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Head normal forms

• A term is in head normal form (hnf) iff it has the following form:

(x may be free or bound by one of the xi )

λx1x2 · · · xm.xM1M2 · · · Mn with m ≥ 0 and n ≥ 0

head variable

• A term not in head normal form is of following form:

λx1x2 · · · xm.(λx .M)NN1N2 · · · Nn

head redex

• Head normal forms appeared in Wadsworth’s phD [1973].
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Bohm trees



Bohm trees
• Intuitively:

BT (M) = Ω

If M has no hnf

If M λx1x2 · · · xm.x M1 M2 · · · Mn

BT (M2)BT (M1) BT (Mn)

BT (M) = λx1x2 · · · xm.x

Bohm trees

BT (∆∆) = Ω

x

x x

BT (Ix(Ix)(Ix)) =

x

xΩ

BT (Ix(∆∆)(Ix)) =

x

x Ω

BT (Ix(Ix)(∆∆)) =

BT (Y ) = λf .f

f

f

...

= BT (Y �)

Y = λf .(λx .f (xx))(λx .f (xx))

Y � = (λxy .y(xxy))(λxy .y(xxy))

Finite Bohm trees

• A finite approximant is any member of the following set of terms:

• examples of finite approximants:

a, b ::= Ω

| λx1x2 · · · xm.xa1a2 · · · an (m ≥ 0, n ≥ 0)

xΩΩ

xxΩ

xΩx

λxy .xy(xΩ)

λxy .x(λz .yΩ)

• we call N the set of finite approximants

Finite Bohm trees
• Finite approximants can be ordered by following prefix ordering:

• examples:

Ω ≤ a

a1 ≤ b1, a2 ≤ b2, . . . an ≤ bn implies

λx1x2 · · · xm.xa1a2 · · · an ≤ λx1x2 · · · xm.xb1b2 · · · bn

xΩΩ ≤ xxΩ

xΩΩ ≤ xΩx

λxy .xΩ ≤ λxy .xy

• thus a ≤ b iff several Ω’s in a are replaced by finite approximants in b.



Finite Bohm trees
• !(M) is direct approximation of M. It is obtained by replacing all redexes in M by  

constant " and applying exhaustively the two "-rules:

ΩM Ω

λx .Ω Ω

• examples of direct approximation:

Ix(Ix)(Ix)

x(Ix)(Ix) Ix x(Ix) Ix(Ix)x

x x(Ix) Ix x xx(Ix)x

x x x

Ω

xΩΩ

x x Ω

x x x

x Ω x

!

#-terms finite approximants

Finite Bohm trees

• Lemma 2: M N implies ω(M) ≤ ω(N)

• Lemma 1: 

ω(M) = Ω iff M is not in hnf.

ω(λx1x2 · · · xm.xM1M2 · · · Mn) = λx1x2 · · · xm.x(ω(M1))(ω(M2)) · · · (ω(Mn))

• Lemma 3: The set N of finite approximants is a conditional lattice with ≤.

• Definition: The set A(M) of direct approximants of M is defined as:

A(M) = {ω(N) | M N}

• Lemma 4: The set A(M) is a sublattice of N with same lub and glb.

Proof: easy application of Church-Rosser + standardization.

Bohm trees

• Definition: The Bohm tree of M is the set of prefixes of its direct approximants:

BT(M) = {a ∈ N | a ≤ b, b ∈ A(M)}

• In the terminology of partial orders and lattices, Bohm trees are ideals. Meaning 
they are directed sets and closed downwards. Namely:

directed sets: ∀a, b ∈ BT(M), ∃c ∈ BT(M), a ≤ c ∧ b ≤ c .

ideals: ∀b ∈ BT(M), ∀a ∈ N , a ≤ b ⇒ a ∈ BT(M).

• In fact, we made a completion by ideals. Take  N = {A | A ⊂ N , A is an ideal}

Then �N ,≤� can be completed as �N ,⊂�.

• Thus Bohm trees may be infinite and they are defined by the set of all their finite 
prefixes.

