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Abstract. Despite decades of research in the λ-calculus, the syntactic
properties of the weak λ-calculus did not receive great attention. How-
ever, this theory is more relevant for the implementation of programming
languages than the usual theory of the strong λ-calculus. In fact, the
frameworks of weak explicit substitutions, or computational monads, or
λ-calculus with a let statement, or super-combinators, were developed
for adhoc purposes related to programming language implementation. In
this paper, we concentrate on sharing of subterms in a confluent variant
of the weak λ-calculus. We introduce a labeling of this calculus that ex-
presses a confluent theory of reductions with sharing, independent of the
reduction strategy. We finally state that Wadsworth’s evaluation tech-
nique with sharing of subterms corresponds to our formal setting.

1 Introduction

In the terminology of the λ-calculus, a strong calculus validates the following
ξ-rule

(ξ)
M → N

λx.M → λx.N

A weak calculus does not validate this rule. One easily shows that the weak
λ-calculus is not confluent. In [18], an extension of the weak λ-calculus was
introduced. It is strongly inspired from the one of Çağman and Hindley [6] for
Combinatory Logic. In this calculus, a restricted version of the ξ-rule is valid;
this new ξ′-rule is intuitively defined by

(ξ′)
M

R
→ N x 6∈ R

λx.M
R
→ λx.N

meaning that the ξ-rule is valid when the bound variable x is not free in the
redex R contracted between M and N (This rule will be presented in section 2
in a form slightly different from — but equivalent to — the σ-rule used in [18]).
The resulting new weak λ-calculus is confluent as shown in [18].

The theory of optimal reductions in the λ-calculus [5] has been extensively
studied by Abadi, Asperti, Coppola, Gonthier, Guerrini, Lamping, Lawall, Lévy,



Mairson, Martini et al [3, 4, 9, 13, 15, 17]. These authors represent λ-terms as
graphs with shared subcontexts. For instance, in (λx.xa(xb))(λy.Iy) where I =
λx.x, it is necessary to share the redex Iy independently of the value of y.
Therefore the subcontext I[ ] has to be shared. But after reduction of the external
redex, we get (λy.Iy)a((λy.Iy)b) and further Ia((λy.Iy)b), where the shared
subcontext I[ ] is instantiated with two different terms. Technically, in these
graphs, a shared subcontext can be referenced through a fan-in node to multiplex
incoming arcs from terms using it; and context holes are filled through fan-
out nodes to demultiplex outgoing arcs pointing to terms filling these holes.
For instance, Lamping’s graphs [13] operate on fans and brackets, which can
be decomposed into more elementary fans, brackets and croissants obeying to
reduction rules directed by the context semantics defined in [9].

In the weak λ-calculus, reductions are not performed under λ-abstractions.
In the above example, the subterm Iy in (λx.xa(xb))(λy.Iy) cannot be reduced
since inside the abstraction λy.Iy. Thus the subcontext I[ ] needs not be shared.
The λ-terms with sharing can be represented by directed acyclic graphs (dags)
instead of the (cyclic) Lamping’s graph structures required to implement shared
subcontexts. In this paper, we present a weak labeled λ-calculus that expresses
a confluent theory of sharing within the weak λ-calculus corresponding to the
shared evaluation strategy by Wadsworth [25] defined with dags in 1971!

The weak λ-calculus corresponds to runtime systems in functional languages,
since runtimes just pass arguments to functions and never compute function bod-
ies, i.e. under λ-abstractions. At compile-time, inlining or partial evaluation are
feasible; but the weak λ-calculus just corresponds to the execution phase. How-
ever a runtime of a functional language usually implements a particular reduction
strategy such as call-by-name, call-by-need or call-by-value. We prefer to model
these runtimes by a confluent calculus which allows to consider mixed strategies
alternating call-by-need and call-by-value. Moreover, a confluent calculus makes
independent sharing and reduction strategy, which are two independent con-
cepts. In runtimes of lazy functional languages (Haskell, LML, G-machine) [20,
22], the call-by-need strategy will correspond to a leftmost outermost reduction
with sharing in the weak λ-calculus.

The runtime of a functional program [16] often computes a functional closure,
i.e. a pair of a λ-abstraction (program) and a substitution (environment). The
theory of explicit substitutions is related to the notion of closure but does not re-
strict reduction strategies [1]. This theory is not simple. It uses de Bruijn indices
and is not confluent for open terms: Klop’s counterexample [11] for surjective
pairing can be adapted to the calculus of explicit substitutions [1]. However, con-
fluence (on open terms) can be recovered at the price of either considering a much
more complex calculus of explicit substitutions [7], or a theory of weak explicit
substitutions as in [8, 18]. In the latter case, a theory of sharing was sketched,
through the definition of a weak labeled calculus of explicit substitutions.

