Reductions and Causality (III)

jean-jacques.levy@inria.fr Tsinghua University, November 7, 2011

http://pauillac.inria.fr/~levy/courses/tsinghua/reductions

Plan

- properties of equivalence by permutations
- beyond lambda-calculus
- · prefix ordering
- · properties of prefix ordering
- · the lattice of reductions
- canonical reductions

Equivalence by permutations

• Definition:

Let ρ and σ be 2 coinitial reductions. Then ρ is equivalent to σ by permutations, $\rho \simeq \sigma$, iff:

CENTRE DE RECHERCHE COMMUN

INRIA MICROSOFT RESEARCH

$$ho/\sigma=\emptyset^m$$
 and $\sigma/
ho=\emptyset^n$

• Notice that $\rho \simeq \sigma$ means that ρ and σ are cofinal

Equivalence by permutations

• In this case, all coinitial&cofinal reductions are equivalent

Equivalence by permutations

• In this case, all coinitial&cofinal reductions are not equivalent

Equivalence by permutations

• New reduction graph with equivalent reductions

Properties of perm. equivalence (1/3)

- Proposition
- (a) $ho\simeq\sigma$ iff $orall au,\ au/
 ho= au/\sigma$
- $\textit{(b)} \quad \rho \sqcup \sigma \simeq \sigma \sqcup \rho$
- (c) $\rho\simeq\sigma$ implies $ho/\tau\simeq\sigma/ au$
- $\text{(d)} \quad \rho\simeq\sigma \ \, \text{iff} \ \, \tau;\rho\simeq\tau;\sigma$
- $({\it e}) \quad \rho\simeq\sigma \ \ {\rm implies} \ \ \rho;\tau\simeq\sigma;\tau$
- Proof
- (a) $\rho \simeq \sigma$ means $\sigma/\rho = \emptyset^n$. Therefore $\tau/\rho = (\tau/\rho)/(\sigma/\rho)$. That is $\tau/\rho = \tau/(\rho \sqcup \sigma)$. Similarly $\tau/\sigma = \tau/(\sigma \sqcup \rho)$. But cube lemma says $\tau/(\rho \sqcup \sigma) = \tau/(\sigma \sqcup \rho)$. Therefore $\tau/\rho = \tau/\sigma$. Conversely take $\tau = \rho$ and $\tau = \sigma$.

Properties of perm. equivalence (2/3)

• Proposition

- (a) $\rho\simeq\sigma$ iff $\forall au$, $au/
 ho= au/\sigma$
- $\textit{(b)} \quad \rho \sqcup \sigma \simeq \sigma \sqcup \rho$
- (c) $\rho\simeq\sigma$ implies $ho/\tau\simeq\sigma/ au$
- $(\textit{d}) \quad \rho\simeq\sigma \ \, \text{iff} \ \, \tau;\rho\simeq\tau;\sigma$
- $\text{(e)} \quad \rho\simeq\sigma \ \ \text{implies} \ \ \rho;\tau\simeq\sigma;\tau$

• Proof

(b) (d) (e) Obvious by definition of residual.

(c)
$$(\rho/\tau)/(\sigma/\tau) = \rho/(\tau \sqcup \sigma) = \rho/(\sigma \sqcup \tau)$$

= $(\rho/\sigma)/(\tau/\sigma) = \emptyset^m$ by (a) and (b).

Properties of perm. equivalence (3/3)

- Proposition \simeq is the smallest congruence containing

 $0\simeq \emptyset$

Context-free languages

• permutations of derivations in contex-free languages

• each parse tree corresponds to an equivalence class of derivations

Term rewriting

- permutations of derivations are defined with critical pairs
- critical pairs make conflicts
- only 2nd definition of equivalence works for linear TRS [Boudol, 1982]

Process algebras

• similar to TRS [Boudol-Castellani, 1988]

Weak memory models

• speculative computations [Boudol-Petri, 2009]

Prefix ordering (1/4)

• Definition:

Let ρ and σ be 2 coinitial reductions. Then ρ is prefix of σ by permutations, $\rho \sqsubseteq \sigma$, iff $\rho/\sigma = \emptyset^m$

- Notice that $\rho \sqsubseteq \sigma$ means that $\rho \sqcup \sigma \simeq \sigma$

