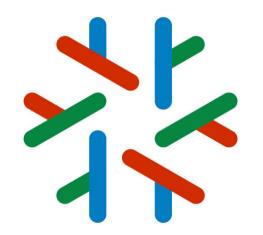
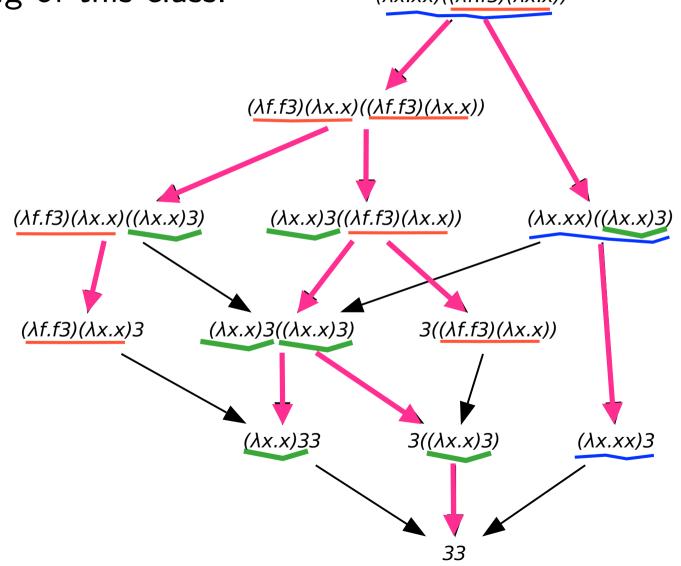
Reductions and Causality (IV)



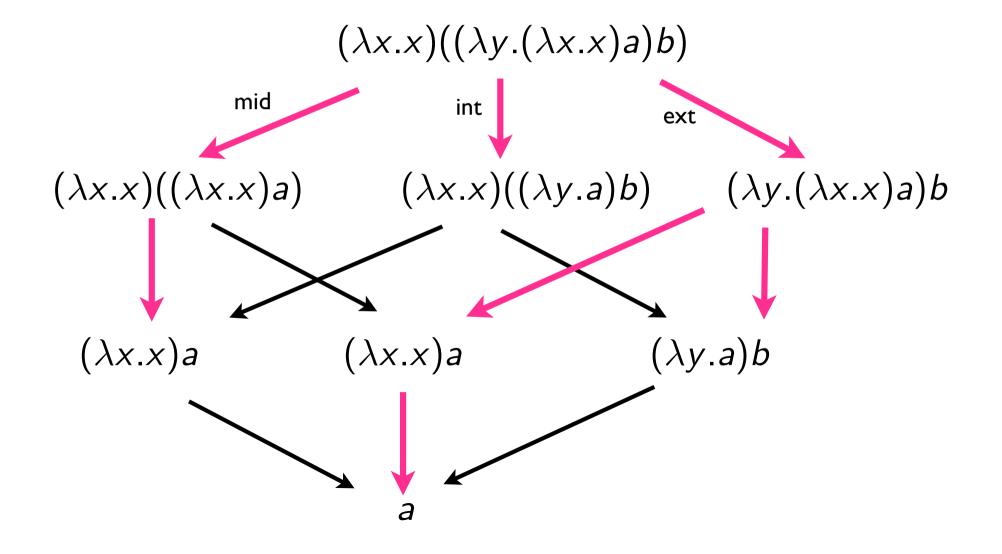
jean-jacques.levy@inria.fr Tsinghua University, November 11, 2011