Closures and explicit substitutions are not necessary to express sharing of
λ-terms. For instance, call-by-need strategies by Launchbury, Odersky or Ariola
et al. [14, 19, 2] use a λ-calculus with a new let construct. However, these calculi



have often critical pairs (in the sense of term rewriting) and extra rules to handle
the let construct. Term rewriting systems (TRS) can also be used by lifting free
variables and transforming each λ-abstraction into the application of several of
its free variables to a (super)combinator. In this paper we want to stay with the
classical set of λ-terms and subtheories of the classical λ-calculus.

In Section 2, we recall the definitions and basic properties of the weak λ-
calculus introduced in [18]. In Section 3, we consider the weak labeled λ-calculus
and prove its confluence. In Section 4, we relate labels and sharing. In Section 5,
we discuss several differences between the weak labeled λ-calculus and dag im-
plementations. In Section 6, we comment on the relation between TRSs and our
formal setting. We conclude in Section 7.

2 The weak λ-calculus

The weak λ-calculus is defined in [18]. As usual, the set of λ-terms is defined by

M, N ::= x | MN | λx.M

and β-reduction is

(β) (λx.M)N → M [[x\N ]]

where M [[x\N ]] is recursively defined by

x[[x\P ]] = P

y[[x\P ]] = y (x 6= y)
(MN)[[x\P ]] = M [[x\P ]] N [[x\P ]]

(λy.M)[[x\P ]] = λy.M [[x\P ]] (x 6= y, y not free in P )

We keep α-conversion implicit, and freely use renaming of bound variables. In
the last case, the substitution must not bind free variables in P . Equality on
terms is defined up to the renaming of bound variables (α-conversion). In the
(strong) λ-calculus, every context is active, since any subterm may be reduced
at any time. But in the weak λ-calculus, without the ξ-rule, no reduction inside
a λ-abstraction occurs. The Church-Rosser property (confluence) does not hold
in the weak λ-calculus : when N → N ′ we have

(λx.λy.M)N //

��

(λx.λy.M)N ′

��

(λy.M [[x\N ]]) (λy.M [[x\N ′]])

The term (λy.M [[x\N ]]) is in normal form and cannot be reduced, and the
previous diagram does not commute. The problem has been known for a long
time in combinatory logic [10], although often kept as a “folk theorem”. In [6],
it is specifically stated, and shown as being relevant when translating the λ-
calculus into combinatory logic. In [18], it is proved that confluence is recovered
by adding the new inference rule



(σ)
N → N ′

M [[x\N ]] → M [[x\N ′]]
(M linear in x)

where the free variable M is linear in x if x has exactly one occurrence in M . The
use of substitution aims at reflecting the fact that N does not contain variables
bound outside N . Intuitively, it means that N does not depend on an enclosing
λ-abstraction or its argument. Therefore N may be reduced in such a context.
The linearity condition avoids to consider parallel reduction steps.

Here, instead of the σ-rule, we use a related, more direct approach to recover
confluence in the weak λ-calculus. Let us write x 6∈ M , when x is not a free
variable in M . Formally:

x 6∈ y
(x 6= y)

x 6∈ M

x 6∈ λy.M

x 6∈ M x 6∈ N

x 6∈ MN

Then our alternative presentation of the weak λ-calculus adds a new ξ′-rule to
the classical µ and ν-rules.

(β) R = (λx.M)N
R
→ M [[x\N ]] (ν)

M
R
→ M ′

MN
R
→ M ′N

(w)
M

R
→ N

M → N

(ξ′)
M

R
→ M ′ x 6∈ R

λx.M
R
→ λx.M ′

(µ)
N

R
→ N ′

MN
R
→ MN ′

The reduction step relation
R
→ is annotated with the contracted redex R. A λ-

abstraction to the left of the reduction step relation cannot bind a variable in R.
Therefore α-conversion does not change the redex annotating the reduction step
relation. Like the σ-rule, the ξ′-rule allows the reduction of a subterm located
under a λ-abstraction if the contracted redex does not contain a variable bound
by the λ-abstraction. Again, we write →→ for the transitive and reflexive closure
of →. So M →→ N iff M can reduce in several steps (maybe none) to N .

Lemma 1. In the weak λ-calculus, one has

(i) N → N ′ ⇒ M [[x\N ]] →→ M [[x\N ′]]
(ii) M → M ′ ⇒ M [[x\N ]] → M ′[[x\N ]]
(iii) M [[x\N ]][[y\N ′]] = M [[y\N ′]][[x\N [[y\N ′]]]] (x 6∈ N ′)

Theorem 1. The weak λ-calculus is confluent.

Proof: Straightforward application of previous lemma. 2

In comparison with the strong λ-calculus, there is an additional way of cre-
ating a redex. After contracting M = (λx.Ix)y, we obtain a redex Iy which is
neither a residual of a redex of M nor a created redex of the strong λ-calculus.
In fact, although the subterm Ix in M is a redex for the strong λ-calculus, it is



not a redex for the weak λ-calculus: it is frozen in M by the occurrence of x.
The contraction of the enclosing λ-abstraction activates Iy.

