Lambda-Calculus (III-6)

jean-jacques.levy@inria.fr Tsinghua University, September 17, 2010

Plan

- Bohm trees -- reminders
- Morris extensional equivalence
- Bohm trees and η -rule
- Observational equivalences
- Relation with Scott's models

Bohm tree semantics - reminders

- Theorem [continuity] For all b ∈ N such that b ⊑ C[M], then b ⊑ C[a] for some a ∈ N such that a ⊑ M.
- **Theorem [monotony]** $M \sqsubseteq N$ implies $C[M] \sqsubseteq C[N]$
- **Theorem [\lambda-theory]** $M \equiv N$ implies $C[M] \equiv C[N]$

Proofs: easy consequences of previous proofs.

Approximations and ŋ-rule

Bohm tree and η-rule

• Functional extensionality has not been considered since we can have:

 $MP \equiv NP$ for all P, but $M \not\equiv N$.

(Take M = x and $N = \lambda y.xy$)

- We need take η -rule into account ! How to mix η -rule and Bohm tree construction ?
- We take for granted that $\stackrel{*}{\longrightarrow}_{\eta}$ and $\stackrel{*}{\longrightarrow}_{\beta,\eta}$ are confluent. Moreover $\stackrel{*}{\longrightarrow}_{\eta}$ strongly normalizes.
- The prefix ordering between approximants must be extended. For instance:

 $\lambda x.y\Omega \leq \lambda x.yx =_{\eta} y$

 $x\Omega =_{\eta} \lambda y. x\Omega y \le \lambda y. xyy$

Finite approximants

• We consider the set \mathcal{N}^e of η -normal forms of finite approximants with following relation:

$$a\leq^e b$$
 iff $a\ (\leq\cup=_\eta)^*\ b$

• Lemma : We have following commutation properties:

$$\begin{array}{ccc} \longrightarrow_{\eta} \leq & \subset & \leq \longrightarrow_{\eta} \\ \\ \leq \longleftarrow_{\eta} & \subset & \longleftarrow_{\eta} \leq \\ \\ \longrightarrow_{\eta} \longleftarrow_{\eta} & \subset & \longleftarrow_{\eta} \longrightarrow_{\eta} \end{array}$$

- Corollary: $a \leq^{e} b$ iff $a \xleftarrow{}_{\eta} a' \leq b' \xleftarrow{}_{\eta} b$
- Examples:

$$\lambda y. x\Omega \leq \lambda y. xy \xrightarrow{\star}_{\eta} x$$
$$x\Omega \xleftarrow{\star}_{\eta} \lambda y. x\Omega y \leq \lambda y. xyy$$

Extensional Bohm trees

- **Definition :** Let $\omega^{e}(M)$ be the η -normal form of $\omega(M)$.
- **Definition :** The extensional Bohm tree $BT^{e}(M)$ of M is defined by:

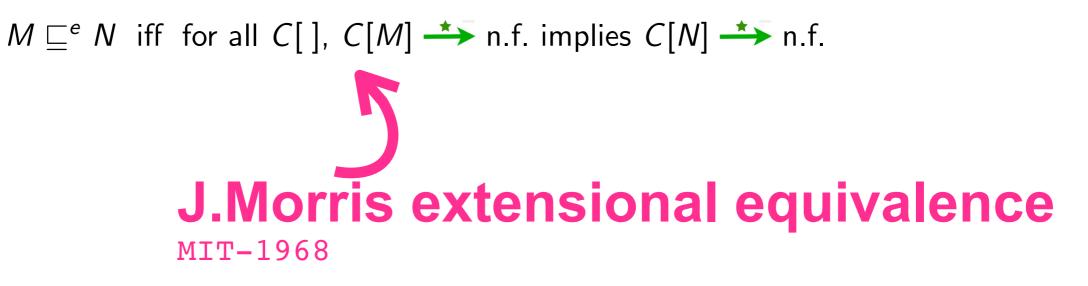
 $\mathsf{BT}^{e}(M) = \{ a \in \mathcal{N}^{e} \mid a \leq^{e} \omega^{e}(N), M \xrightarrow{\star} N \}$