Bohm trees

• Examples:

1- BT(∆∆) = {Ω} = BT(∆∆∆) = BT(∆∆M)

2- BT((λx .xxx)(λx .xxx)) = BT(YK ) = {Ω}

BT(M) = {Ω} if M has no hnf3-

4-

5-

6-

7-

8-

BT(I ) = {Ω, I}

BT(K ) = {Ω, K}

BT(Ix(Ix)(Ix)) = {Ω, xΩΩ, xxΩ, xΩx , xxx}

BT(Y ) = {Ω, λf .f Ω, λf .f (f Ω), ... λf .f n(Ω), ...}

BT(Y �) = {Ω, λf .f Ω, λf .f (f Ω), ... λf .f n(Ω), ...}



Bohm tree semantics

Bohm tree semantics

• Definition 1: let the Bohm tree semantics be defined by:

M ≡BT N iff BT(M) = BT(N)

• Definition 2: we also consider Bohm tree ordering defined by:

M �BT N iff BT(M) ⊂ BT(N)

When clear from context, we just write ≡ for ≡BT and � for �BT.

• New goal: is Bohm tree semantics a (consistent) #-theory ?

• We want to show that:

M N implies M ≡ N

M � N implies C [M] � C [N]

Bohm tree semantics

• Proposition 1: 

Proof: 

M N implies M ≡ N

First BT(N) ⊂ BT(M), since any approximant of N is one of M.
Conversely, take a in BT(M). We have a ≤ b = ω(M �) where M M �.
By Church-Rosser, there is N � such that M � N � and N N �. By lemma 1,
we have ω(M �) ≤ ω(N �).
Therefore a ≤ ω(N �) and a ∈ BT(N).

Bohm tree semantics

• Lemmas: 

• Let consider #-calculus (all set of #-terms) with extra constant " and 
corresponding prefix ordering, $-conversion and straitforward extension of 
Bohm tree semantics.

1- M ≤ N implies M � N

2- a ∈ BT(M) implies a � BT(C [M])

Proof:

1- First notice that if M ≤ N and M M �, then N N � with M � ≤ N � for some
N �. Therefore if a be in BT (M), there is M � such that M M � and a ≤ ω(M �).
So there is N � such that M � N � and N N �. So a ≤ ω(M �) ≤ ω(N �) by
lemma 2. Thus a is also in BT(N).

2- Let a be in BT(M). Consider b in BT(a). This means b ≤ a.

We have a ≤ ω(P) with C [M] P. Thus a ≤ P. By previous lemmas, we have
a � P ≡ C [M]. Therefore a � C [M].



Bohm tree semantics

Proof: we already know by previous lemmas:

• Remember we considered completion �N ,⊂� by ideals of �N ,≤�.

• Therefore we have an upper limit ∪S of any directed subset S in N .

(One has just to check that ∪S is an ideal of N )

• Proposition 2: M � N implies C [M] � C [N]

∪{C [a] | a ∈ BT(M)} ⊂ ∪{C [b] | b ∈ BT(N)} ⊂ BT(C [N])

Remains to show BT(C [M]) ⊂ ∪{C [a] | a ∈ BT(M)} !

I.e. ∀b ∈ BT(C [M]), ∃a ∈ BT (M), b ∈ BT (C [a]) ??

I.e. continuity of context w.r.t Bohm tree semantics !!

Bohm tree semantics
• We want to show following property [Welch, 1974]

C [M]

P C [N]

Q

reduction not
contracting residuals
of redexes in N

First one show that for any A and set of redexes F in A. If A A� without

contracting a redex in F , then A{F := Ω} A�{F � := Ω} where F � are the

residuals of F .

Then let b ≤ ω(P). One has b ≤ ω(P) ≤ ω(Q) and thus b � ω(Q). Now let F �

are residuals of the set F of redexes in N within C [N], one has:

ω(Q) � Q{F � := Ω} since ω(Q) ≤ Q{F � := Ω},

Bohm tree semantics
• We want to show following property [Welch, 1974]

C [M]

P C [N]

Q

reduction not
contracting residuals
of redexes in N

Q{F � := Ω} ≡ C [N{F := Ω}] since they are β-inconvertible,

C [N{F := Ω}] ≡ C [a] since C [N{F := Ω}] ω C [a].

Therefore b � C [a], meaning b ∈ BT(C [a]) since a is finite.

Bohm tree semantics

• Theorem [continuity] For all b ∈ N such that b � C [M], then b � C [a]

for some a ∈ N such that a � M.

• Theorem [monotony] M � N implies C [M] � C [N]

• Theorem [!-theory] M ≡ N implies C [M] ≡ C [N]

Proofs: easy consequences of previous proofs.