The weak λ-calculus enjoys syntactic properties simpler than the strong λ-
calculus. In the weak λ-calculus, the finite developments theorem [5] is easy
to prove, since residuals of disjoint redexes cannot be nested. In the strong λ-
calculus, residuals of two disjoint redexes may be nested. The typical example
is: M = (λx.Ix)(Jy) with I = J = λx.x. Then, the two disjoint Ix and Jy re-
dexes have nested residuals:

(λx.Ix)(Jy) → I(Jy)

But in the weak λ-calculus this case does not occur since the subterm Ix in
M contains the bound variable x and is not considered as a redex of the weak
λ-calculus. In this calculus, residuals of disjoint redexes are disjoint redexes.

This proposition allows now to state another interesting theorem of the weak
λ-calculus, namely Curry’s standardization theorem. A standard reduction is
usually defined as a reduction contracting redexes in an outside-in and left-to-
right way. Precisely a reduction of the form

M = M0 → M1 → . . .Mn = N (n ≥ 0)

is standard when for all i and j such that 0 ≤ i < j < n, the Rj-redex contracted
at step j in Mj−1 is not a residual of a redex external to or to the left of the
Ri-redex contracted at step i in Mi−1. We write M

st

// // N for the existence of a

standard reduction from M to N . Notice that the leftmost outermost reduction
is a standard reduction (in the usual λ-calculus), but standard reductions may
be more general.

Theorem 2. If M →→ M ′, then M
st

// // M ′.

Proof: One follows the proof scheme in [11] or checks the axioms of [21]. The

basic step of the proof follows from the observation that when M
R
→ M ′ and S′

is a residual of S (in the usual sense of the strong λ-calculus) in M not inside
R, then S is a redex of the weak λ-calculus. Then assume that M → M ′ → N ′

by contracting R in M and S′ in M ′. Suppose R and S′ are not in the standard
ordering. Then S′ is residual of a redex S in M to the left of or outside R. Thus,
we know that S is a redex of the weak λ-calculus and we may contract it getting
N . By confluence (actually by finite developments), we converge to N ′ (by a
finite development of the residuals of R in N). 2

A normal form is a term without redex. For instance I = λx.x or λy.Iy are
normal forms. Let

norm

// // be the reduction contracting, at each step, the leftmost

outermost redex.

Theorem 3. If M →→ N and N is a normal form, then M
norm

// // N .

Proof: By persistence of the leftmost outermost redex and the use of the previous
theorem. 2
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Fig. 1. A reduction step in the weak labeled λ-calculus (dotted lines represent paths
from the root of U to occurrences of the free variable x in U ; dashed lines represent
the paths on which diffusion operates).

3 The weak labeled λ-calculus

In this section, a calculus for sharing in the weak λ-calculus is developed with the
help of a confluent, labeled calculus. Labels are used to name subterms; subterms
which are copies along reductions keep their labels, but new subterms must have
new labels. We want the weak labeled λ-calculus to be confluent, as sharing and
reduction strategy are independent concepts. Therefore an adequate naming
scheme should be invariant through reductions equivalent by permutations of
reduction steps. The labeled calculus is different from the one used in the labeled
calculus of weak explicit substitutions [18], since we have no longer closures and
explicit substitutions, and we have to take care of variable binders.

We base our labeling scheme on the labeling of the strong λ-calculus [17].

U, V ::= α :X labeled term
X, Y ::= S | U clipped or labeled term
S, T ::= x | UV | λx.U clipped term
α, β ::= a | dα′e | bα′c | [α′, β] | 〈α′, β〉 labels

α′, β′ ::= α1α2 · · ·αn (n > 0) compound labels

The labeled term α : X is said to have label α. Labels can be stacked as in
α1 : α2 : · · ·αn : X . Compound labels, used in the definition of the `-reduction,
are sequences of labels. An (atomic) label can be a simple letter, or formed by
overlining dα′e, or underlining bα′c; it can also be a pair [α′, β] or 〈α′, β〉 of
compound label α′ and label β. In the pair with square brackets, we say that α′

tags β; for angle brackets, then α′ marks β.
The labeled reduction `-rule is defined as

(`) R = (α′ · λx.U)V
R
→ dα′e : (α′©x U)[[x \ bα′c :V ]]

where
α1α2 · · ·αn · S = α1 :α2 : · · ·αn :S



The name of R is α′; we write name(R) = α′. We assume that substitution has a
higher precedence than labeling. Hence dα′e :U [[x\V ]] is read as dα′e : (U [[x\V ]]).
As in the strong labeled λ-calculus, we sandwich the body of the function part
of the redex with its name overlined and underlined as shown in figure 1. The
diffusion α′ ©x U creates new labels along paths from the root of U to free
occurrences of x, as illustrated in figure 1. Therefore new labels appeared for
every subterm of U containing a free occurrence of x. Formally substitution and
diffusion are defined as follows:

x[[x\W ]] = W

y[[x\W ]] = y

(UV )[[x\W ]] = U [[x\W ]] V [[x\W ]]
(λy.U)[[x\W ]] = λy.U [[x\W ]]
(β :X)[[x\W ]] = β :X [[x\W ]]

α′©x X = X if x 6∈ X

α′©x x = x

α′©x UV = (α′©x U α′©x V ) if x ∈ U

α′©x UV = (〈α′, U〉 α′©x V ) if x 6∈ U and x ∈ V

α′©x λy.U = λy. α′©x U if x ∈ λy.U

α′©x β :X = [α′, β] :α′©x X if x ∈ X

〈α′, β : X〉 = 〈α′, β〉 : X

An example of reduction is illustrated in figure 2.