• **Definition :** Extensional Bohm tree semantics

 $M \sqsubseteq^{e} N$ iff $BT^{e}(M) \subset BT^{e}(N)$ $M \equiv^{e} N$ iff $BT^{e}(M) = BT^{e}(N)$

Extensional Bohm trees

- **Theorem** : \sqsubseteq^{e} is a monotonic semantics and \equiv^{e} forms a λ -theory.
- Theorem [Hyland, 1975]:



Closed Bohm trees

Finite Bohm trees revisited

- We just added η-rule to the standard Bohm tree construction with completion by ideals.
- However, we forgot slight difficulty: now, thanks to η-rule, finite Bohm tree now dominates an infinite number of other finite Bohm trees. See:

$$a_{\infty} = x$$

$$l_{\infty} = \{a \in \mathcal{N}^{e} \mid a \leq e x\}$$

$$u_{n=0}^{\infty} l_{n}$$

$$added by ideal completion$$

$$a_{3} = \lambda x_{1}.x(\lambda x_{2}.x_{1}(\lambda x_{3}.x_{2}\Omega))$$

$$l_{3} = \{a \in \mathcal{N}^{e} \mid a \leq e a_{3}\}$$

$$l_{2} = \{a \in \mathcal{N}^{e} \mid a \leq e a_{2}\}$$

$$l_{1} = \{a \in \mathcal{N}^{e} \mid a \leq e a_{1}\}$$

$$l_{0} = \{\Omega\}$$

Finite Bohm trees revisited

- There are two ways of completing finite Bohm trees.
 - 1- standard completion by ideals (what we did)
 - 2- completion with closed ideals (does not add new limit point)
 - We define the closure of directed sets as being the set with its already existing limit in $\mathcal{N}^{\rm e}$

$$\mathsf{BT}^{e}_{c}(M) = \mathsf{cl}(\mathsf{BT}^{e}_{c}(M))$$

• We therefore have:

 $I \equiv_{cl}^{e} J$ where $J = Y(\lambda fxy.x(fy))$

• and normal forms are no longer isolated points.

Finite Bohm trees revisited

 The equality between *I* and *J* is not so unnatural since one may emulate infinite ηexpansion with the β-rule:

$$I = \lambda x.x \quad \longleftarrow_{\eta} \quad \lambda xx_1.xx_1$$

$$\leftarrow_{\eta} \quad \lambda xx_1.x(\lambda x_2.x_1x_2)$$

$$\leftarrow_{\eta} \quad \lambda xx_1.x(\lambda x_2.x_1(\lambda x_3.x_2x_3))$$

$$\leftarrow_{\eta} \quad \dots$$

$$= Y(\lambda fxx_1.x(fx_1)) =_{\beta} \quad \lambda xx_1.x(Jx_1)$$

$$=_{\beta} \quad \lambda xx_1.x(\lambda x_2.x_1(Jx_2))$$

$$=_{\beta} \quad \lambda xx_1.x(\lambda x_2.x_1(\lambda x_3.x_2(Jx_3)))$$

$$=_{\beta} \quad \dots$$

• same phenomenon as for these two versions of identity on natural numbers:

$$egin{array}{rcl} I(n) & \Leftarrow & n \ J(n) & \Leftarrow & ext{if} \ n = 0 ext{ then } 1 ext{ else } 1 + J(n-1) \end{array}$$

Bohm trees and Scott's models

- We have following correspondances:
 - **1** $M \sqsubseteq_{c}^{e} N$ iff $M \sqsubseteq_{D_{\infty}} N$ (Scott's model)
 - **2-** $M \sqsubseteq N$ iff $M \sqsubseteq_{T^{\omega}} N$ (Plotkin's model)
- One can also show that:
 - **3-** $M \sqsubseteq^{e+} N$ iff $M \sqsubseteq_{P\omega} N$ (Scott's model)

where \sqsubseteq^{e+} is Bohm tree construction from $\checkmark_{\eta} \leq$ ordering on \mathcal{N}^{e} .

