
Moscova 07

Jean-Jacques Lévy

INRIA Rocquencourt

April 24, 2007



Research

Part 1



Type-safe communication – Acute

communicating values of abstract data types
and preserving abstraction between 2 distinct run-times;

incompatibility is not visible on type signatures;
concrete representation must be described in passed values.

type theory of ML modules with hashes of implementation.
[Sewell, Leifer, Peskine, Zappa Nardelli -- 2 × ICFP]

extension to records with horizontal subtyping
[Leifer, Deniélou -- ICFP 06]

extension to nested and polymorphic modules
[Peskine, PhD]

prototype on top of FreshOcaml
+ dynamic linking
+ modules versioning
[Sewell, Habouzit, Leifer, Peskine, Zappa Nardelli -- ICFP]



Type-safe communication – Acute

communicating values of abstract data types
and preserving abstraction between 2 distinct run-times;

incompatibility is not visible on type signatures;
concrete representation must be described in passed values.

type theory of ML modules with hashes of implementation.
[Sewell, Leifer, Peskine, Zappa Nardelli -- 2 × ICFP]

extension to records with horizontal subtyping
[Leifer, Deniélou -- ICFP 06]

extension to nested and polymorphic modules
[Peskine, PhD]

prototype on top of FreshOcaml
+ dynamic linking
+ modules versioning
[Sewell, Habouzit, Leifer, Peskine, Zappa Nardelli -- ICFP]



Process algebras — Pattern Matching

Process algebras

equivalences in Mobile Ambients
[Zappa Nardelli, Mero -- JACM 06]

reversible processes
[Krivine, Danos -- Concur 05-06]

link graphs, bi-graphs
[Leifer, Milner -- MSCS 06]

Pattern matching

disjunctive patterns + warnings in Ocaml
[Maranget, JFP 07]

synchronization by pattern matching in Jocaml
[Ma Qin, PhD 05 + Concur 04]

pattern matching a la XML/Cduce in Jocaml (future plan)



Process algebras — Pattern Matching

Process algebras

equivalences in Mobile Ambients
[Zappa Nardelli, Mero -- JACM 06]

reversible processes
[Krivine, Danos -- Concur 05-06]

link graphs, bi-graphs
[Leifer, Milner -- MSCS 06]

Pattern matching

disjunctive patterns + warnings in Ocaml
[Maranget, JFP 07]

synchronization by pattern matching in Jocaml
[Ma Qin, PhD 05 + Concur 04]

pattern matching a la XML/Cduce in Jocaml (future plan)



Jocaml

new implementation (without mobility)
[Maranget]

with manual and tutorial
[Mandel, Maranget]

compatible with new releases of Ocaml

Join Patterns are in Polyphonic C#



Research

Part 2



Objective 1 Secure Communication – INRIA/MSR

passing authenticated (signed) values between 2 run-times;

design of a mini F# + primitives for authentication
+ global contract with sessions types;
[Corin, Deniélou, Fournet, Bhargavan, CSFW’07]

compiling scheme into a low-level language (' pi-calculus)
to describe authentication protocols;

formal proof of its correctness, with security property induced by
strong typing of F# + usage of authentication primitives.

extension to other security properties
(privacy, integrity, sessions, etc)

F# = Ocaml − modules + .NET



Objective 1 Secure Communication – INRIA/MSR

passing authenticated (signed) values between 2 run-times;

design of a mini F# + primitives for authentication
+ global contract with sessions types;
[Corin, Deniélou, Fournet, Bhargavan, CSFW’07]

compiling scheme into a low-level language (' pi-calculus)
to describe authentication protocols;

formal proof of its correctness, with security property induced by
strong typing of F# + usage of authentication primitives.

extension to other security properties
(privacy, integrity, sessions, etc)

F# = Ocaml − modules + .NET



Objective 1 Secure Communication – INRIA/MSR

passing authenticated (signed) values between 2 run-times;

design of a mini F# + primitives for authentication
+ global contract with sessions types;
[Corin, Deniélou, Fournet, Bhargavan, CSFW’07]

compiling scheme into a low-level language (' pi-calculus)
to describe authentication protocols;

formal proof of its correctness, with security property induced by
strong typing of F# + usage of authentication primitives.