Exercices

1- Show that M � N for all N when M has no hnf.

2- [algebraicity] Show that a � M implies a ∈ BT(M) for any a ∈ N .

3- Show that if M has a normal form and M � N, then M and N have same normal form.

4- Show that if M has a hnf and M � N, then M and N have similar hnfs.

5- Show that Yf ≡ Yf 2.

6- Show that Y (f ◦ g) ≡ f (Y (g ◦ f ))

7- Show that any monotonic semantics ��
such that Ω �� M for any M also satisfies

ΩM ≡� Ω. How about λx .Ω ≡� Ω ?

8- Show Y ≡ Y � for any Y � such that Y �f ≡ f (Y �f ).

Generalized Finite 
Developments

Inside-out reductions
• How to prove the following property [Welch, 1974]

C [M]

P C [N]

Q

reduction not
contracting residuals
of redexes in N

• It can be derived from following simpler property.

inside-out reduction

Inside-out reductions

• Definition: 
The reduction M = M0

R1

M1

R2

M2 · · ·
Rn

Mn = N is inside-out iff for
all i , j (0 < i < j ≤ n), redex Rj is not a residual of redex R �

j inside Ri in Mi−1.

• How to prove it ? Intuitively one just have to reorder redexes contracted in any given 
reduction and get an inside-out reduction maybe getting further than initial reduction 
because of symmetries forced by the inside-out order. 

• Another remark is that if M strongly normalizes, one has just to consider any 
innermost reduction until its normal form.



Another labeled calculus

• Lambda calculus with indexes à la Scott-Wadsworth-Hyland

• Labeled substitution

• We add a natural number as exponent of any subterm.

M, N, P ::= x (variables)

| ( λx.M ) (M as function of x)

| ( M  N ) (M applied to N)

n

n

n

• Labeled reduction

when n ≥ 0((λx .M)n+1N)p M{x := N[n]}[n][p]

xn{y := P} = xn

yn{y := P} = P[n]

(λx .M)n{y := P} = (λx .M{y := P})n

(MN)n{y := P} = (M{y := P}N{y := P})n

xm
[n] = xp

(λx .M)m = (λx .M)p

(MN)m = (MN)p

where p = �m, n�

Another labeled calculus
• Examples:

((λx .x45)3y4)12 y2

((λf .(f 9a7)5)2((λx .x45)3)12 ((λx .x45)1a7)1 a0

((λf .(f 9a7)5)1((λx .x45)3)12 ((λx .x45)0a7)0

((λx .(x9x7)5)2(λx .(x9x7)5)2)12 ((λx .(x9x7)5)1(λx .(x9x7)5)1)1

((λx .(x9x7)5)0(λx .(x9x7)5)1)0

new normal forms

Labeled calculus

• Theorem The labeled calculus is confluent.

• Theorem The labeled calculus is strongly normalizable (no infinite labeled 
reductions).

• Lemma  For any reduction  ρ : M N , residuals keep degree of redexes

• Theorem 3 [inside-out completeness]: Any reduction can be overpassed 
by an inside-out reduction.

Labeled calculus
• Proof

• This proof seems magic. But it is an instance of a more general theorem: 
Generalized finite developments, with the redex family idea (see [JJL 78])

Let ρ : M N be any reduction. It can be performed in the labeled calculus
by taking large enough exponents of subterms in M. Call U this labeled λ-term.
Then ρ : U V with M and N being U and V stripped.

Take any innermost reduction starting from U. It reaches a normal form W since
the labeled calculus strongly normalizes.

This reduction is surely inside-out. If not, a redex inside the one contracted in a
previous step has a residual contracted later. Therefore this residual has non-null
degree, as redex of which he is residual. Contradicts the fact that ρ was a labeled
innermost reduction.

By Church-Rosser, V W .

Let P be W stripped. Then M P and M P by an inside-out reduction.



Homeworks

Exercices
1- Show that if M has no hnf, then M is totally undefined.

2- Show ΩM ≡ Ω and λx .Ω ≡ Ω. Show that M ω N, then M ≡ N.

4- Show M �≡ λx .Mx when x �∈ var(M). What if M ≡ λx .M1 ?

5- Let Y0 = Y , Yn+1 = Yn(λxy .y(xy)). Show that Y ≡ Yn for all n. However all Yn

are pairwise non interconvertible.

6 If M ≤ P and N ