

Plan

- Bohm trees -- reminders
- · Morris extensional equivalence
- Bohm trees and η-rule
- · Observational equivalences
- · Relation with Scott's models

Bohm tree semantics - reminders

- Theorem [continuity] For all $b \in \mathcal{N}$ such that $b \sqsubseteq C[M]$, then $b \sqsubseteq C[a]$ for some $a \in \mathcal{N}$ such that $a \sqsubseteq M$.
- Theorem [monotony] $M \sqsubseteq N$ implies $C[M] \sqsubseteq C[N]$
- Theorem [λ -theory] $M \equiv N$ implies $C[M] \equiv C[N]$

Proofs: easy consequences of previous proofs.

Bohm tree and η-rule

• Functional extensionality has not been considered since we can have:

$$MP \equiv NP$$
 for all P , but $M \not\equiv N$.

(Take
$$M = x$$
 and $N = \lambda y.xy$)

- We need take η -rule into account! How to mix η -rule and Bohm tree construction?
- We take for granted that $\xrightarrow{*}_{\eta}$ and $\xrightarrow{*}_{\beta,\eta}$ are confluent. Moreover $\xrightarrow{*}_{\eta}$ strongly normalizes.
- The prefix ordering between approximants must be extended. For instance:

$$\lambda x.y\Omega \leq \lambda x.yx =_{\eta} y$$

$$x\Omega =_{\eta} \lambda y. x\Omega y \le \lambda y. xyy$$

Finite approximants

• We consider the set \mathcal{N}^e of η -normal forms of finite approximants with following relation:

$$a \leq^e b$$
 iff $a (\leq \cup =_{\eta})^* b$

• Lemma: We have following commutation properties:

$$\begin{array}{cccc} \longrightarrow_{\eta} \leq & \subset & \leq \longrightarrow_{\eta} \\ \leq \longleftarrow_{\eta} & \subset & \longleftarrow_{\eta} \leq \\ \longrightarrow_{\eta} \longleftarrow_{\eta} & \subset & \longleftarrow_{\eta} \longrightarrow_{\eta} \end{array}$$

- Corollary: $a \leq^e b$ iff $a \stackrel{\star}{\longleftarrow}_{\eta} a' \leq b' \stackrel{\star}{\longrightarrow}_{\eta} b$
- Examples:

$$\lambda y.x\Omega \le \lambda y.xy \xrightarrow{\bullet}_{\eta} x$$

 $x\Omega \xleftarrow{\bullet}_{\eta} \lambda y.x\Omega y \le \lambda y.xyy$

Extensional Bohm trees

- **Definition**: Let $\omega^e(M)$ be the η -normal form of $\omega(M)$.
- **Definition**: The extensional Bohm tree $BT^e(M)$ of M is defined by:

$$\mathsf{BT}^e(M) = \{ a \in \mathcal{N}^e \mid a \leq^e \omega^e(N), M \xrightarrow{\bullet} N \}$$

Definition: Extensional Bohm tree semantics

$$M \sqsubseteq^e N$$
 iff $BT^e(M) \subset BT^e(N)$
 $M \equiv^e N$ iff $BT^e(M) = BT^e(N)$

Extensional Bohm trees

- **Theorem**: \sqsubseteq^e is a monotonic semantics and \equiv^e forms a λ -theory.
- Theorem [Hyland, 1975]:

 $M \sqsubseteq^{e} N$ iff for all C[], $C[M] \xrightarrow{*}$ n.f. implies $C[N] \xrightarrow{*}$ n.f.

