

Head normal forms

• A term is in head normal form (hnf) iff it has the following form:

$$\lambda x_1 x_2 \cdots x_m . x M_1 M_2 \cdots M_n$$
 with $m \ge 0$ and $n \ge 0$

(x may be free or bound by one of the x_i)

A term not in head normal form is of following form:

$$\lambda x_1 x_2 \cdots x_m \cdot (\lambda x \cdot M) N N_1 N_2 \cdots N_n$$

• Head normal forms appeared in Wadsworth's phD [1973].

Plan

- Finite Bohm trees
- Infinite Bohm trees
- Monotony and Continuity theorems
- Inside-out completeness
- Generalized Finite Developments
- Another labeled calculus

CENTRE DE RECHERCHE COMMUN INRIA MICROSOFT RESEARCH

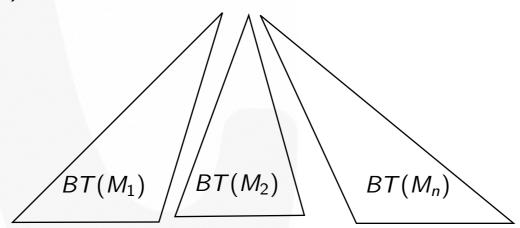
• Intuitively:

If M has no hnf

$$BT(M) = \Omega$$

If
$$M \longrightarrow \lambda x_1 x_2 \cdots x_m x M_1 M_2 \cdots M_n$$

$$BT(M) = \lambda x_1 x_2 \cdots x_m x$$



$$BT(\Delta\Delta) = \Omega$$

$$BT(Ix(Ix)(Ix)) = x$$

$$BT(Ix(\Delta\Delta)(Ix)) = x$$

$$\Omega x$$

$$BT(Ix(Ix)(\Delta\Delta)) = X$$
 $X \Omega$

$$Y = \lambda f.(\lambda x.f(xx))(\lambda x.f(xx))$$
$$Y' = (\lambda xy.y(xxy))(\lambda xy.y(xxy))$$

A finite approximant is any member of the following set of terms:

$$a, b ::= \Omega$$

$$| \lambda x_1 x_2 \cdots x_m . x a_1 a_2 \cdots a_n \quad (m \ge 0, n \ge 0)$$

examples of finite approximants:

$$x\Omega\Omega$$
 $xx\Omega$
 $x\Omega x$
 $\lambda xy.xy(x\Omega)$
 $\lambda xy.x(\lambda z.y\Omega)$

ullet we call ${\mathcal N}$ the set of finite approximants

Finite approximants can be ordered by following prefix ordering:

$$\Omega \le a$$
 $a_1 \le b_1, \ a_2 \le b_2, \ \dots \ a_n \le b_n \ \text{implies}$ $\lambda x_1 x_2 \cdots x_m. x a_1 a_2 \cdots a_n \le \lambda x_1 x_2 \cdots x_m. x b_1 b_2 \cdots b_n$

examples:

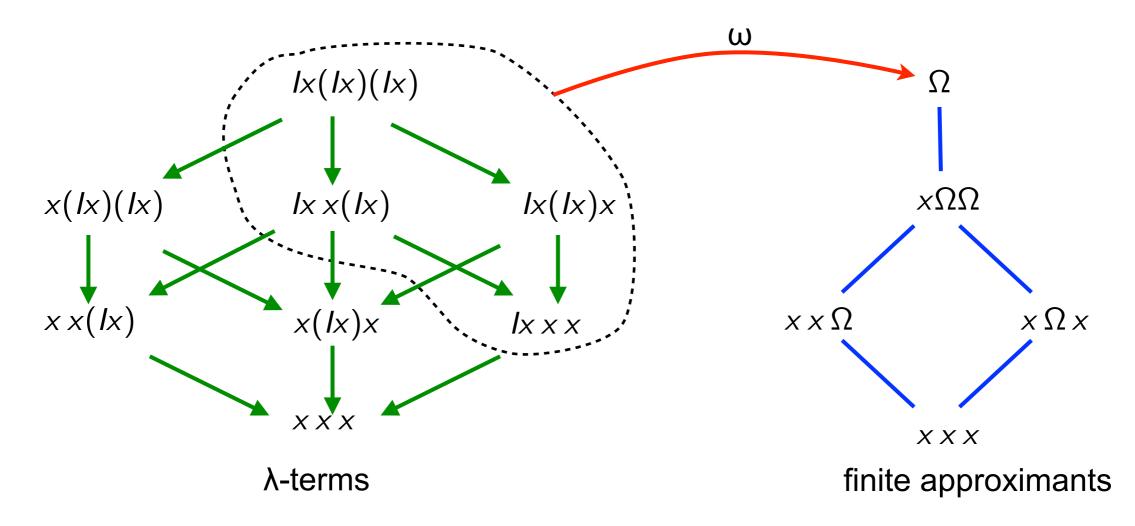
$$x\Omega\Omega \le xx\Omega$$
$$x\Omega\Omega \le x\Omega x$$
$$\lambda xy.x\Omega \le \lambda xy.xy$$