During diffusion, we mark the left subterm of an application when it does
not contain the bound variable x, since the application may become a redex of
which we want to keep the history. Take for instance, the unlabeled (λx.Ix)y,
where I = λu.u. Then Ix is not a redex in (λx.Ix)y since its argument contains
x, but it becomes the redex Iy after contracting the enclosing redex. We want to
mark the name of redex Iy with the name of the enclosing redex that activated
it. In the weak labeled λ-calculus, this example becomes:

a : (b : (λx. c : (d :λu. e :u) f :x) g :y)
→ a :dbe : [b, c] : (〈b, d〉 : (λu.e :u) [b, f ] :bbc :g :y)

where the name 〈b, d〉 of Iy contains the name b of (λx.Ix)y, whereas if the
diffusion did not mark the left part I of the application Ix, the name d of Iy

would not have contained the name b of the redex contracted to create Iy.

As for the theory of the strong labeled λ-calculus, the label of a labeled
subterm reflects its history. A simple letter stands for a labeled term existing in
the initial term (empty history). Overlining dα′e, underlining bα′c, marks 〈α′, β〉
and tags [α′, β] indicate past contraction of a redex of name α′. Overlined and
underlined labels are kept to relate the weak labeled λ-calculus with the strong
case.
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Fig. 2. An example of reduction in the weak labeled λ-calculus where U1 → U2 → U3

and α′ = [b, d]bbch. (The redex (λy.y)v could also be contracted in U1, U2 and U3;
however (λx.x)z with name j is not a redex in U1 and U2; but its “residual” in U3 is
a created redex in U3, therefore its name is marked by the name α′ of the contracted
redex.)



Free variables are defined as in the unlabeled λ-calculus. The context rules
are defined as follows for labeled reduction:

(ν)
U

R
→ U ′

UV
R
→ U ′V

(λ)
X

R
→ X ′

α :X
R
→ α :X ′

(w)
X

R
→ X ′

X → X ′

(µ)
V

R
→ V ′

UV
R
→ UV ′

(ξ′)
U

R
→ U ′ x 6∈ R

λx.U
R
→ λx.U ′

We also write →→ for the transitive and reflexive closure of →.

Lemma 2. If X
R
→ X ′ and x 6∈ R, then α′©x X → α′©x X ′

Proof: We first remark that as x 6∈ R and X
R
→ X ′, we have x ∈ X if and

only if x ∈ X ′. Clearly, x 6∈ X implies x 6∈ X ′ since the set of free variables
of the contractum of a redex is a subset of the free variables of the contracted
redex. Conversely, a free variable disappears in the contractum iff the redex has
all occurrences of this free variable in its argument and the redex erases its
argument. But as x 6∈ R, this case is not possible.

Now we proceed by cases on the definition of diffusion and by induction on
the size of X :

1. If x 6∈ X , then x 6∈ X ′ and the lemma is obvious, since α′ ©x X = X and
α′©x X ′ = X ′.

2. If x ∈ X , we have again several cases.

(a) Let R be in U and X = UV → U ′V = X ′.

i. If we have x ∈ U , one gets by induction α′ ©x U → α′ ©x U ′. Then
the first remark yields x ∈ U ′. And, by the definition of diffusion, we
have α′©x X = (α′©x U α′©x V ) and α′©x X ′ = (α′©x U ′ α′©x V ). By
the ν-rule, we obtain α′©x X → α′©x X ′.

ii. If we have x 6∈ U , the first remark yields x 6∈ U ′. Then, we have
α′©x X = (〈α′, U〉 α′©x V ) and α′©x X ′ = (〈α′, U ′〉 α′©x V ). By the
λ-rule for context, we get 〈α′, U〉 → 〈α′, U ′〉, and therefore, by the
ν-rule α′©x X → α′©x X ′.

(b) If R is in V , we have a simpler but similar argument.
(c) The other cases when X = λy.U and X = β :Y are similar.

2

Lemma 3. If U → U ′ and X → X ′, then X [[x\U ]] →→ X [[x\U ′]] and X [[x\U ]] →
X ′[[x\U ]].

Proof: Straightforward by induction on the size of X . 2

Theorem 4. The weak labeled λ-calculus is confluent.