• finally, one may order Bohm trees with symmetrical:

$$4- M \sqsubseteq^{e-} N$$

where \sqsubseteq^{e^-} is Bohm tree construction from $\leq \stackrel{*}{\longrightarrow}_{\eta}$ ordering on \mathcal{N}^e .

Observational equivalences

- To conclude we have the following results:
 - **1-** $M \sqsubseteq_c^e N$ iff for all contexts $C[], C[M] \xrightarrow{} hnf$ implies $C[N] \xrightarrow{} hnf$

2- $M \sqsubseteq^{e} N$ iff for all contexts $C[], C[M] \xrightarrow{\bullet}$ nf implies $C[N] \xrightarrow{\bullet}$ nf

• Making observational equivalences with other Bohm tree semantics is more difficult since one has to fight with η -equality. Take for instance $\lambda x.xx$ and $\lambda x.x(\lambda y.xy)$

Homeworks

CENTRE DE RECHERCHE COMMUN

Exercices

- 1- Show that if *M* has no hnf, then *M* is totally undefined.
- **2-** Show $\Omega M \equiv \Omega$ and $\lambda x \Omega \equiv \Omega$. Show that $M \longrightarrow_{\omega} N$, then $M \equiv N$.
- **3-** Find *M* and *N* such that $MP \equiv NP$ for all *P*, but $M \neq N$. (Meaning that \equiv is not extensional)
- **4-** Show $M \not\equiv \lambda x.Mx$ when $x \not\in var(M)$. What if $M \equiv \lambda x.M_1$?
- **5-** Let $Y_0 = Y$, $Y_{n+1} = Y_n(\lambda xy.y(xy))$. Show that $Y \equiv Y_n$ for all n. However all Y_n are pairwise non interconvertible.
- 6 If $M \le P$ and $N \le P$ (M and N are prefix compatible), then $BT(M \sqcap N) = BT(M) \cap BT(N)$. (Thus BT is stable in Berry's sense, 1978). What if not compatible ?

Exercices

7- [Barendregt 1971]

A closed expression M (i.e. $var(M) = \emptyset$) is solvable iff: $\forall P, \exists N_1, N_2, \dots N_n$ such that $MN_1N_2 \cdots N_n =_{\beta} P$ (in short:

 $\forall P, \exists \vec{N}, M\vec{N} =_{\beta} P$)

Show that for every closed term M, the following are equivalent:

- 1. M has a hnf
- 2. $\exists \vec{N}, M\vec{N}$ has a normal form
- 3. $\exists \vec{N}, \ M\vec{N} =_{\beta} I$
- 4. *M* is solvable

8- [Barendregt 1974]

Show that, in the λ I-calculus, a term M is solvable iff it has a normal form.

Exercices

9- Let R be a preorder on N (reflexive + transitive) compatible with its structure:
a₁ R b₁,... a_n R b_n implies xa₁a₂... a_n
a R b implies λx.a R λx.b
Let M ⊑_R N iff ∀a ∈ BT(M), ∃b ∈ BT(N), a R b
Show that when M is a closed term, one has:
∀P, MP ⊑_R NP iff ∀C[], C[M] ⊑_R C[N]

- **10-** (cont'd 1) Let $M \mathcal{R} N$ be "if M has a normal form, then N has a normal form" Give examples of M and N such that $M \sqsubseteq_{\mathcal{R}} N$ but $M \not\sqsubseteq N$.
- **11-** (cont'd 2) Let $M \mathcal{R} N$ be "if M has a hnf, then N has a hnf" Give examples of M and N such that $M \sqsubseteq_{\mathcal{R}} N$ but $M \not\sqsubseteq N$.
- **12-** (cont'd 2) Let $M \mathcal{R} N$ be "if M has a hnf, then N has a similar hnf" Give examples of M and N such that $M \sqsubseteq_{\mathcal{R}} N$ but $M \not\sqsubseteq N$. (Hint: consider $M = \lambda x.xx$ and $N = \lambda x.x(\lambda y.xy)$) [Compare with Hyland 1975])