http://pauillac.inria.fr/~levy/courses/tsinghua/reductions

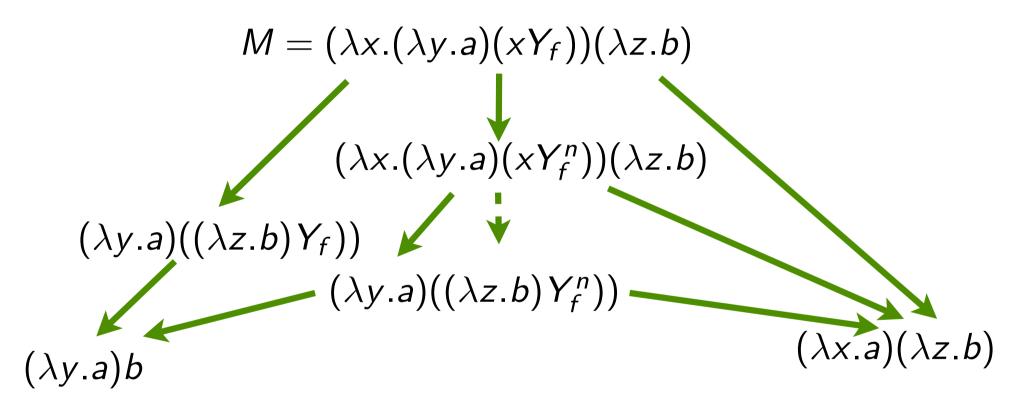
 Show all standard reductions in the 2 reduction graphs of beginning of this class. (λx.xx)((λf.f3)(λx.x))



• Show all standard reductions in the 2 reduction graphs of beginning of this class.



• Find an example where there is no greatest lower bound of 2 reductions. (Hint: you should use *K*-terms)



$$Y_f = (\lambda x.f(xx))(\lambda x.f(xx))$$

- Show that there is inf-lattice of reductions in $\lambda \text{I-calculus}.$

 $\rho_{\rm st}: M \xrightarrow{} N, \ \sigma_{\rm st}: M' \xrightarrow{} N, \ \tau: M \xrightarrow{} M'$

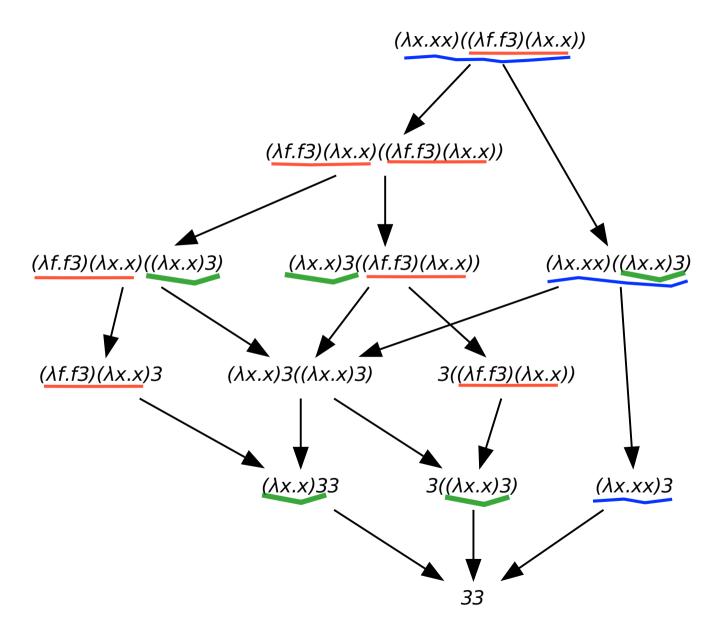
then $|\rho_{\rm st}| \ge |\sigma_{\rm st}| + |\tau|$

Plan

- redexes and their history
- creation of redexes
- redex families
- finite developments
- finite developments+
- infinite reductions, strong normalization

Redex families

Initial redexes - new redexes



Red and blue are initial redexes. Green is new.