• thus $a \le b$ iff several Ω 's in a are replaced by finite approximants in b.

• $\omega(M)$ is direct approximation of M. It is obtained by replacing all redexes in M by constant Ω and applying exhaustively the two Ω -rules:

$$\Omega M \longrightarrow \Omega$$
$$\lambda x. \Omega \longrightarrow \Omega$$

examples of direct approximation:



• **Lemma 1**:

 $\omega(M) = \Omega$ iff M is not in hnf.

$$\omega(\lambda x_1 x_2 \cdots x_m.x M_1 M_2 \cdots M_n) = \lambda x_1 x_2 \cdots x_m.x(\omega(M_1))(\omega(M_2)) \cdots (\omega(M_n))$$

- Lemma 2: $M \longrightarrow N$ implies $\omega(M) \leq \omega(N)$
- Lemma 3: The set $\mathcal N$ of finite approximants is a conditional lattice with \leq .
- **Definition:** The set A(M) of direct approximants of M is defined as:

$$\mathcal{A}(M) = \{\omega(N) \mid M \xrightarrow{*} N\}$$

• Lemma 4: The set $\mathcal{A}(M)$ is a sublattice of \mathcal{N} with same lub and glb.

Proof: easy application of Church-Rosser + standardization.

• **Definition:** The Bohm tree of *M* is the set of prefixes of its direct approximants:

$$BT(M) = \{a \in \mathcal{N} \mid a \leq b, b \in \mathcal{A}(M)\}$$

 In the terminology of partial orders and lattices, Bohm trees are ideals. Meaning they are directed sets and closed downwards. Namely:

directed sets: $\forall a, b \in BT(M), \exists c \in BT(M), a \leq c \land b \leq c$. ideals: $\forall b \in BT(M), \forall a \in \mathcal{N}, a \leq b \Rightarrow a \in BT(M)$.

- In fact, we made a completion by ideals. Take $\overline{\mathcal{N}} = \{A \mid A \subset \mathcal{N}, \ A \text{ is an ideal}\}$ Then $\langle \mathcal{N}, \leq \rangle$ can be completed as $\langle \overline{\mathcal{N}}, \subset \rangle$.
- Thus Bohm trees may be infinite and they are defined by the set of all their finite prefixes.

• Examples:

- **1-** BT($\Delta\Delta$) = { Ω } = BT($\Delta\Delta\Delta$) = BT($\Delta\Delta M$)
- **2-** BT($(\lambda x.xxx)(\lambda x.xxx)$) = BT(YK) = $\{\Omega\}$
- **3-** BT(M) = { Ω } if M has no hnf
- **4-** BT(I) = { Ω , I}
- **5-** BT(K) = { Ω , K}
- **6-** BT(Ix(Ix)(Ix)) = { Ω , $x\Omega\Omega$, $xx\Omega$, $x\Omega x$, xxx}
- 7- BT(Y) = { Ω , λf . $f\Omega$, λf . $f(f\Omega)$, ... λf . $f^n(\Omega)$, ...}
- 8- BT $(Y') = \{\Omega, \lambda f. f\Omega, \lambda f. f(f\Omega), ... \lambda f. f^n(\Omega), ... \}$

Definition 1: let the Bohm tree semantics be defined by:

$$M \equiv_{\mathsf{BT}} N \text{ iff } \mathsf{BT}(M) = \mathsf{BT}(N)$$

Definition 2: we also consider Bohm tree ordering defined by:

$$M \sqsubseteq_{\mathsf{BT}} N \text{ iff } \mathsf{BT}(M) \subset \mathsf{BT}(N)$$

When clear from context, we just write \equiv for \equiv_{BT} and \sqsubseteq for \sqsubseteq_{BT} .

