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Plan

• Bohm trees -- reminders

• Morris extensional equivalence

• Bohm trees and η-rule

• Observational equivalences

• Relation with Scott’s models



Bohm tree semantics - reminders

• Theorem [continuity] For all b ∈ N such that b � C [M], then b � C [a]

for some a ∈ N such that a � M.

• Theorem [monotony] M � N implies C [M] � C [N]

• Theorem [λ-theory] M ≡ N implies C [M] ≡ C [N]

Proofs: easy consequences of previous proofs.



Approximations and 
η-rule



Bohm tree and η-rule

• We need take η-rule into account ! How to mix η-rule and Bohm tree construction ?

• Functional extensionality has not been considered since we can have:

MP ≡ NP for all P, but M �≡ N.

(Take M = x and N = λy .xy)

• We take for granted that η and β,η are confluent.

Moreover η strongly normalizes.

• The prefix ordering between approximants must be extended. For instance:

xΩ =η λy .xΩy ≤ λy .xyy

λx .yΩ ≤ λx .yx =η y



Finite approximants

• Lemma : We have following commutation properties:

• We consider the set        of η-normal forms of finite approximants with following 
relation:

N e

a ≤e b iff a (≤ ∪ =η)∗ b

η ≤ ⊂ ≤ η

≤ η ⊂ η ≤

η η ⊂ η η

• Corollary: a ≤e b iff a η a� ≤ b�
η b

• Examples: 

λy .xΩ ≤ λy .xy η x

xΩ η λy .xΩy ≤ λy .xyy



Extensional Bohm trees
• Definition : Let ωe(M) be the η-normal form of ω(M).

• Definition : The extensional Bohm tree BTe(M) of M is defined by:

BTe(M) = {a ∈ N e | a ≤e ωe(N), M N}

M �e N iff BTe(M) ⊂ BTe(N)

M ≡e N iff BTe(M) = BTe(N)

• Definition : Extensional Bohm tree semantics



Extensional Bohm trees

• Theorem : �e is a monotonic semantics and ≡e forms a λ-theory.

• Theorem [Hyland, 1975]: 

M �e N iff for all C [ ], C [M] n.f. implies C [N] n.f.

J.Morris extensional equivalence
MIT-1968



Closed Bohm trees



Finite Bohm trees revisited

• We just added η-rule to the standard Bohm tree construction with completion by 
ideals.

• However, we forgot slight difficulty: now, thanks to η-rule, finite Bohm tree now 
dominates an infinite number of other finite Bohm trees. See:

a0 = Ω

a1 = λx1.xΩ

a2 = λx1.x(λx2.x1Ω)

a3 = λx1.x(λx2.x1(λx3.x2Ω))

I0 = {Ω}

I1 = {a ∈ N e | a ≤e a1}

I2 = {a ∈ N e | a ≤e a2}

I3 = {a ∈ N e | a ≤e a3}

I∞ = {a ∈ N e | a ≤e x}
�∞

n=0 In

a∞ = x

new point
added by ideal completion



Finite Bohm trees revisited

• There are two ways of completing finite Bohm trees.

standard completion by ideals (what we did)

completion with closed ideals (does not add new limit point)

1- 

2- 

BTe
c(M) = cl(BTe

c(M))

• We define the closure of directed sets as being the set with its already 
existing limit in N e

• We therefore have:

I ≡e
cl J where

J = Y (λfxy .x(fy))

• and normal forms are no longer isolated points.



Finite Bohm trees revisited

• The equality between I and J is not so unnatural since one may emulate infinite η-
expansion with the β-rule: 

I = λx .x η λxx1.xx1

η λxx1.x(λx2.x1x2)

η λxx1.x(λx2.x1(λx3.x2x3))

η ...

J = Y (λfxx1.x(fx1)) =β λxx1.x(Jx1)

=β λxx1.x(λx2.x1(Jx2))

=β λxx1.x(λx2.x1(λx3.x2(Jx3)))

=β ...

.

• same phenomenon as for these two versions of identity on natural numbers:

I (n) ⇐ n

J(n) ⇐ if n = 0 then 1 else 1 + J(n − 1)
.



Bohm trees and Scott’s models

• We have following correspondances:

1- 

2- 

M �e
c N iff M �D∞ N

M � N iff M �Tω N

(Scott’s model)

(Plotkin’s model)

• One can also show that:

3- M �e+ N iff M �Pω N (Scott’s model)

where �e+ is Bohm tree construction from η≤ ordering on N e .

• finally, one may order Bohm trees with symmetrical:

4- M �e− N

where �e− is Bohm tree construction from ≤ η ordering on N e .



Observational equivalences

• To conclude we have the following results:

1- 

2- 

M �e
c N iff for all contexts C [ ], C [M] hnf implies C [N] hnf

M �e N iff for all contexts C [ ], C [M] nf implies C [N] nf

• Making observational equivalences with other Bohm tree semantics is more difficult 
since one has to fight with η-equality. Take for instance λx .xx and λx .x(λy .xy)



Homeworks



Exercices
1- Show that if M has no hnf, then M is totally undefined.

2- Show ΩM ≡ Ω and λx .Ω ≡ Ω. Show that M ω N, then M ≡ N.

4- Show M �≡ λx .Mx when x �∈ var(M). What if M ≡ λx .M1 ?

5- Let Y0 = Y , Yn+1 = Yn(λxy .y(xy)). Show that Y ≡ Yn for all n. However all Yn

are pairwise non interconvertible.

6 If M ≤ P and N ≤ P (M and N are prefix compatible), then BT(M � N) =
BT(M) ∩ BT(N). (Thus BT is stable in Berry’s sense, 1978). What if not com-
patible ?

3- Find M and N such that MP ≡ NP for all P, but M �≡ N. (Meaning that ≡ is
not extensional)



Exercices
7- [Barendregt 1971]

A closed expression M (i.e. var(M) = ∅) is solvable iff:

∀P, ∃N1,N2, ...Nn such that MN1N2 · · · Nn =β P

(in short:

∀P, ∃�N, M�N =β P )

Show that for every closed term M, the following are equivalent:

1. M has a hnf

2. ∃�N, M�N has a normal form

3. ∃�N, M�N =β I

4. M is solvable

8- [Barendregt 1974]

Show that, in the λI-calculus, a term M is solvable iff it has a normal form.



Exercices
9- Let R be a preorder on N (reflexive + transitive) compatible with its structure:

a1 R b1, ... an R bn implies xa1a2 · · · an

a R b implies λx .a R λx .b

Let M �R N iff ∀a ∈ BT(M), ∃b ∈ BT(N), a R b

Show that when M is a closed term, one has:

∀�P, M�P �R N�P iff ∀C [ ], C [M] �R C [N]

10- (cont’d 1) Let M R N be “if M has a normal form, then N has a normal form”

Give examples of M and N such that M �R N but M �� N.

(cont’d 2) Let M R N be “if M has a hnf, then N has a hnf”

Give examples of M and N such that M �R N but M �� N.

11- 

12- (cont’d 2) Let M R N be “if M has a hnf, then N has a similar hnf”

Give examples of M and N such that M �R N but M �� N. (Hint: consider

M = λx .xx and N = λx .x(λy .xy)) [Compare with Hyland 1975])