extension to other security properties
(privacy, integrity, sessions, etc)

F# = Ocaml − modules + .NET













Objective 2 PoplMark −→ OTT

formal semantics of SML or Acute are too large (40-80 pages)

⇒ tools for complete definitions of full languages

problems:
1. Readability and writability
3. Correctness of proofs

2. Consistency of definitions
4. Relationship semantics/implementations

OTT

I ASCII as input
I outputs to TeX, Isabelle, HOL, Coq
I proofs are still manual

[Sewell, Zappa Nardelli]

[demo]

file:/Applications/Utilities/Terminal.app


Call-by-value λ-calculus (2/4 – TeX)



Call-by-value λ-calculus (1/4 – Ott)



Call-by-value λ-calculus (3/4 – Coq)



Call-by-value λ-calculus (4/4 – Isabelle)



Lists: a more typical not-so-mini example

proof of the subject reduction theorem for Ocaml
without objects + modules in 7 weeks
(3 Harper-years)



Objective 3 Separation logic, C-minor and concurrency

Existing

Coq library for Peter O’Hearn’s logic
[Yonezawa et al]

for very simple imperative languages
(no types, no functions, no recursivity)

POH developed a separation logic for concurrency, on top of a
unrealistic model (not implementable)

⇒ need for relaxing the model

To do

building a new framework for formal proofs

example: prove the correctness of reverse in C minor

make proofs of lock-free programs
[Appel, Blazy, Zappa Nardelli]



Objective 4 Jocaml

maintaining the implementation;

better design of active mobility;

transform Jocaml in a platform for implementing various kinds of
distributed processing.



Objective 5 Information flow in the λ-calculus with history

stack inspection for JVM/CLR
[Fournet, Gordon, Blanc]

relate flow analysis and theory of history in the λ-calculus
[Blanc, Lévy]

A

M =

A

M =

B



Software

and

Extras



Extra softwares – Contracts

5% Ocaml (pattern matching)
[Maranget]

Hévéa: an efficient translator of Tex into Html
[Maranget]

Advix: efficient previewer of Dvi
[Rémy, Zappa Nardelli]

(not enough many)

Joint Centre with Microsoft Research

ANR Parsec with Mimosa, Everest, Lande, PPS



Teaching

MPRI (master course at Paris 7)

Ecole polytechnique
[Lévy on leave 1/1/06 -- 1/1/08, Maranget]

lecture notes + web pages + book
“Introduction à la théorie des langages de programmation”
with [Dowek], similar plan with [Cori]

Entrance examination at Polytechnique
[Maranget (4 years), Lévy since beginning]

Bertinoro, Bangalore, etc.

(too undergraduate)



Personal et history

1 DR (Lévy), 2 CR1 (Maranget, Leifer), 1 CR2 (Zappa Nardelli)

2 PhD students: Peskine, Deniélou

1 post-doc: Mandel

1 invited professor: Appel (Princeton)

1 assistant (S. Loubressac), also Head of SAPR

Moscova history:

I Para (en 88), Head: Lévy

I Moscova (en 00), Head: Gonthier

I 15 PhDs: Fournet[msr], le Fessant[futurs], Schmitt[grenoble], Melliès[pps],
Pouzet[orsay], Conchon[orsay], Doligez, Maranget, · · · Laneve, Ariola.

I in Para/Moscova: 75% Coq proof of the 4-color thm; debugging of 3 modules of
Ariane-501 PV; spinoff of Polyspace [Deutsch]; etc.

I recent departures: Gonthier[msr], Doligez[gallium], Hardin[p6],
3 PhD students have just finished.



Conclusion



Conclusion

Moscova once more in reconfiguration phase

need for new researchers

need for new PhD students

Moscova should be more involved in softwares


	Research I
	Research II
	Management
	Conclusion