Proof: By the Tait–Martin-Lof method, see [5]. The only interesting cases are

the two commuting diagrams, when x 6∈ R, and U
R
→ U ′, V → V ′:

(α′ · λx.U)V
R

//

��

(α′ · λx.U ′)V

��

dα′e : (α′©x U)[[x\bα′c :V ]] // dα′e : (α′©x U ′)[[x\bα′c :V ]]

(α′ · λx.U)V //

��

(α′ · λx.U)V ′

��

dα′e : (α′©x U)[[x\bα′c :V ]] // // dα′e : (α′©x U)[[x\bα′c :V ′]]

which can be proved with the help of previous lemmas. 2

4 Sharing of subterms

In the labeled λ-calculus, the name of a redex records its history. Namely if a
redex S is the residual of a redex R, their names are equal; and if a redex S is
created by the contraction of a redex R, the name of R is contained in the name
of S. We formalize this central property of the weak labeled λ-calculus with the
following ≺ relation. We say that α′ is strictly smaller than β′, we write α′ ≺ β′,
for the following cases:

α′ ≺ dα′e α′ ≺ bα′c α′ ≺ [α′, β] α′ ≺ 〈α′, β〉

α′ ≺ βi ⇒ α′ ≺ β1 · · ·βn α′ ≺ β′ ≺ γ′ ⇒ α′ ≺ γ′

Hence the name α′ of a redex is smaller than any label where it is overlined or
underlined. It is also smaller than a pair of which it is the first component. If it is
smaller than some βi, it is smaller than a word for which βi is a subcomponent.
Moreover we close this relation by transitivity. This relation is clearly a strict
ordering. This relation expresses the intuitive interpretation of labels we gave
when defining labels: α′ ≺ β′ if the contraction of a redex of name α′ participates
to the “creation” of β′. We recall that a reduction X →→ Y creates redex S in Y

if S is not a residual (along this reduction) of a redex R in X .

Lemma 4. If X
R
→ Y and redex S in Y is created in this reduction step, then

name(R) ≺ name(S).

Proof: Straightforward by case inspection. 2

The goal of this section is to prove that two subterms with the same label
are equal in the weak labeled λ-calculus, provided that we start reductions from
a term with distinct letters on its subterms. This will mean that two subterms
labeled with the same label can be shared in a dag representation of terms.
To prove this property, we first show that several invariants are preserved by
reductions.



Invariant 1 Q(W ) holds iff we have α′ 6≺ β for every redex R with name α′

and any subterm β :X in W .

A complete labeled reduction step U
α′

=⇒ V is the finite development of all
redexes with name α in U . We first prove that invariant Q is preserved by
complete labeled reduction steps. Intuitively, invariant Q means that the names
of redexes are maximal. It guarantees that when performing complete labeled
reduction steps, the names of the contracted redexes are all distinct.

Lemma 5. If Q(W ) and W
γ′

=⇒ W ′, then Q(W ′).

Proof: Let R with name α′ be a redex in W ′. Let β :U be a subterm of W ′ such
that α′ ≺ β.

1. R is a residual of a redex R′ of W . Then name(R) = name(R′) = α′.
(a) β is a label in W . Impossible since Q(W ).
(b) β is created by the reduction from W to W ′.

By cases on the label’s creation:
i. β = dγ′e. Then α′ ≺ dγ′e. There are again two cases:

A. α′ = γ′. Impossible by definition of
γ′

=⇒.
B. α′ ≺ γ′. If γ′ = γ1 . . . γn, there exists γi such that α′ ≺ γi.

Therefore there is a subterm γi : V in W with α′ ≺ γi. This
contradicts Q(W ).

ii. β = bγ′c or β = [γ′, β1] or β = 〈γ′, β1〉. These cases are similar to
the previous one.

2. R is created by the reduction from W to W ′. Then γ′ ≺ α′ ≺ β.
(a) β is a label in W . We have γ′ ≺ β. Impossible by Q(W ).
(b) β is created by the reduction from W to W ′.

By case on the label’s creation:
i. β = dγ′e. Thus γ′ ≺ β As α′ ≺ dγ′e, we have α′ � γ′ and therefore

α′ ≺ α′, since γ′ ≺ α′. Contradiction.
ii. β = bγ′c or β = [γ′, β1] or β = 〈γ′, β1〉. These cases are similar to

the previous one.
2

To limit the number of cases to inspect, we consider a simple technical invari-
ant on left subterms of application nodes and show that they cannot be labeled
by an overlined or an underlined label.

Invariant 2 R(W ) holds iff for any clipped subterm UV in W , we have either
U = a :X, or U = [α′, β] :X, or U = 〈α′, β〉 :X.

Lemma 6. If R(W ) and W → W ′, then R(W ′).

Proof: Let U ′V ′ be a clipped subterm in W ′. This application node comes from
an application node T = UV in W . Let R = (α′ · λx.A)B be the contracted
redex.



1. If R is inside T , the only interesting case is when U contains R. Then we
have U = β :X , with R inside X . Therefore β is unchanged by the reduction
step, and R(W ) gives the form a, [γ′, β1], or 〈γ′, β1〉 of β.

2. If R contains T in its argument B. Then U ′ = U and they have same labels.
3. Otherwise U ′ comes from an U in the function body part A of R. Then, if

x 6∈ U ′V ′, then U ′ = U and this case is again straightforward. Otherwise,
there can be a diffusion inside U ′, but then the label of U ′ is a tagged or
marked pair. In all cases, R(W ′) holds.

2

Marked labels of the form 〈α′, β〉 record histories of reductions. A subterm
with a marked label indicates that the application node just above has been
activated by a redex with name α′. Although marked labels are necessary for
recording histories of reduction (see lemma 5), these labels have no impact on
the definition of sharing. The following sharing relation ' means that two labels
are equal by erasing marks (in marked labels). It is defined inductively by:

a ' a dα′e ' dα′e bα′c ' bα′c
β ' γ ⇒ [α′, β] ' [α′, γ] β ' γ ⇒ 〈α′, β〉 ' 〈α′, γ〉
β ' γ ⇒ β ' 〈α′, γ〉 β ' γ ⇒ 〈α′, β〉 ' γ

Thus, if α ' β, the labeled terms α : X and β : Y are shared. This is expressed
by the following invariant.

Invariant 3 P(W ) holds iff, for any pair of subterms α :X and β :Y such that
α ' β, we have X = Y .

To prove this invariant, we need two extra invariants. The first one states that
labels of free and bound variables cannot be equal up to the sharing relation.

Invariant 4 S(W ) holds iff, for any pair of subterms α : x and β : y such that
α ' β, we have x free in W iff y free in W .

Lemma 7. If S(W ) and W → W ′, then S(W ′).

Proof: Firstly, a free (resp. bound) variable x in W ′ can only come from a free
(resp. bound) variable x in W . Secondly, a labeled subterm α :x in W ′ can only
come from a labeled subterm α1 : x in W where α ' α1. Combining these two
remarks gives the full proof. 2

In the weak labeled λ-calculus, the name of a redex is the compound label
found on the left part of an application towards the corresponding abstraction.
In a dag representation of terms, we only share subterms. Hence both applica-
tion and abstraction nodes of a shared redex are shared. This means that for a
given redex name α′, there must be sharing of the application subterm making
the redex. In the terminology of the weak labeled λ-calculus, it means that we
share the atomic label of the application node. To be more precise, we state the
following invariant.



Invariant 5 T (W ) holds iff, for any application subterms β : (α : X)U and
γ : (α :Y )V , we have β ' γ.

Lemma 8. If P(W ) ∧ Q(W ) ∧R(W ) ∧ T (W ) and W
γ′

=⇒ W ′, then T (W ′).

Proof: Take β : (α :X ′)U ′ and γ : (α :Y ′)V ′ in W ′.

1. α exists in W . Then γ′ 6≺ α since Q(W ). Therefore, there are two labeled
terms U1 = β1 : (α : X)U and V1 = γ1 : (α : Y )V in W , with a possible
diffusion marking U1 and/or V1. Therefore, β1 ' β and γ1 ' γ. By T (W ),
we have β1 ' γ1. Thus β ' γ.

2. α = [γ′, α1]. Then β = [γ′, β1]. Then γ = [γ′, γ1], since both applications
received a single diffusion, since all γ′ redexes are disjoint by P(W ). In W ,
the corresponding applications are β1 : (α1 : XU) and γ1 : (α1 : Y V ). By
T (W ), we get β1 ' γ1. Thus β ' γ.

3. α = 〈γ′, α1〉. Case similar to previous one.

4. Other cases, impossible since R(W ).

2

Lemma 9. If P(W ) ∧ Q(W ) ∧ R(W ) ∧ S(W ) ∧ T (W ) and W
γ′

=⇒ W ′, then
P(W ′).

Proof: By T (W ), the labels of all redexes with name γ′ have the same value γ

modulo '. Therefore, by P(W ), all redexes with name γ′ are the same R =
(γ′ ·λx.A)B, and their contractums are identical R′ = dγ′e : (γ′©x A)[[x\bγ′c :B]].
As these redexes are identical, they are all disjoint. Conversely, every subterm
R is a redex by S(W ) if at least one R is a redex in W .

Let U ′ = α :X ′ and V ′ = β :Y ′ two subterms of W ′ such that α ' β.

1. Both U ′ and V ′ come from subterms U = α : X and V = β : Y in W , with
same label as U ′ and V ′. By P(W ), we know that X = Y . There are two
cases.

(a) U ′ contains a contractum. Then either U contains x replaced by bγ′c :B.
Either U contains R. The first alternative is impossible since then R

would contain R in its argument. Since every R in X and Y is a redex

in W , then X = Y , X
γ′

=⇒ X ′ and Y
γ′

=⇒ Y ′. Thus X ′ = Y ′.

(b) U ′ does not contain a contractum of R.

i. U ′ is disjoint from the contractums. Thus U is a subterm of W

disjoint from redexes R. Then U = U ′.
ii. U ′ is in the argument part of a contractum. Thus, U is a subterm of

W in the argument part of a redex R.
iii. U ′ is in the body part of the contractum. Thus, U is a subterm of

W in the function body part of a redex R, but U does not contain
the variable x bound in R, since otherwise its label α would not be
equal to the one of U ′.