Properties of prefix ordering

• Proposition

- (a) $\rho \sqsubseteq \sigma \sqsubseteq \rho$ iff $\rho \simeq \sigma$
- (b) \Box is an ordering relation
- (c) $\rho\simeq \rho'\sqsubseteq \sigma'\simeq \sigma$ implies $\rho\sqsubseteq \sigma$
- (d) $\rho \sqsubseteq \sigma$ iff $\tau; \rho \sqsubseteq \tau; \sigma$
- (e) $\rho \sqsubseteq \sigma$ implies $\rho / \tau \sqsubseteq \sigma / \tau$
- (f) $\rho \sqsubseteq \sigma$ iff $\exists \tau, \ \rho; \tau \simeq \sigma$
- (g) $\rho \sqsubseteq \sigma$ iff $\rho \sqcup \sigma \simeq \sigma$

Properties of prefix ordering

Properties of prefix ordering

- Proposition [lattice of reductions] $\rho \sqsubseteq \rho \sqcup \sigma$ $\sigma \sqsubseteq \rho \sqcup \sigma$ $\rho \sqsubseteq \tau, \ \sigma \sqsubseteq \tau \text{ implies } \rho \sqcup \sigma \sqsubseteq \tau$
- **Proof** First two, already proved.

Let $\rho \sqsubseteq \tau$, $\sigma \sqsubseteq \tau$. Then $(\rho \sqcup \sigma)/\tau$ $= (\rho/\tau); ((\sigma/\rho)/(\tau/\rho))$ $= \emptyset^m; \sigma/(\rho \sqcup \tau)$ $= \emptyset^m; (\sigma/\tau)/...$ $= \emptyset^m; (\emptyset^n/... = \emptyset^m; \emptyset^n$

Standard reductions (1/6)

- When R is a single redex, we write freely R/\mathcal{F} for $\{R\}/\mathcal{F}$ or \mathcal{F}/R for $\mathcal{F}/\{R\}$.
- Proposition:

1

Let *R* be a redex to the left of \mathcal{F} . Then R/\mathcal{F} is a singleton.

• Definition: The following reduction is standard

$$o: M = M_0 \xrightarrow{R_1} M_1 \xrightarrow{R_2} M_2 \cdots \xrightarrow{R_n} M_n = N$$

iff for all *i* and *j*, i < j, then R_j is not residual along ρ of some R'_j to the left of R_i in M_{i-1} .

Standard reductions (2/6)

Standard reductions (3/6)

• Standardization thm[Curry 50]

Let $M \xrightarrow{\star} N$. Then $M \xrightarrow{\star} N$.

Any reduction can be performed outside-in and left-to-right.

Standard reductions (4/6)

• Standardization thm +

Any ρ has a unique σ standard equivalent by permutations.

 $\forall \rho, \exists! \sigma_{st}, \rho \simeq \sigma_{st}$

Standard reductions are canonical representatives in their equivalence class by permutations.

Standard reductions (5/6)

• Lemma (left-to-right creation) [O'Donnell] Let R be redex to the left of redex S in M. Let $M \xrightarrow{S} N$. If T' is redex in N to the left of the residual R' of R, T' is residual of a redex T in M.

$$M = \cdots \underbrace{((\lambda x. \cdots S \cdots)B)}_{R} \cdots \longrightarrow \cdots \underbrace{((\lambda x. \cdots S' \cdots)B)}_{R} \cdots = N$$
$$M = \cdots \underbrace{((\lambda x. A)(\cdots S \cdots))}_{R} \cdots \longrightarrow \cdots \underbrace{((\lambda x. A)(\cdots S' \cdots))}_{R} \cdots = N$$
$$M = \cdots \underbrace{((\lambda x. A)B)}_{R} \cdots S \cdots \longrightarrow \cdots \underbrace{((\lambda x. A)B)}_{N} \cdots S' \cdots = N$$

One cannot create a new redex across another left one.

Standard reductions (6/6)

• Lemma If R to the left of R_1 and ρ is standard reduction starting with contracting R_1 . Then $R/\rho \neq \emptyset$.

Proof: application of previous lemma.

Proof of unicity of standard reduction in each equivalence class

Let ρ and σ be standard and $\rho \simeq \sigma$.

They start with same reduction and differ at some point. Say that ρ is more to the left than σ . Then at that point redex *R* contracted by ρ has (unique) residual by σ . Therefore $\rho \not\simeq \sigma$.

Exercices

- Show all standard reductions in the 2 reduction graphs of beginning of this class.
- Show that all reductions to normal form are equivalent.
- Show that there is a single standard reduction to normal form. What is that reduction ?
- Find an example where there is no greatest lower bound of 2 reductions. (Hint: you should use *K*-terms)
- Show that there is inf-lattice of reductions in $\lambda \text{l-calculus.}$
- Draw lattice of reductions of $\Delta\Delta$ ($\Delta = \lambda x.xx$).
- What are standard reductions in derivations of context-free languages ?