Finite Bohm trees revisited

- We just added η -rule to the standard Bohm tree construction with completion by ideals.
- However, we forgot slight difficulty: now, thanks to η-rule, finite Bohm tree now dominates an infinite number of other finite Bohm trees. See:

$$a_{\infty} = x$$

$$\begin{vmatrix}
I_{\infty} = \{a \in \mathcal{N}^e \mid a \leq^e x\} \\
\bigcup_{n=0}^{\infty} I_n & \text{new point} \\
added by ideal completion}
\end{vmatrix}$$

$$a_3 = \lambda x_1.x(\lambda x_2.x_1(\lambda x_3.x_2\Omega))$$

$$I_3 = \{a \in \mathcal{N}^e \mid a \leq^e a_3\}$$

$$\begin{vmatrix}
I_2 = \{a \in \mathcal{N}^e \mid a \leq^e a_2\} \\
I_3 = \{a \in \mathcal{N}^e \mid a \leq^e a_2\} \\
I_4 = \{a \in \mathcal{N}^e \mid a \leq^e a_1\} \\
I_5 = \{a \in \mathcal{N}^e \mid a \leq^e a_1\} \\
I_6 = \{\Omega\}
\end{vmatrix}$$

Finite Bohm trees revisited

- There are two ways of completing finite Bohm trees.
- 1- standard completion by ideals (what we did)
- 2- completion with closed ideals (does not add new limit point)
- We define the closure of directed sets as being the set with its already existing limit in \mathcal{N}^e

$$\mathsf{BT}^e_c(M) = \mathsf{cl}(\mathsf{BT}^e_c(M))$$

· We therefore have:

$$I \equiv_{\mathsf{cl}}^{e} J$$
 where $J = Y(\lambda f x y. x(f y))$

· and normal forms are no longer isolated points.

Finite Bohm trees revisited

 The equality between I and J is not so unnatural since one may emulate infinite ηexpansion with the β-rule:

$$I = \lambda x.x \qquad \longleftarrow_{\eta} \quad \lambda xx_1.xx_1$$

$$\longleftarrow_{\eta} \quad \lambda xx_1.x(\lambda x_2.x_1x_2)$$

$$\longleftarrow_{\eta} \quad \lambda xx_1.x(\lambda x_2.x_1(\lambda x_3.x_2x_3))$$

$$\longleftarrow_{\eta} \quad \dots$$

$$J = Y(\lambda fxx_1.x(fx_1)) =_{\beta} \quad \lambda xx_1.x(Jx_1)$$

$$=_{\beta} \quad \lambda xx_1.x(\lambda x_2.x_1(Jx_2))$$

$$=_{\beta} \quad \lambda xx_1.x(\lambda x_2.x_1(\lambda x_3.x_2(Jx_3)))$$

$$=_{\beta} \quad \dots$$

• same phenomenon as for these two versions of identity on natural numbers:

$$I(n) \Leftarrow n$$

 $J(n) \Leftarrow \text{ if } n = 0 \text{ then } 1 \text{ else } 1 + J(n-1)$

Bohm trees and Scott's models

• We have following correspondances:

```
1. M \sqsubseteq_c^e N iff M \sqsubseteq_{D_\infty} N (Scott's model)
```

2-
$$M \sqsubseteq N$$
 iff $M \sqsubseteq_{T^{\omega}} N$ (Plotkin's model)

. One can also show that:

3-
$$M \sqsubseteq^{e+} N$$
 iff $M \sqsubseteq_{P\omega} N$ (Scott's model)

where \sqsubseteq^{e+} is Bohm tree construction from $\stackrel{\star}{\longleftarrow}_{\eta} \leq$ ordering on \mathcal{N}^e .

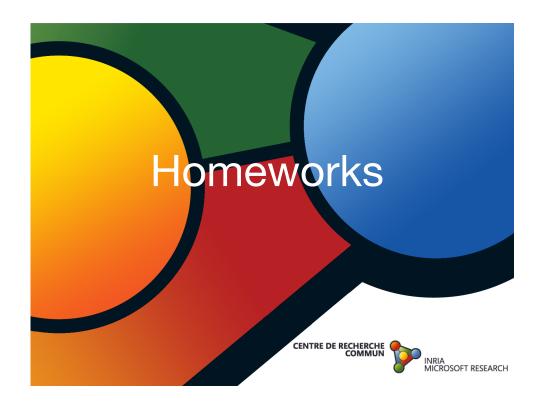
• finally, one may order Bohm trees with symmetrical:

4-
$$M \sqsubseteq^{e-} N$$

where \sqsubseteq^{e-} is Bohm tree construction from $\leq \xrightarrow{\star}_{\eta}$ ordering on \mathcal{N}^{e} .