Redexes and their history (1/3)

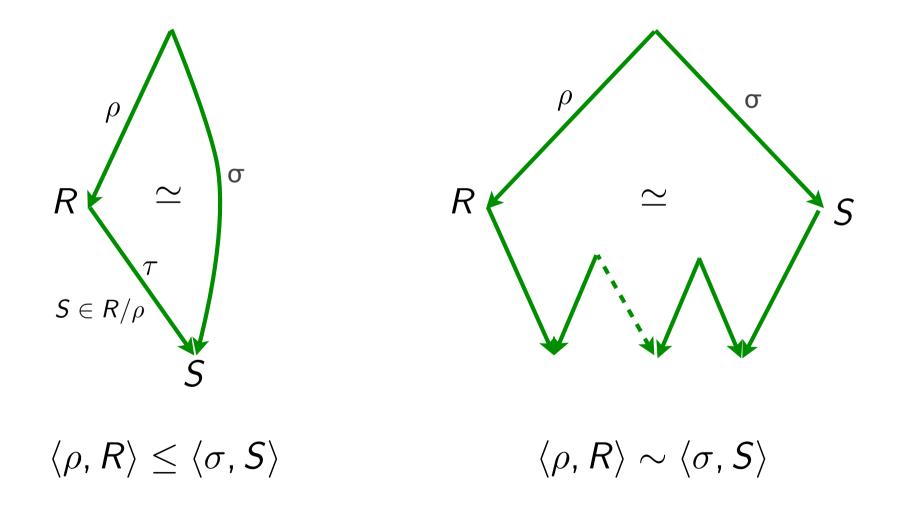
- Notation [historical redexes] We write $\langle \rho, R \rangle$ when $\rho : M \xrightarrow{\star} N$ and R is redex in N.
- **Definition** [copies of redexes]

 $\langle \rho, R \rangle \leq \langle \sigma, S \rangle$ when $\rho \sqsubseteq \sigma$ and $S \in R/(\sigma/\rho)$

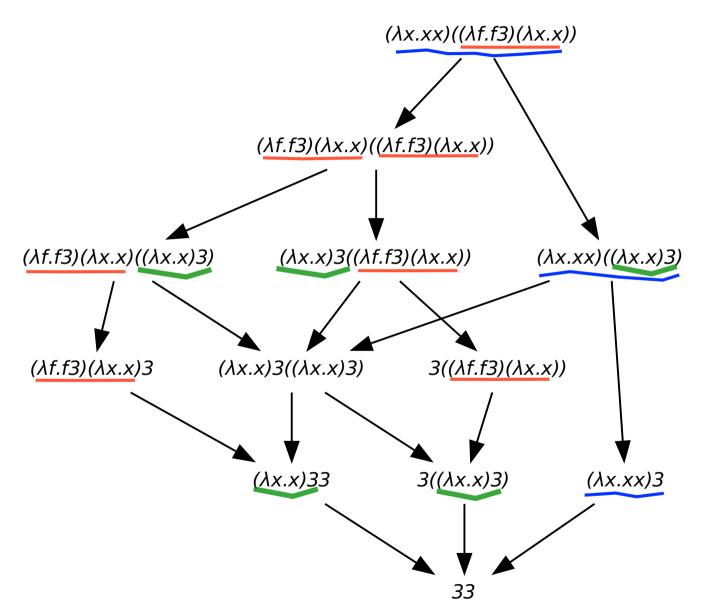
• **Definition** [redex families]

 $\langle \rho, R \rangle \sim \langle \sigma, S \rangle$ stands for the symmetric and transitive closure of the copy relation.

Redexes and their history (2/3)

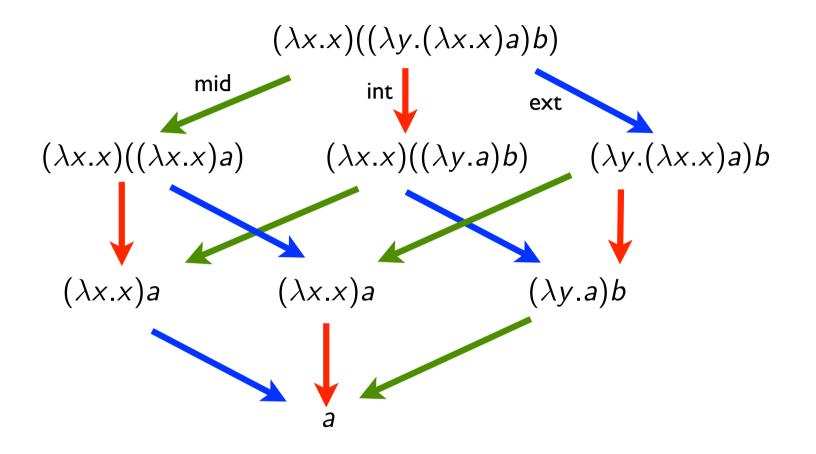


Redex families (1/3)



• 3 redex families: red, blue, green.

