\beta_i\}_{1 \leq i \leq m}$ such that $\{A, B\} \cap \text{Princ}(\beta_i) = \emptyset$.
- $\{\delta_i\}_{1 \leq i \leq k'}$: elements of $\{\beta_i\}_{1 \leq i \leq m}$ such that $\{A, B\} \cap \text{Princ}(\beta_i) \neq \emptyset$.
- If $\beta_i \in \{\delta_i\}_{1 \leq i \leq k'}$, if $\beta_j \in \{\gamma_i\}_{1 \leq i \leq k}$, we have $\beta_i \not≺ \beta_j$. 

```latex
def M \xrightarrow{S_1} S_2 \xrightarrow{S_3} \cdots \xrightarrow{S_n} N \\
\beta_1 \downarrow \\
\beta_2 \downarrow \\
\vdots \\
\beta_m \downarrow \\
N' \\

M \\
\beta_1 \downarrow \\
\beta_2 \downarrow \\
\vdots \\
\beta_m \downarrow \\
R'/R \\

R' \beta_3 \\
\vdots \\
R' \beta_3 \\
N'
```
Correction of $\mathcal{CW}(A, B)$: proof

If $i < j$, we have $\beta_j \not≺ \beta_i$.

• $\{\gamma_i\}_{1 \leq i \leq k}$ : elements of $\{\beta_i\}_{1 \leq i \leq m}$ such that $\{A, B\} \cap \text{Princ}(\beta_i) = \emptyset$.

• $\{\delta_i\}_{1 \leq i \leq k'}$ : elements of $\{\beta_i\}_{1 \leq i \leq m}$ such that $\{A, B\} \cap \text{Princ}(\beta_i) \neq \emptyset$.
Correction of $CW(A, B)$: proof

If $i < j$, we have $\beta_j \not\prec \beta_i$.

$\{\gamma_i\}_{1 \leq i \leq k}$: elements of $\{\beta_i\}_{1 \leq i \leq m}$ such that $\{A, B\} \cap \text{Princ}(\beta_i) = \emptyset$.

$\{\delta_i\}_{1 \leq i \leq k'}$: elements of $\{\beta_i\}_{1 \leq i \leq m}$ such that $\{A, B\} \cap \text{Princ}(\beta_i) \neq \emptyset$.

If $\beta_i \in \{\delta_i\}_{1 \leq i \leq k'}$, if $\beta_j \in \{\gamma_i\}_{1 \leq i \leq k}$, we have $\beta_i \not\prec \beta_j$. 
Correction of $CW(A, B)$ : proof

If $i < j$, we have $\beta_j \not\preceq \beta_i$.

$\{\gamma_i\}_{1 \leq i \leq k}$ : elements of $\{\beta_i\}_{1 \leq i \leq m}$ such that $\{A, B\} \cap \text{Princ}(\beta_i) = \emptyset$.

$\{\delta_i\}_{1 \leq i \leq k'}$ : elements of $\{\beta_i\}_{1 \leq i \leq m}$ such that $\{A, B\} \cap \text{Princ}(\beta_i) \neq \emptyset$.

If $\beta_i \in \{\delta_i\}_{1 \leq i \leq k'}$, if $\beta_j \in \{\gamma_i\}_{1 \leq i \leq k}$, we have $\beta_i \not\preceq \beta_j$. 
**Correction of \( CW(A, B) \): proof**

\[
\begin{array}{cccccccc}
M & S_1 & S_2 & S_3 & \cdots & S_n & N \\
\beta_1 & \downarrow & \beta_2 & \downarrow & \beta_3 & \downarrow & \cdots & \beta_m & \downarrow & \beta_1 \\
R & \downarrow & R & \downarrow & R & \downarrow & \cdots & R & \downarrow & R \\
R'/R & \downarrow & R'/R & \downarrow & R'/R & \downarrow & \cdots & R'/R & \downarrow & R'/R \\
N' & \downarrow & N' & \downarrow & N' & \downarrow & \cdots & N' & \downarrow & N' \\
\end{array}
\]

- If \( i < j \) and \( \beta_i \in \{\delta_i\}_{1 \leq i \leq k'} \) and \( \beta_j \in \{\gamma_i\}_{1 \leq i \leq k} \), we have \( \beta_i \not\prec \beta_j \) and \( \beta_j \not\prec \beta_i \).

**Lemma (Permutation)**

If \( \alpha \not\prec \beta \) and \( \beta \not\prec \alpha \) and if \( R_1 : M \Rightarrow \Rightarrow N \), then we have \( R_2 : M \Rightarrow \Rightarrow N \) and \( R_1 \sim R_2 \).
Correction of $C\mathcal{W}(A, B)$ : proof

If $i < j$ and $\beta_i \in \{\delta_i\}_{1 \leq i \leq k'}$ and $\beta_j \in \{\gamma_i\}_{1 \leq i \leq k}$, we have $\beta_i \not\prec \beta_j$ and $\beta_j \not\prec \beta_i$.

Lemma (Permutation)

If $\alpha \not\prec \beta$ and $\beta \not\prec \alpha$ and if $R_1 : M \Rightarrow \Rightarrow N$, then we have $R_2 : M \Rightarrow \Rightarrow N$ and $R_1 \sim R_2$. 
Correction of $\mathcal{CW}(A, B)$: proof

If $i < j$ et $\beta_i \in \{\delta_i\}_{1 \leq i \leq k'}$ and $\beta_j \in \{\gamma_i\}_{1 \leq i \leq k}$, we have $\beta_i \not\prec \beta_j$ et $\beta_j \not\prec \beta_i$.

Lemma (Permutation)

If $\alpha \not\prec \beta$ and $\beta \not\prec \alpha$ and if $R_1 : M \xRightarrow{\alpha} \xRightarrow{\beta} N$, then we have $R_2 : M \xRightarrow{\beta} \xRightarrow{\alpha} N$ and $R_1 \sim R_2$. 
Correction of $\mathcal{C W}(A, B)$: proof

\begin{itemize}
  \item $\{\eta_i\}_{1 \leq i \leq p}$: elements of $\{\delta_i\}_i$ such that $\{A, B\} \cap \text{Princ}(\delta_i) = \{A\}$.
  \item $\{\theta_i\}_{1 \leq i \leq p'}$: elements of $\{\delta_i\}_i$ such that $\{A, B\} \cap \text{Princ}(\delta_i) = \{B\}$.
  \item For every $i, j$, we have $\eta_i \not\prec \theta_j$ and $\theta_j \not\prec \eta_i$.
\end{itemize}
Correction of $\mathcal{C}\mathcal{W}(A, B)$: proof

- $\{\eta_i\}_{1 \leq i \leq p}$ : elements of $\{\delta_i\}_i$ such that $\{A, B\} \cap \text{Princ}(\delta_i) = \{A\}$.
- $\{\theta_i\}_{1 \leq i \leq p'}$ : elements of $\{\delta_i\}_i$ such that $\{A, B\} \cap \text{Princ}(\delta_i) = \{B\}$.
- For every $i, j$, we have $\eta_i \not\prec \theta_j$ and $\theta_j \not\prec \eta_i$. 
Correction of $\mathcal{CW}(A, B)$ : proof

\[ M \xrightarrow{S_1} S_2 \xrightarrow{S_3} \ldots \xrightarrow{S_n} N \]

\[ \beta_1 \quad \beta_2 \quad \beta_3 \quad \ldots \quad \beta_m \]

\[ R' \]

\[ R'/R \]

\[ M_B \]

\[ \gamma_1 \quad \gamma_k \quad \eta_1 \quad \eta_p \quad \theta_1 \quad \theta_{p'} \]

\[ \{ \eta_i \}_{1 \leq i \leq p} : \text{elements of } \{ \delta_i \}_i \]
\[ \text{such that } \{ A, B \} \cap \text{Princ}(\delta_i) = \{ A \} \]

\[ \{ \theta_i \}_{1 \leq i \leq p'} : \text{elements of } \{ \delta_i \}_i \]
\[ \text{such that } \{ A, B \} \cap \text{Princ}(\delta_i) = \{ B \} \]

\[ \text{For every } i, j, \text{ we have } \eta_i \not\preceq \theta_j \text{ and } \theta_j \not\preceq \eta_i \]
Correction of $C\mathcal{W}(A, B)$ : proof

$M \xrightarrow{S_1} S_2 \xrightarrow{S_3} \cdots \xrightarrow{S_n} N$

$M \xrightarrow{\gamma_1} R \xrightarrow{\beta_1} \cdots \xrightarrow{\beta_k} R' \xrightarrow{\theta_1} R'/R \xrightarrow{\eta_1} \cdots \xrightarrow{\eta_p} N' \xrightarrow{\theta_{p'}} M_B$

- $\{\eta_i\}_{1 \leq i \leq p}$ : elements of $\{\delta_i\}_i$ such that $\{A, B\} \cap \text{Princ}(\delta_i) = \{A\}$.
- $\{\theta_i\}_{1 \leq i \leq p'}$ : elements of $\{\delta_i\}_i$ such that $\{A, B\} \cap \text{Princ}(\delta_i) = \{B\}$.
- For every $i, j$, we have $\eta_i \not\prec \theta_j$ and $\theta_j \not\prec \eta_i$. 
Correction of $\mathcal{C}(A, B)$: proof

$\{\eta_i\}_{1 \leq i \leq p}$ : elements of $\{\delta_i\}_i$ such that $\{A, B\} \cap \text{Princ}(\delta_i) = \{A\}$.

$\{\theta_i\}_{1 \leq i \leq p'}$ : elements of $\{\delta_i\}_i$ such that $\{A, B\} \cap \text{Princ}(\delta_i) = \{B\}$.

For every $i, j$, we have $\eta_i \not\prec \theta_j$ and $\theta_j \not\prec \eta_i$. 