In any of these cases, U ′ = α : X ′ = U = α : X . Therefore X ′ = X .
Moreover, as X = Y , then V = β : X cannot contain R (since X would
do) or an occurrence of the bound variable of the function part in R,
which means that Y = Y ′. Thus X ′ = Y ′.

2. Both labels α and β are new in W ′. Thus γ′ ≺ α and γ′ ≺ β.
(a) α = [γ′, α1]. As α ' β, we have β = [γ′, β1] and α1 ' β1.

In W , there exist two labeled subterms α1 : X1 and β1 : Y1 such that
α :X ′ = (γ′©x α1 :X1)[[x\bγ

′c :B]] and β :Y ′ = (γ′©x β1 :Y1)[[x\bγ
′c :B]].

By P(W ), we have X1 = Y1 which implies X ′ = Y ′.
(b) α = dγ′e. By Q(W ), this label is absent from W . It is created at the top

of contractums of γ′-redexes, which are all equal by P(W ).
(c) α = bγ′c. By Q(W ), this label is absent from W . It is created at the

top of copies of arguments of R in the contractums. These copies are all
equal.

(d) α = 〈γ′, α1〉. As α ' β and β is new, we can only have β = 〈γ′, β1〉 and
α1 ' β1. Both U ′ and V ′ come from U and V to the left of an application
after a diffusion, when x 6∈ U and x 6∈ V . So U = α1 :X and V = β1 :Y .
Moreover X = X ′ and Y = Y ′, since x 6∈ X and x 6∈ Y . By P(W ), we
get X = Y . Hence X ′ = Y ′.

3. α is created, but β already exists in W . By Q(W ), we know that γ′ 6≺ β. As
α ' β, we can only have α = 〈γ′, α1〉 and α1 ' β. Therefore, there is a term
U = α1 : X to the left of an application subterm in W , with x 6∈ X , and
U ′ = 〈γ′, α1〉 : X ′, with X = X ′. As V ′ = β : Y ′ comes from β : Y in W , we
know by P(W ) that X = Y . If Y is modified from W to W ′, this can only
be because Y contains a γ′-redex, which is impossible since X is contained
in a γ′-redex; or because it has been substituted after a diffusion, but then it
is unchanged since x 6∈ X = Y . Therefore Y = Y ′, and X ′ = X = Y = Y ′.

4. α exists in W , but β is created. Analogous to previous case.
2

We can now state our sharing theorem, characterizing a dag implementation
for evaluating terms in the weak λ-calculus. We need to have a notation for
terms without sharing.

Notation 1 Let Init(U) holds when every subterm of U is labeled with a distinct
letter.

Theorem 5. Let Init(U) and U =⇒=⇒ V , then P(V ).

Proof: We first notice that, if Init(U), then P(U)∧Q(U)∧R(U)∧S(U)∧T (U).
Thanks to previous lemmas, this invariant remains valid along reduction steps
=⇒. 2

5 Dag implementation

The weak labeled λ-calculus provides a formal setting for a dag implementation
of the weak λ-calculus. If we start from a term labeled with distinct letters,



each label identifies the address of a shared subterm in the dag implementation.
There is a subtlety: first components of marked labels must be skipped, because
they are only relevant for storing the history of redexes. The goal of our labeled
calculus is to coincide with the dag implementation in Wadsworth [25].

Wadsworth has two implementations with sharing. The first one shares the
argument of the contracted redex at each reduction step. When there are n

occurrences of x in A, instead of having n copies of the argument B in the
contractum of (λx.A)B, Wadsworth proposes to replace x by a reference to a
single subterm B. However his method demands to copy the function part λx.A

of the contracted redex if the reference counter of λx.A is strictly greater than
1. This disallows the substitution of x in other subterms using A. In his second
dag implementation, Wadsworth notices that it is unnecessary to copy subterms
in A that do not contain occurrences of the free variable x. This variant of the
dag implementation avoids unnecessary copies.

However finding if a term does not contain an occurrence of the x variable
is a global operation. The occurrences of x in a redex (λx.A)B cannot disap-
pear in the weak λ-calculus, since there cannot be redexes containing x inside
A. Therefore, one may compile any abstraction λx.A in the initial term to mark
each subterm of A with free variables bound outside λx.A. This approach is
taken by supercombinators and λ-lifting [22], where each abstraction is λ-lifted
into a combinator to which are applied the free variables contained in this ab-
straction. But the calculus of supercombinators adds extra reduction rules, and
is not a subcalculus of the λ-calculus. More precisely, Peyton-Jones and Hughes
introduced the idea of full lazyness similar to the diffusion operator, by creating
combinators abstracting over maximal free subterms, and it would be interesting
to connect our sharing theory and their compilation scheme.

