

Head normal forms

• A term is in head normal form (hnf) iff it has the following form:

 $\lambda x_1 x_2 \cdots x_m . x M_1 M_2 \cdots M_n$ with $m \ge 0$ and $n \ge 0$

head variable

 $(x \text{ may be free or bound by one of the } x_i)$

• A term not in head normal form is of following form:

 $\lambda x_1 x_2 \cdots x_m \cdot (\lambda x \cdot M) N N_1 N_2 \cdots N_n$

• Head normal forms appeared in Wadsworth's phD [1973].

Plan

- Finite Bohm trees
- Infinite Bohm trees
- Monotony and Continuity theorems
- Inside-out completeness
- Generalized Finite Developments
- Another labeled calculus

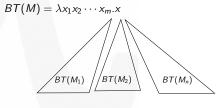
Bohm trees

• Intuitively:

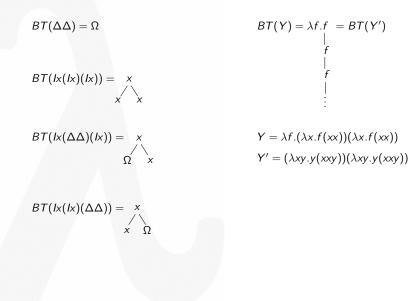
If M has no hnf

 $BT(M) = \Omega$

If $M \xrightarrow{\star} \lambda x_1 x_2 \cdots x_m x M_1 M_2 \cdots M_n$



Bohm trees



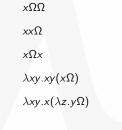
Finite Bohm trees

• A finite approximant is any member of the following set of terms:

a, b ::= Ω

 $\lambda x_1 x_2 \cdots x_m x a_1 a_2 \cdots a_n \quad (m \ge 0, n \ge 0)$

• examples of finite approximants:



- we call $\,\mathcal{N}$ the set of finite approximants

Finite Bohm trees

• Finite approximants can be ordered by following prefix ordering:

 $\Omega \leq a$

 $a_1 \leq b_1, a_2 \leq b_2, \ldots a_n \leq b_n$ implies

 $\lambda x_1 x_2 \cdots x_m . xa_1 a_2 \cdots a_n \leq \lambda x_1 x_2 \cdots x_m . xb_1 b_2 \cdots b_n$

examples:

 $x\Omega\Omega \leq xx\Omega$

 $x\Omega\Omega \leq x\Omega x$

 $\lambda xy.x\Omega \leq \lambda xy.xy$

• thus $a \leq b$ iff several Ω 's in a are replaced by finite approximants in b.

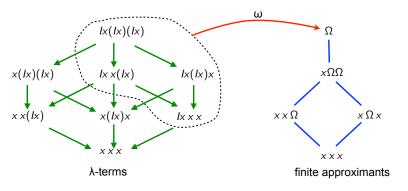
Finite Bohm trees

 ω(*M*) is direct approximation of *M*. It is obtained by replacing all redexes in *M* by constant Ω and applying exhaustively the two Ω-rules:

 $\Omega M \longrightarrow \Omega$

 $\lambda x.\Omega \longrightarrow \Omega$

• examples of direct approximation:



Finite Bohm trees

• Lemma 1:

 $\omega(M) = \Omega$ iff M is not in hnf.

 $\omega(\lambda x_1 x_2 \cdots x_m . x M_1 M_2 \cdots M_n) = \lambda x_1 x_2 \cdots x_m . x(\omega(M_1))(\omega(M_2)) \cdots (\omega(M_n))$

- Lemma 2: $M \rightarrow N$ implies $\omega(M) \leq \omega(N)$
- Lemma 3: The set $\mathcal N$ of finite approximants is a conditional lattice with \leq .
- **Definition:** The set $\mathcal{A}(M)$ of direct approximants of M is defined as:

$$\mathcal{A}(M) = \{ \omega(N) \mid M \xrightarrow{\star} N \}$$

Lemma 4: The set A(M) is a sublattice of N with same lub and glb.
 Proof: easy application of Church-Rosser + standardization.