Redex families (2/3)



• 3 redex families: red, blue, green.

Redexes families (3/3)

• Proposition

- (a) $T \in R/\rho, T \in S/\rho$ implies R = S
- (b) $ho\simeq\sigma$ implies $R/
 ho=R/\sigma$

(c)
$$\langle \rho, R \rangle \leq \langle \tau, T \rangle, \langle \sigma, S \rangle \leq \langle \tau, T \rangle$$
 implies $\langle \rho, R \rangle \leq \langle \rho \sqcup \sigma, T' \rangle \leq \langle \tau, T \rangle, \\ \langle \sigma, S \rangle \leq \langle \rho \sqcup \sigma, T' \rangle \leq \langle \tau, T \rangle$

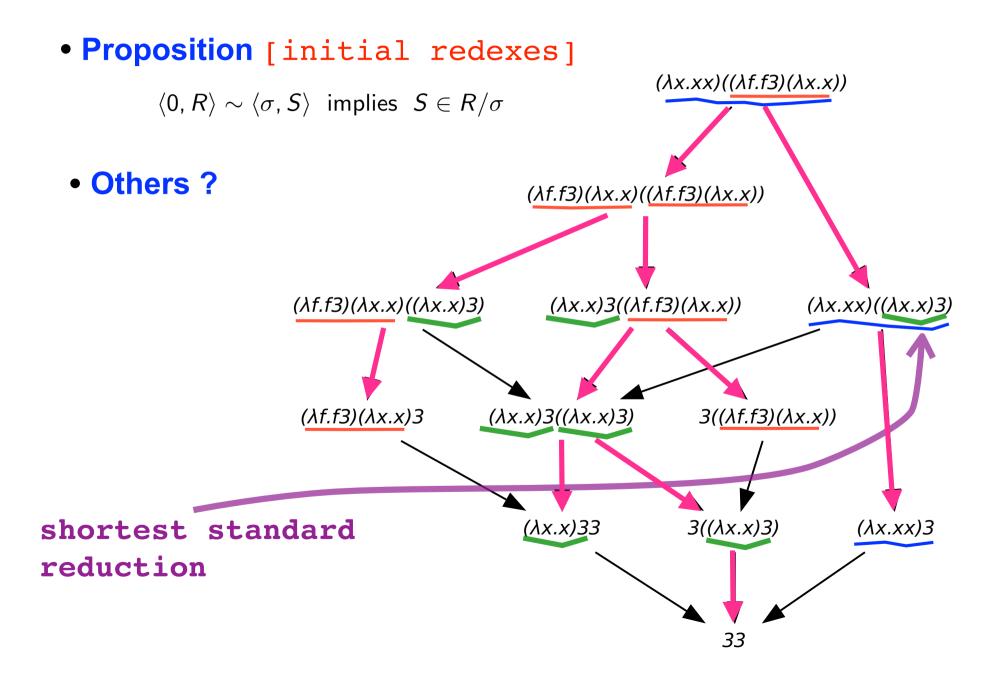
(d)
$$\langle \rho, R \rangle \leq \langle \tau, T \rangle, \langle \sigma, S \rangle \leq \langle \tau, T \rangle$$
 does not implies $\langle \tau_0, T_0 \rangle \leq \langle \rho, R \rangle, \langle \tau_0, T_0 \rangle \leq \langle \sigma, S \rangle$ for some $\langle \tau_0, T_0 \rangle$

(e) $\langle \rho, R \rangle \sim \langle \sigma, S \rangle$ does not implies $\langle \tau_0, T_0 \rangle \leq \langle \rho, R \rangle$, $\langle \tau_0, T_0 \rangle \leq \langle \sigma, S \rangle$ for some $\langle \tau_0, T_0 \rangle$

(f) $\langle \rho, R \rangle \sim \langle \sigma, S \rangle$ does not implies $\langle \rho, R \rangle \leq \langle \tau_0, T_0 \rangle$, $\langle \sigma, S \rangle \leq \langle \tau_0, T_0 \rangle$ for some $\langle \tau_0, T_0 \rangle$

• Question Is there a canonical redex in each family ?