Shivers and Wand [23] provide a more realistic implementation where, in
the abstract tree corresponding to any abstraction λx.A, the top node points
to the list of occurrences of the variable x bound in this abstraction. In their
representation of terms, any subterm points to the subterm directly containing
it. Thus, terms are represented by graphs with a double-linked connection be-
tween vertices (i.e. nodes of the abstract trees). This representation facilitates
access to terms and subterms in the usual top-down way, but makes also pos-
sible bottom-up traversals of terms from binders of abstractions through the
bound occurrences of variables towards the root of an abstraction, or the root of
a term. Therefore during a reduction step contracting redex (λx.A)B, one first
duplicates the paths from top of A to x in a bottom-up traversal from every
occurrence of x towards the top node of A. We thus copy nodes correspond-
ing to subterms containing x by performing local operations. However, as on
the path from an occurrence of x to the top node of A, one may encounter an
other binder, it is also necessary to make a recursive call to duplicate paths to
its bound variable. This method is an efficient way of implementing the second
method in Wadsworth [25].

A closer look at our labeled λ-calculus demonstrates several differences be-
tween Shivers and Wand’s method and our calculus. The creation of nodes along



paths to occurrences of the bound variable x corresponds to the new tagged la-
bels created by diffusion. But we can meet other binders λy on these paths.
Then we do not copy the paths from such a λy to the free variable y during
diffusion. Therefore we can have several binders for the same occurrence of the
bound variable y. However no confusion occurs in our calculus, since sharing is
virtual and is only represented through labels. But this situation in an actual
shared implementation is unsafe, since it would hardly respect alpha renaming.
Extending the diffusion of our calculus could address this problem but it remains
to prove that the calculus is still confluent, which looks feasible. Such a modifi-
cation of the weak λ-calculus would be one way of providing a formal theory to
the implementation in [23].

There are other subtle differences between our labeled λ-calculus and stan-
dard dag implementations. One is the introduction of new nodes, since, in a
reduction step, we create new nodes, with dαe : U and bαc : U . These nodes
guarantee that we do not lose the history of the creation of redexes along a re-
duction. However, they do not seem necessary with respect to sharing. Similarly,
it is quite debatable to have a label on a bound variable. We have labeled vari-
ables since the structure looks then more regular. But a calculus without these
labels seems also feasible, without destroying sharing.

We can notice that the weak labeled λ-calculus makes a confluent theory of
dag implementation. Usually, confluence proofs with graphs are rather delicate
unless strong restrictions as in interaction nets [12]. But in the latter case, the
theory only considers =⇒ reduction steps. Here we can reason about terms with
induction as in the classical λ-calculus. This is what we gain with labeled calculi,
since we have a textual representation of dags by handling the node address, the
atomic label, and the λ-term.

Finally, the call-by-need strategies
norm

+3 +3 of the labeled calculus of weak

explicit substitutions correspond to complete labeled reduction steps in the weak
labeled λ-calculus. If Init(U) holds in the initial labeled term, one can show that
the number of steps to get a normal form with this reduction is always minimal.
The proof technique follows the one for the classical λ-calculus [17].

6 Relation with Term Rewriting Systems

One referee pointed out that the weak λ-calculus could be considered as a first-
order term rewriting system (TRS) [24]. He mentioned that, for instance, the
pattern of the weak β-redex (λx.Ix(λy.Ixy))S is (λx.Z1x(λy.Z2xZ3))X giving
rise to the first-order rule (λx.Z1x(λy.Z2xZ3))X → Z1X(λy.Z2XZ3), where
any terms can be substituted for the meta variables Z1, Z2, Z3 and X . One
could then substitute I for both Z1 and Z2, y for Z3 and S for X to yield the
step (λx.Ix(λy.Ixy))S → IS(λy.ISy). With this remark, most of the properties
of residuals hold for TRSs and thus might look more natural. However, the
corresponding labeled TRS (see [24, 20]) differs from our weak labeled λ-calculus.
As mentioned in the introduction, we think that our calculus has the advantage
of staying in a subtheory of the classical λ-calculus.



7 Conclusion

In this paper, we recalled the definitions and basic properties of the weak λ-
calculus introduced in [18]. This calculus follows the standard presentations of
the λ-calculus, since the classical (strong) λ-calculus is an extension of it.

We presented a weak labeled λ-calculus which is a confluent theory of sharing
for the weak λ-calculus. We stated that it corresponds to the representation of
terms in Wadsworth’s dag implementations but a very precise connection has
still to be formalized.

The correspondence between the labeled λ-calculus and the calculus of shar-
ing with explicit substitutions could also be studied as in [18]. This would make
a bridge with the call-by-need strategies used in the evaluation of functional
programs. One can also relate supercombinators and the shared structures for
evaluating them in lazy languages to our calculus. A similar approach with re-
spect to frameworks with a let statement could also be studied, although these
research directions are not focused on basic syntactic properties such as conflu-
ence. (Notice that our calculus has no critical pairs.)

The theory of optimal reductions inside the weak λ-calculus is missing in
this article, although one might easily guess it following the one of the classical
λ-calculus. It remains to achieve it.

Finally, many of the results of this paper were considered as folk theorems,
rather easy to prove. We hope to have shown that some of the proofs deserve
attention. In fact, some of them are not easy at all. This paper also showed that
the theory of the weak λ-calculus still needs more research.
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