Bohm trees

• **Definition:** The Bohm tree of *M* is the set of prefixes of its direct approximants:

 $\mathsf{BT}(M) = \{ a \in \mathcal{N} \mid a \leq b, b \in \mathcal{A}(M) \}$

• In the terminology of partial orders and lattices, Bohm trees are ideals. Meaning they are directed sets and closed downwards. Namely:

directed sets: $\forall a, b \in BT(M), \exists c \in BT(M), a \leq c \land b \leq c$. ideals: $\forall b \in BT(M), \forall a \in \mathcal{N}, a \leq b \Rightarrow a \in BT(M)$.

- In fact, we made a completion by ideals. Take N
 = {A | A ⊂ N, A is an ideal}
 Then (N, ≤) can be completed as (N, ⊂).
- Thus Bohm trees may be infinite and they are defined by the set of all their finite prefixes.

Bohm trees

- Examples:
- **1-** $BT(\Delta\Delta) = {\Omega} = BT(\Delta\Delta\Delta) = BT(\Delta\Delta M)$
- **2-** BT(($\lambda x.xxx$)($\lambda x.xxx$)) = BT(YK) = { Ω }
- **3-** BT(M) = { Ω } if M has no hnf
- **4-** BT(I) = { Ω , I}
- **5-** BT(K) = { Ω, K }
- **6-** BT(lx(lx)(lx)) = { Ω , $x\Omega\Omega$, $xx\Omega$, $x\Omega x$, xxx}
- **7-** BT(Y) = { Ω , $\lambda f. f\Omega$, $\lambda f. f(f\Omega)$, ... $\lambda f. f^n(\Omega)$, ...}
- 8- BT(Y') = { Ω , $\lambda f. f\Omega$, $\lambda f. f(f\Omega)$, ... $\lambda f. f^n(\Omega)$, ...}

Bohm tree semantics

• **Definition 1:** let the Bohm tree semantics be defined by:

 $M \equiv_{\mathsf{BT}} N$ iff $\mathsf{BT}(M) = \mathsf{BT}(N)$

• Definition 2: we also consider Bohm tree ordering defined by:

 $M \sqsubseteq_{\mathsf{BT}} N$ iff $\mathsf{BT}(M) \subset \mathsf{BT}(N)$

When clear from context, we just write \equiv for \equiv_{BT} and \sqsubseteq for $\sqsubseteq_{\mathsf{BT}}.$

- New goal: is Bohm tree semantics a (consistent) λ-theory ?
- We want to show that:

 $M \xrightarrow{\bullet} N$ implies $M \equiv N$

 $M \sqsubseteq N$ implies $C[M] \sqsubseteq C[N]$

Bohm tree semantics

• **Proposition 1:** $M \xrightarrow{*} N$ implies $M \equiv N$

Proof: First $BT(N) \subset BT(M)$, since any approximant of N is one of M. Conversely, take a in BT(M). We have $a \leq b = \omega(M')$ where $M \stackrel{\bullet}{\longrightarrow} M'$. By Church-Rosser, there is N' such that $M' \stackrel{\bullet}{\longrightarrow} N'$ and $N \stackrel{\bullet}{\longrightarrow} N'$. By lemma 1, we have $\omega(M') \leq \omega(N')$. Therefore $a \leq \omega(N')$ and $a \in BT(N)$.

Bohm tree semantics

- Let consider λ -calculus (all set of λ -terms) with extra constant Ω and corresponding prefix ordering, β -conversion and straitforward extension of Bohm tree semantics.
- Lemmas:
 - **1-** $M \leq N$ implies $M \sqsubseteq N$
 - **2-** $a \in BT(M)$ implies $a \sqsubseteq BT(C[M])$

Proof:

- 1- First notice that if $M \le N$ and $M \xrightarrow{\bullet} M'$, then $N \xrightarrow{\bullet} N'$ with $M' \le N'$ for some N'. Therefore if a be in BT(M), there is M' such that $M \xrightarrow{\bullet} M'$ and $a \le \omega(M')$. So there is N' such that $M' \xrightarrow{\bullet} N'$ and $N \xrightarrow{\bullet} N'$. So $a \le \omega(M') \le \omega(N')$ by lemma 2. Thus a is also in BT(N).
- **2-** Let *a* be in BT(*M*). Consider *b* in BT(*a*). This means $b \le a$.
- We have $a \le \omega(P)$ with $C[M] \xrightarrow{\bullet} P$. Thus $a \le P$. By previous lemmas, we have $a \sqsubseteq P \equiv C[M]$. Therefore $a \sqsubseteq C[M]$.