Canonical representatives (1/4)



Canonical representatives (2/4)

• Definition [extraction of canonical redex] Let $M = (\lambda x.P)QM_1M_2 \cdots M_n$ and $\langle \rho_{st}, R \rangle$ be historical redex from M and H is head redex in M.

 $extract(H; \rho_{st}, R) = H; extract(\rho_{st}, R)$

Finite developments

Parallel steps revisited (1/3)

- parallel steps were defined with inside-out strategy
 [a la Martin-Löf]
- can we take any order as reduction strategy ?
- Definition A reduction relative to a set *F* of redexes in *M* is any reduction contracting only residuals of *F*.
 A development of *F* is any maximal relative reduction of *F*.

Parallel steps revisited (2/3)

• Theorem [Finite Developments, Curry, 50]

Let \mathcal{F} be set of redexes in M.

- (1) there are no infinite relative reductions of \mathcal{F} ,
- (2) they all finish on same term N
- (3) Let R be redex in M. Residuals of R by all finite developments of \mathcal{F} are the same.
- Similar to parallel moves lemma, but we considered particular inside-out reduction strategy.

Parallel steps revisited (3/3)

- Notation' [parallel reduction steps] Let \mathcal{F} be set of redexes in M. We write $M \xrightarrow{\mathcal{F}} N$ if a development of \mathcal{F} connects M to N.
- This notation is consistent with previous results
- Corollaries of FD thm are also parallel moves + cube lemmas

Finite and infinite reductions (1/3)

Definition A reduction relative to a set *F* of redex families is any reduction contracting redexes in families of *F*.
A development of *F* is any maximal relative reduction.

- Theorem [Finite Developments+, 76] Let \mathcal{F} be a finite set of redex families.
 - (1) there are no infinite reductions relative to \mathcal{F} ,
 - (2) they all finish on same term N
 - (3) All developments are equivalent by permutations.

Finite and infinite reductions (2/3)

• Corollary An infinite reduction contracts an infinite set of redex families.

• **Corollary** The first-order typed λ -calculus strongly terminates.

Proof In first-order typed λ -calculus:

- (1) residuals $R' = (\lambda x.M')N'$ of $R = (\lambda x.M)N$ keep the same type of the function part
- (2) new redexes have lower type of their function part

Finite and infinite reductions (3/3)

Proof (cont'd) Created redexes have lower type

$$(\lambda x. \cdots x N \cdots) (\lambda y. M) \longrightarrow \cdots (\lambda y. M) N' \cdots$$

$$\sigma \rightarrow \tau \qquad \sigma$$

creates

$$(\lambda x.\lambda y.M)NP \rightarrow (\lambda y.M')P$$

$$\tau$$

$$\sigma \rightarrow \tau$$

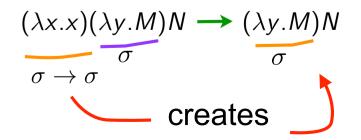
$$\tau$$

$$\tau$$

$$\tau$$

$$\tau$$

$$\tau$$



Inside-out reductions

• **Definition:** The following reduction is **inside-out**

$$\rho: M = M_0 \xrightarrow{R_1} M_1 \xrightarrow{R_2} M_2 \cdots \xrightarrow{R_n} M_n = N$$

iff for all *i* and *j*, *i* < *j*, then R_j is not residual along ρ of some R'_i inside R_i in M_{i-1} .

• Theorem [Inside-out completeness, 74] Let $M \xrightarrow{*} N$. Then $M \xrightarrow{*} P$ and $N \xrightarrow{*} P$ for some P.