- New goal: is Bohm tree semantics a (consistent) λ-theory?
- We want to show that:

$$M \stackrel{*}{\longrightarrow} N$$
 implies $M \equiv N$

$$M \sqsubseteq N$$
 implies $C[M] \sqsubseteq C[N]$

• Proposition 1: $M \stackrel{*}{\longrightarrow} N$ implies $M \equiv N$

```
Proof: First \operatorname{BT}(N) \subset \operatorname{BT}(M), since any approximant of N is one of M. Conversely, take a in \operatorname{BT}(M). We have a \leq b = \omega(M') where M \xrightarrow{*} M'. By Church-Rosser, there is N' such that M' \xrightarrow{*} N' and N \xrightarrow{*} N'. By lemma 1, we have \omega(M') \leq \omega(N'). Therefore a \leq \omega(N') and a \in \operatorname{BT}(N).
```

• Let consider λ -calculus (all set of λ -terms) with extra constant Ω and corresponding prefix ordering, β -conversion and straitforward extension of Bohm tree semantics.

Lemmas:

- **1-** $M \leq N$ implies $M \sqsubseteq N$
- **2-** $a \in BT(M)$ implies $a \sqsubseteq BT(C[M])$

Proof:

- 1- First notice that if $M \leq N$ and $M \xrightarrow{*} M'$, then $N \xrightarrow{*} N'$ with $M' \leq N'$ for some N'. Therefore if a be in BT(M), there is M' such that $M \xrightarrow{*} M'$ and $a \leq \omega(M')$. So there is N' such that $M' \xrightarrow{*} N'$ and $N \xrightarrow{*} N'$. So $a \leq \omega(M') \leq \omega(N')$ by lemma 2. Thus a is also in BT(N).
- **2-** Let a be in BT(M). Consider b in BT(a). This means $b \le a$.

We have $a \le \omega(P)$ with $C[M] \xrightarrow{\bullet} P$. Thus $a \le P$. By previous lemmas, we have $a \sqsubseteq P \equiv C[M]$. Therefore $a \sqsubseteq C[M]$.

- Remember we considered completion $\langle \overline{\mathcal{N}}, \subset \rangle$ by ideals of $\langle \mathcal{N}, \leq \rangle$.
- Therefore we have an upper limit $\cup S$ of any directed subset S in $\overline{\mathcal{N}}$. (One has just to check that $\cup S$ is an ideal of \mathcal{N})
- Proposition 2: $M \sqsubseteq N$ implies $C[M] \sqsubseteq C[N]$

Proof: we already know by previous lemmas:

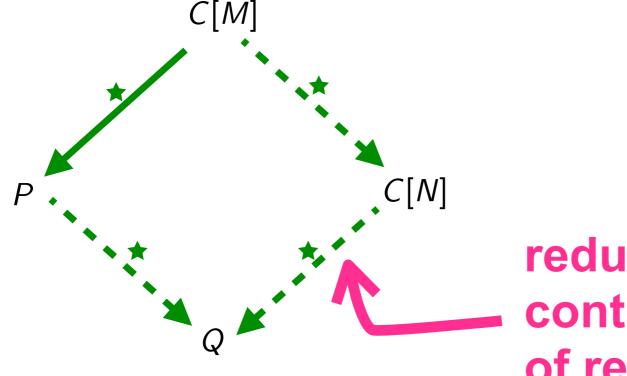
$$\cup \{C[a] \mid a \in \mathsf{BT}(M)\} \subset \cup \{C[b] \mid b \in \mathsf{BT}(N)\} \subset \mathsf{BT}(C[N])$$

Remains to show $BT(C[M]) \subset \cup \{C[a] \mid a \in BT(M)\}$!

I.e.
$$\forall b \in BT(C[M]), \exists a \in BT(M), b \in BT(C[a])$$
 ??

I.e. continuity of context w.r.t Bohm tree semantics !!

• We want to show following property [Welch, 1974]



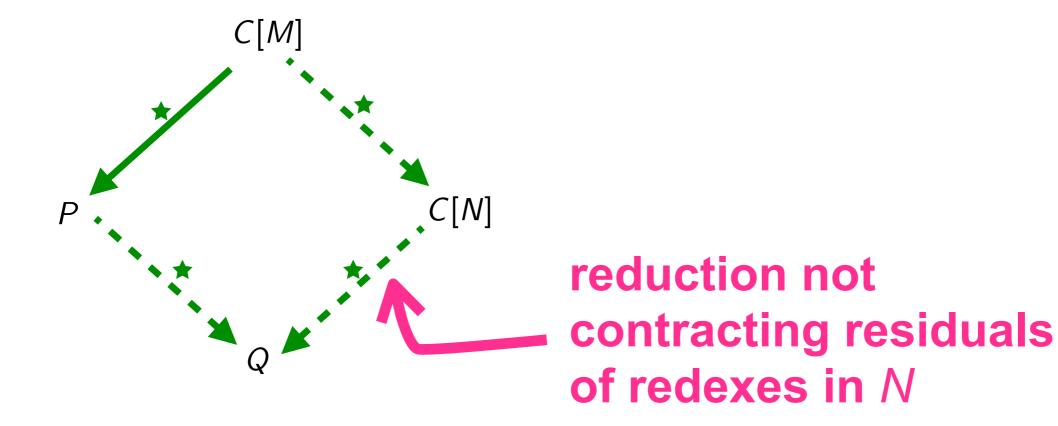
reduction not contracting residuals of redexes in *N*

First one show that for any A and set of redexes \mathcal{F} in A. If $A \longrightarrow A'$ without contracting a redex in \mathcal{F} , then $A\{\mathcal{F} := \Omega\} \longrightarrow A'\{\mathcal{F}' := \Omega\}$ where \mathcal{F}' are the residuals of \mathcal{F} .

Then let $b \leq \omega(P)$. One has $b \leq \omega(P) \leq \omega(Q)$ and thus $b \sqsubseteq \omega(Q)$. Now let \mathcal{F}' are residuals of the set \mathcal{F} of redexes in N within C[N], one has:

$$\omega(Q) \sqsubseteq Q\{\mathcal{F}' := \Omega\} \text{ since } \omega(Q) \leq Q\{\mathcal{F}' := \Omega\},$$

• We want to show following property [Welch, 1974]



 $Q\{\mathcal{F}':=\Omega\}\equiv C[N\{F:=\Omega\}]$ since they are β -inconvertible, $C[N\{\mathcal{F}:=\Omega\}]\equiv C[a]$ since $C[N\{\mathcal{F}:=\Omega\}] \xrightarrow{\star}_{\omega} C[a]$.

Therefore $b \sqsubseteq C[a]$, meaning $b \in BT(C[a])$ since a is finite.

- Theorem [continuity] For all $b \in \mathcal{N}$ such that $b \sqsubseteq C[M]$, then $b \sqsubseteq C[a]$ for some $a \in \mathcal{N}$ such that $a \sqsubseteq M$.
- Theorem [monotony] $M \sqsubseteq N$ implies $C[M] \sqsubseteq C[N]$
- Theorem [λ -theory] $M \equiv N$ implies $C[M] \equiv C[N]$

Proofs: easy consequences of previous proofs.

- **1-** Show that $M \sqsubseteq N$ for all N when M has no hnf.
- **2-** [algebraicity] Show that $a \sqsubseteq M$ implies $a \in BT(M)$ for any $a \in \mathcal{N}$.
- **3-** Show that if M has a normal form and $M \sqsubseteq N$, then M and N have same normal form.
- **4-** Show that if M has a hnf and $M \subseteq N$, then M and N have similar hnfs.
- 5- Show that $Yf \equiv Yf^2$.
- **6-** Show that $Y(f \circ g) \equiv f(Y(g \circ f))$
- **7-** Show that any monotonic semantics \sqsubseteq' such that $\Omega \sqsubseteq' M$ for any M also satisfies $\Omega M \equiv' \Omega$. How about $\lambda x.\Omega \equiv' \Omega$?
- **8-** Show $Y \equiv Y'$ for any Y' such that $Y'f \equiv f(Y'f)$.

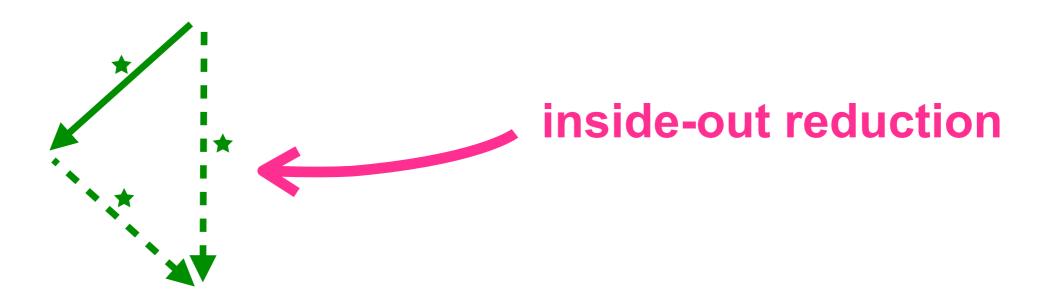
Generalized Finite Developments

Inside-out reductions

• How to prove the following property [Welch, 1974]



• It can be derived from following simpler property.