Bohm tree semantics

- Remember we considered completion $\langle \overline{\mathcal{N}}, \subset \rangle$ by ideals of $\langle \mathcal{N}, \leq \rangle$.
- Therefore we have an upper limit $\cup S$ of any directed subset S in $\overline{\mathcal{N}}$. (One has just to check that $\cup S$ is an ideal of \mathcal{N})
- **Proposition 2:** $M \sqsubset N$ implies $C[M] \sqsubset C[N]$

Proof: we already know by previous lemmas:

 $\cup \{ C[a] \mid a \in BT(M) \} \subset \cup \{ C[b] \mid b \in BT(N) \} \subset BT(C[N])$

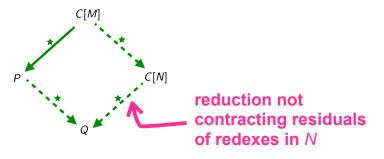
Remains to show $BT(C[M]) \subset \bigcup \{C[a] \mid a \in BT(M)\} \}$

I.e. $\forall b \in BT(C[M]), \exists a \in BT(M), b \in BT(C[a])$??

I.e. continuity of context w.r.t Bohm tree semantics !!

Bohm tree semantics

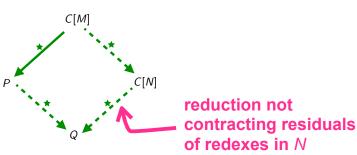
• We want to show following property [Welch, 1974]



 $Q\{\mathcal{F}' := \Omega\} \equiv C[N\{F := \Omega\}]$ since they are β -inconvertible, $C[N\{\mathcal{F} := \Omega\}] \equiv C[a]$ since $C[N\{\mathcal{F} := \Omega\}] \stackrel{*}{\longrightarrow}_{\omega} C[a]$. Therefore $b \sqsubset C[a]$, meaning $b \in BT(C[a])$ since a is finite.

Bohm tree semantics

• We want to show following property [Welch, 1974]



First one show that for any A and set of redexes \mathcal{F} in A. If $A \rightarrow A'$ without contracting a redex in \mathcal{F} , then $A\{\mathcal{F} := \Omega\} \longrightarrow A'\{\mathcal{F}' := \Omega\}$ where \mathcal{F}' are the residuals of \mathcal{F} .

Then let $b \leq \omega(P)$. One has $b \leq \omega(P) \leq \omega(Q)$ and thus $b \sqsubseteq \omega(Q)$. Now let \mathcal{F}' are residuals of the set \mathcal{F} of redexes in N within C[N], one has:

Bohm tree semantics

- **Theorem [continuity]** For all $b \in \mathcal{N}$ such that $b \sqsubseteq C[M]$, then $b \sqsubseteq C[a]$ for some $a \in \mathcal{N}$ such that $a \sqsubseteq M$.
- **Theorem [monotony]** $M \sqsubset N$ implies $C[M] \sqsubset C[N]$
- **Theorem [\lambda-theory]** $M \equiv N$ implies $C[M] \equiv C[N]$

Proofs: easy consequences of previous proofs.

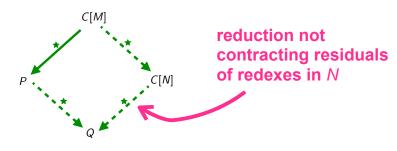
 $\omega(Q) \sqsubseteq Q\{\mathcal{F}' := \Omega\} \text{ since } \omega(Q) \le Q\{\mathcal{F}' := \Omega\},\$

Exercices

- **1** Show that $M \sqsubseteq N$ for all N when M has no hnf.
- **2.** [algebraicity] Show that $a \sqsubseteq M$ implies $a \in BT(M)$ for any $a \in \mathcal{N}$.
- **3-** Show that if *M* has a normal form and $M \sqsubseteq N$, then *M* and *N* have same normal form.
- **4.** Show that if *M* has a hnf and $M \sqsubseteq N$, then *M* and *N* have similar hnfs.
- **5** Show that $Yf \equiv Yf^2$.
- **6** Show that $Y(f \circ g) \equiv f(Y(g \circ f))$
- **7-** Show that any monotonic semantics \sqsubseteq' such that $\Omega \sqsubseteq' M$ for any M also satisfies $\Omega M \equiv' \Omega$. How about $\lambda x . \Omega \equiv' \Omega$?
- **8-** Show $Y \equiv Y'$ for any Y' such that $Y'f \equiv f(Y'f)$.

Inside-out reductions

• How to prove the following property [Welch, 1974]



• It can be derived from following simpler property.

Inside-out reductions

- Definition:
 - The reduction $M = M_0 \xrightarrow{R_1} M_1 \xrightarrow{R_2} M_2 \cdots \xrightarrow{R_n} M_n = N$ is inside-out iff for all $i, j \ (0 < i < j \le n)$, redex R_j is not a residual of redex R'_j inside R_i in M_{i-1} .
- How to prove it ? Intuitively one just have to reorder redexes contracted in any given reduction and get an inside-out reduction maybe getting further than initial reduction because of symmetries forced by the inside-out order.
- Another remark is that if M strongly normalizes, one has just to consider any innermost reduction until its normal form.

Another labeled calculus

- We add a natural number as exponent of any subterm.
- Lambda calculus with indexes à la Scott-Wadsworth-Hyland

x)

M, N, P	::=	x ⁿ	(variables)
	Ι	(λ <i>x.M</i>) ⁿ	(M as function of
	Ι	(M N)"	(M applied to N)

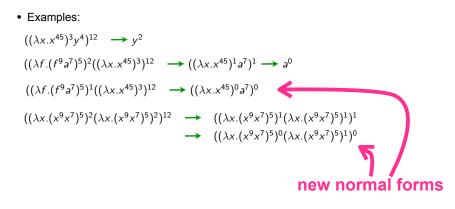
• Labeled reduction

 $((\lambda x.M)^{n+1}N)^p \longrightarrow M\{x := N_{[n]}\}_{[n][p]}$ when $n \ge 0$

• Labeled substitution

 $\begin{aligned} x^{n} \{y &:= P\} &= x^{n} & x_{[n]}^{m} &= x^{p} \\ y^{n} \{y &:= P\} &= P_{[n]} & (\lambda x.M)^{m} &= (\lambda x.M)^{p} \\ (\lambda x.M)^{n} \{y &:= P\} &= (\lambda x.M\{y &:= P\})^{n} & (MN)^{m} &= (MN)^{p} \\ (MN)^{n} \{y &:= P\} &= (M\{y &:= P\}N\{y &:= P\})^{n} & \text{where } p &= \lfloor m, n \rfloor \end{aligned}$

Another labeled calculus



Labeled calculus

- Theorem The labeled calculus is confluent.
- Theorem The labeled calculus is strongly normalizable (no infinite labeled reductions).
- Lemma For any reduction $\rho: M \xrightarrow{\star} N$, residuals keep degree of redexes
- Theorem 3 [inside-out completeness]: Any reduction can be overpassed by an inside-out reduction.

Labeled calculus

• Proof

Let $\rho: M \xrightarrow{\bullet} N$ be any reduction. It can be performed in the labeled calculus by taking large enough exponents of subterms in M. Call U this labeled λ -term. Then $\rho: U \xrightarrow{\bullet} V$ with M and N being U and V stripped.

Take any innermost reduction starting from U. It reaches a normal form W since the labeled calculus strongly normalizes.