Observational equivalences

- To conclude we have the following results:
 - **1-** $M \sqsubseteq_{c}^{e} N$ iff for all contexts C[], $C[M] \xrightarrow{*} hnf$ implies $C[N] \xrightarrow{*} hnf$
 - **2-** $M \subseteq^e N$ iff for all contexts C[], $C[M] \xrightarrow{*}$ nf implies $C[N] \xrightarrow{*}$ nf
- Making observational equivalences with other Bohm tree semantics is more difficult since one has to fight with η -equality. Take for instance $\lambda x.xx$ and $\lambda x.x(\lambda y.xy)$



Exercices

- **1-** Show that if *M* has no hnf, then *M* is totally undefined.
- **2-** Show $\Omega M \equiv \Omega$ and $\lambda x.\Omega \equiv \Omega$. Show that $M \longrightarrow_{\omega} N$, then $M \equiv N$.
- **3-** Find M and N such that $MP \equiv NP$ for all P, but $M \not\equiv N$. (Meaning that \equiv is not extensional)
- **4-** Show $M \not\equiv \lambda x. Mx$ when $x \not\in \text{var}(M)$. What if $M \equiv \lambda x. M_1$?
- **5-** Let $Y_0 = Y$, $Y_{n+1} = Y_n(\lambda xy.y(xy))$. Show that $Y \equiv Y_n$ for all n. However all Y_n are pairwise non interconvertible.
- **6** If $M \le P$ and $N \le P$ (M and N are prefix compatible), then $\mathsf{BT}(M \sqcap N) = \mathsf{BT}(M) \cap \mathsf{BT}(N)$. (Thus BT is stable in Berry's sense, 1978). What if not compatible?

Exercices

7-[Barendregt 1971]

A closed expression M (i.e. $var(M) = \emptyset$) is solvable iff:

$$\forall P, \exists N_1, N_2, \dots N_n \text{ such that } MN_1N_2 \cdots N_n =_{\beta} P$$

(in short:

$$\forall P, \exists \vec{N}, M\vec{N} =_{\beta} P$$

Show that for every closed term M, the following are equivalent:

- 1. M has a hnf
- 2. $\exists \vec{N}, M\vec{N}$ has a normal form
- 3. $\exists \vec{N}, M\vec{N} =_{\beta} I$
- 4. M is solvable
- 8- [Barendregt 1974]

Show that, in the λ I-calculus, a term M is solvable iff it has a normal form.

Exercices

- **9-** Let $\mathcal R$ be a preorder on $\mathcal N$ (reflexive + transitive) compatible with its structure:
 - $a_1 \mathcal{R} b_1, \dots a_n \mathcal{R} b_n$ implies $xa_1a_2 \cdots a_n$

$$a \mathcal{R} b$$
 implies $\lambda x.a \mathcal{R} \lambda x.b$

Let
$$M \sqsubseteq_{\mathcal{R}} N$$
 iff $\forall a \in BT(M), \exists b \in BT(N), a \mathcal{R} b$

Show that when M is a closed term, one has:

$$\forall \vec{P}, \ M\vec{P} \sqsubseteq_{\mathcal{R}} N\vec{P} \text{ iff } \forall C[\], \ C[M] \sqsubseteq_{\mathcal{R}} C[N]$$

- **10-** (cont'd 1) Let $M \mathcal{R} N$ be "if M has a normal form, then N has a normal form" Give examples of M and N such that $M \sqsubseteq_{\mathcal{R}} N$ but $M \not\sqsubseteq N$.
- **11-** (cont'd 2) Let $M \mathcal{R} N$ be "if M has a hnf, then N has a hnf" Give examples of M and N such that $M \sqsubseteq_{\mathcal{R}} N$ but $M \not\sqsubseteq N$.
- **12-** (cont'd 2) Let $M \mathcal{R} N$ be "if M has a hnf, then N has a similar hnf" Give examples of M and N such that $M \sqsubseteq_{\mathcal{R}} N$ but $M \not\sqsubseteq N$. (Hint: consider $M = \lambda x.xx$ and $N = \lambda x.x(\lambda y.xy)$) [Compare with Hyland 1975])