Inside-out reductions

• Definition:

The reduction $M = M_0 \xrightarrow{R_1} M_1 \xrightarrow{R_2} M_2 \cdots \xrightarrow{R_n} M_n = N$ is inside-out iff for all $i, j \ (0 < i < j \le n)$, redex R_j is not a residual of redex R'_j inside R_i in M_{i-1} .

- How to prove it? Intuitively one just have to reorder redexes contracted in any given reduction and get an inside-out reduction maybe getting further than initial reduction because of symmetries forced by the inside-out order.
- Another remark is that if M strongly normalizes, one has just to consider any innermost reduction until its normal form.

Another labeled calculus

- We add a natural number as exponent of any subterm.
- Lambda calculus with indexes à la Scott-Wadsworth-Hyland

$$M, N, P$$
 ::= x^n (variables)
| $(\lambda x.M)^n$ (M as function of x)
| $(M N)^n$ (M applied to N)

Labeled reduction

$$((\lambda x.M)^{n+1}N)^p \longrightarrow M\{x := N_{[n]}\}_{[n][p]}$$
 when $n \ge 0$

Labeled substitution

$$x^{n}\{y := P\} = x^{n}$$
 $x^{m}_{[n]} = x^{p}$
 $y^{n}\{y := P\} = P_{[n]}$ $(\lambda x.M)^{m} = (\lambda x.M)^{p}$
 $(\lambda x.M)^{n}\{y := P\} = (\lambda x.M\{y := P\})^{n}$ $(MN)^{m} = (MN)^{p}$
 $(MN)^{n}\{y := P\} = (M\{y := P\} N\{y := P\})^{n}$ where $p = \lfloor m, n \rfloor$

Another labeled calculus

• Examples:

$$((\lambda x.x^{45})^{3}y^{4})^{12} \rightarrow y^{2}$$

$$((\lambda f.(f^{9}a^{7})^{5})^{2}((\lambda x.x^{45})^{3})^{12} \rightarrow ((\lambda x.x^{45})^{1}a^{7})^{1} \rightarrow a^{0}$$

$$((\lambda f.(f^{9}a^{7})^{5})^{1}((\lambda x.x^{45})^{3})^{12} \rightarrow ((\lambda x.x^{45})^{0}a^{7})^{0}$$

$$((\lambda x.(x^{9}x^{7})^{5})^{2}(\lambda x.(x^{9}x^{7})^{5})^{2})^{12} \rightarrow ((\lambda x.(x^{9}x^{7})^{5})^{1}(\lambda x.(x^{9}x^{7})^{5})^{1})^{1}$$

$$\rightarrow ((\lambda x.(x^{9}x^{7})^{5})^{0}(\lambda x.(x^{9}x^{7})^{5})^{1})^{0}$$
new normal forms

Labeled calculus

- Theorem The labeled calculus is confluent.
- Theorem The labeled calculus is strongly normalizable (no infinite labeled reductions).
- Lemma For any reduction $\rho: M \xrightarrow{} N$, residuals keep degree of redexes

• Theorem 3 [inside-out completeness]: Any reduction can be overpassed by an inside-out reduction.

Labeled calculus

Proof

Let $\rho: M \xrightarrow{*} N$ be any reduction. It can be performed in the labeled calculus by taking large enough exponents of subterms in M. Call U this labeled λ -term. Then $\rho: U \xrightarrow{*} V$ with M and N being U and V stripped.

Take any innermost reduction starting from U. It reaches a normal form W since the labeled calculus strongly normalizes.

This reduction is surely inside-out. If not, a redex inside the one contracted in a previous step has a residual contracted later. Therefore this residual has non-null degree, as redex of which he is residual. Contradicts the fact that ρ was a labeled innermost reduction.

By Church-Rosser, $V \stackrel{*}{\longrightarrow} W$.