This reduction is surely inside-out. If not, a redex inside the one contracted in a previous step has a residual contracted later. Therefore this residual has non-null degree, as redex of which he is residual. Contradicts the fact that ρ was a labeled innermost reduction.

By Church-Rosser, $V \xrightarrow{\star} W$.

Let P be W stripped. Then $M \xrightarrow{\bullet} P$ and $M \xrightarrow{\bullet} P$ by an inside-out reduction.

• This proof seems magic. But it is an instance of a more general theorem: Generalized finite developments, with the redex family idea (see [JJL 78])



Exercices

- 1- Show that if M has no hnf, then M is totally undefined.
- **2-** Show $\Omega M \equiv \Omega$ and $\lambda x \Omega \equiv \Omega$. Show that $M \longrightarrow_{\omega} N$, then $M \equiv N$.
- **3-** Find *M* and *N* such that $MP \equiv NP$ for all *P*, but $M \neq N$. (Meaning that \equiv is not extensional)
- **4-** Show $M \neq \lambda x.Mx$ when $x \notin var(M)$. What if $M \equiv \lambda x.M_1$?
- **5.** Let $Y_0 = Y$, $Y_{n+1} = Y_n(\lambda xy.y(xy))$. Show that $Y \equiv Y_n$ for all *n*. However all Y_n are pairwise non interconvertible.
- 6 If $M \le P$ and $N \le P$ (M and N are prefix compatible), then $BT(M \sqcap N) = BT(M) \cap BT(N)$. (Thus BT is stable in Berry's sense, 1978). What if not compatible ?

Exercices

7-[Barendregt 1971]

A closed expression M (i.e. $var(M) = \emptyset$) is solvable iff: $\forall P, \exists N_1, N_2, \dots N_n$ such that $MN_1N_2 \cdots N_n =_{\beta} P$

(in short:

 $\forall P, \exists \vec{N}, M\vec{N} =_{\beta} P$

Show that for every closed term M, the following are equivalent:

- 1. *M* has a hnf
- 2. $\exists \vec{N}, M\vec{N}$ has a normal form
- 3. $\exists \vec{N}, M\vec{N} =_{\beta} I$
- 4. *M* is solvable
- 8-[Barendregt 1974]

Show that, in the λ I-calculus, a term *M* is solvable iff it has a normal form.

Exercices

- 9- Let R be a preorder on N (reflexive + transitive) compatible with its structure:
 a₁ R b₁,... a_n R b_n implies xa₁a₂... a_n
 a R b implies λx.a R λx.b
 Let M ⊑_R N iff ∀a ∈ BT(M), ∃b ∈ BT(N), a R b
 Show that when M is a closed term, one has:
 ∀P, MP ⊑_R NP iff ∀C[], C[M] ⊑_R C[N]
- **10-** (cont'd 1) Let $M \mathcal{R} N$ be "if M has a normal form, then N has a normal form" Give examples of M and N such that $M \sqsubseteq_{\mathcal{R}} N$ but $M \not\sqsubseteq N$.
- **11-** (cont'd 2) Let $M \mathcal{R} N$ be "if M has a hnf, then N has a hnf" Give examples of M and N such that $M \sqsubseteq_{\mathcal{R}} N$ but $M \not\sqsubseteq N$.
- **12-** (cont'd 2) Let $M \mathcal{R} N$ be "if M has a hnf, then N has a similar hnf" Give examples of M and N such that $M \sqsubseteq_{\mathcal{R}} N$ but $M \not\sqsubseteq N$. (Hint: consider $M = \lambda x.xx$ and $N = \lambda x.x(\lambda y.xy)$) [Compare with Hyland 1975])

Exercices

13- Lévy-Longo trees [JJL, 1974; GL, 1978]

Bohm tree construction can also be done by separating Ω and $\lambda x.\Omega$. Therefore trees will be labeled as follows:

 $LLT(\lambda x_1 x_2 \cdots x_n . x M_1 M_2 \cdots M_n) = \lambda x_1$ λx_2 λx_n х $BT(M_1)$ $BT(M_2)$ $BT(M_n)$

Redo all theory with *LL*-trees. What is *LL*-tree of *YK*?