$\gamma_1 \beta_1 \gamma_k \eta_1 \eta_p \theta_1 \beta_1 \beta_2 \eta_1 \beta_m \theta_p \eta_p$
Correction of $CW(A, B)$: proof

\[ \begin{array}{c}
M \xrightarrow{S_1} S_2 \xrightarrow{S_3} \cdots \xrightarrow{S_n} N \\
M_A \xleftarrow{M_B} R_A \xleftarrow{R_B} N' \xleftarrow{R_A/R_B} R_B/R_A \xleftarrow{M_A} R_A \xleftarrow{R_B} N' \xleftarrow{M_B} R_B
\end{array} \]
Correction of $\mathcal{CW}(A, B)$: proof

\[ \begin{array}{cccccc}
M & \xrightarrow{S_1} & S_2 & \xrightarrow{S_3} & \cdots & \xrightarrow{S_n} N \\
\downarrow \beta_1 & & & & & \downarrow R \\
R' & \xrightarrow{\beta_2} & R' \xrightarrow{\beta_3} & \cdots & \xrightarrow{\beta_m} N' \\
\downarrow \beta_m & & & & & \downarrow R'/R \\
N' & & & & & \\
\end{array} \]
### \(\lambda\)-calculus and Chinese Wall: summary

1. Safety property: independence
2. Correspondence between labelled lambda calculus and independence

<table>
<thead>
<tr>
<th>Safety policy</th>
<th>Safety property</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stack inspection</td>
<td>-</td>
</tr>
<tr>
<td>Information flow</td>
<td>Non interference</td>
</tr>
<tr>
<td>Chinese Wall</td>
<td>Independence</td>
</tr>
</tbody>
</table>
Future works
Objectives

1. Static information flow in the $\lambda$-calculus
   - labelled $\lambda$-calculus and DCC [Riecke], FlowCaml as [Simonet, Pottier], DCC+ [Abadi], etc

2. Reduction strategies
   - call-by-value $\lambda$-calculus
   - weak $\lambda$-calculus

3. Adding delta rules
   - Imperative features and exceptions
   - Safety rules (safety operators: uses or binds)

4. Concurrent features
   - Permutation equivalence and Event structures
   - Reversible processes (backtracking) [Jean Krivine]
Conclusion: non interference

- Non interference: the labels of the \( \lambda \)-calculus express functional interference.
- In the \( \lambda \)-calculus with references, labels have to also capture interference with memory.
  - A memory cell interferes within some time interval.
  - We can use irreversibility of contexts in the labelled \( \lambda \)-calculus [Blanc].
Non interference: the labels of the $\lambda$-calculus express functional interference.

In the $\lambda$-calculus with references, labels have to also capture interference with memory.

- A memory cell interferes within some time interval.

- We can use irreversibility of contexts in the labelled $\lambda$-calculus [Blanc].
Conclusion: non interference

- Non interference: the labels of the $\lambda$-calculus express **functional interference**.
- In the $\lambda$-calculus with references, labels have to also capture interference with memory.
  - A memory cell interferes within some time **interval**.
  - We can use irreversibility of contexts in the labelled $\lambda$-calculus [Blanc].
Conclusion: independence

1. Created principals and extended independence.
2. Link between non-interference and independence: express these properties within a common framework.
3. Dynamic labels are a good starting point for an analysis mixing static and dynamic checks.
4. David Van Horn and Harry Mairson showed that $k$CFA is NP as soon as $k > 0$. [ICFP 07].
5. Simple proofs for safety properties.
Conclusion: independence

- Created principals and extended independence.
- Link between non-interference and independence: express these properties within a common framework.
- Dynamic labels are a good starting point for an analysis mixing static and dynamic checks.
- David Van Horn and Harry Mairson showed that $k$CFA is NP as soon as $k > 0$. [ICFP 07].
- Simple proofs for safety properties.
Conclusion: independence

1. Created principals and extended independence.
2. Link between non-interference and independence: express these properties within a common framework.
3. Dynamic labels are a good starting point for an analysis mixing static and dynamic checks.
4. David Van Horn and Harry Mairson showed that $k$CFA is NP as soon as $k > 0$. [ICFP 07].
5. Simple proofs for safety properties.
Conclusion: independence

1. Created principals and extended independence.
2. Link between non-interference and independence: express these properties within a common framework.
3. Dynamic labels are a good starting point for an analysis mixing static and dynamic checks.
4. David Van Horn and Harry Mairson showed that $k$CFA is NP as soon as $k > 0$. [ICFP 07].
5. Simple proofs for safety properties.
Conclusion: independence

1. Created principals and extended independence.
2. Link between non-interference and independence: express these properties within a common framework.
3. Dynamic labels are a good starting point for an analysis mixing static and dynamic checks.
4. David Van Horn and Harry Mairson showed that $k$CFA is NP as soon as $k > 0$. [ICFP 07].
5. Simple proofs for safety properties.