Let P be W stripped. Then $M \stackrel{*}{\longrightarrow} P$ and $M \stackrel{*}{\longrightarrow} P$ by an inside-out reduction.

This proof seems magic. But it is an instance of a more general theorem:
 Generalized finite developments, with the redex family idea (see [JJL 78])

Homeworks

CENTRE DE RECHERCHE COMMUN INRIA MICROSOFT RESEARCH

- **1-** Show that if *M* has no hnf, then *M* is totally undefined.
- **2-** Show $\Omega M \equiv \Omega$ and $\lambda x.\Omega \equiv \Omega$. Show that $M \longrightarrow_{\omega} N$, then $M \equiv N$.
- **3-** Find M and N such that $MP \equiv NP$ for all P, but $M \not\equiv N$. (Meaning that \equiv is not extensional)
- **4-** Show $M \not\equiv \lambda x. Mx$ when $x \not\in \text{var}(M)$. What if $M \equiv \lambda x. M_1$?
- 5- Let $Y_0 = Y$, $Y_{n+1} = Y_n(\lambda xy.y(xy))$. Show that $Y \equiv Y_n$ for all n. However all Y_n are pairwise non interconvertible.
- 6 If $M \le P$ and $N \le P$ (M and N are prefix compatible), then $BT(M \sqcap N) = BT(M) \cap BT(N)$. (Thus BT is stable in Berry's sense, 1978). What if not compatible?

7- [Barendregt 1971]

A closed expression M (i.e. $var(M) = \emptyset$) is solvable iff:

$$\forall P$$
, $\exists N_1, N_2, ... N_n$ such that $MN_1N_2 \cdots N_n =_{\beta} P$

(in short:

$$\forall P, \; \exists \vec{N}, \; M\vec{N} =_{\beta} P$$

Show that for every closed term M, the following are equivalent:

- 1. M has a hnf
- 2. $\exists \vec{N}$, $M\vec{N}$ has a normal form
- 3. $\exists \vec{N}$, $M\vec{N} =_{\beta} I$
- 4. *M* is solvable

8- [Barendregt 1974]

Show that, in the λ I-calculus, a term M is solvable iff it has a normal form.

- **9-** Let \mathcal{R} be a preorder on \mathcal{N} (reflexive + transitive) compatible with its structure:
 - $a_1 \mathcal{R} b_1, \dots a_n \mathcal{R} b_n$ implies $xa_1a_2 \cdots a_n$
 - $a \mathcal{R} b$ implies $\lambda x.a \mathcal{R} \lambda x.b$

Let $M \sqsubseteq_{\mathcal{R}} N$ iff $\forall a \in BT(M)$, $\exists b \in BT(N)$, $a \mathcal{R} b$

Show that when M is a closed term, one has:

 $\forall \vec{P}, \ M\vec{P} \sqsubseteq_{\mathcal{R}} N\vec{P} \text{ iff } \forall C[\], \ C[M] \sqsubseteq_{\mathcal{R}} C[N]$

- **10-** (cont'd 1) Let $M \mathcal{R} N$ be "if M has a normal form, then N has a normal form" Give examples of M and N such that $M \sqsubseteq_{\mathcal{R}} N$ but $M \not\sqsubseteq N$.
- **11-** (cont'd 2) Let $M \mathcal{R} N$ be "if M has a hnf, then N has a hnf" Give examples of M and N such that $M \sqsubseteq_{\mathcal{R}} N$ but $M \not\sqsubseteq N$.
- **12-** (cont'd 2) Let $M \mathcal{R} N$ be "if M has a hnf, then N has a similar hnf" Give examples of M and N such that $M \sqsubseteq_{\mathcal{R}} N$ but $M \not\sqsubseteq N$. (Hint: consider $M = \lambda x.xx$ and $N = \lambda x.x(\lambda y.xy)$) [Compare with Hyland 1975])

13- Lévy-Longo trees [JJL, 1974; GL, 1978]

Bohm tree construction can also be done by separating Ω and $\lambda x.\Omega$. Therefore trees will be labeled as follows:

$$LLT(\lambda x_1 x_2 \cdots x_n.x M_1 M_2 \cdots M_n) = \lambda x_1$$

$$\lambda x_2$$

$$\vdots$$

$$\lambda x_n$$

$$\vdots$$

$$X$$

$$BT(M_1)$$

$$BT(M_2)$$

$$BT(M_n)$$

Redo all theory with *LL*-trees. What is *LL*-tree of *YK*?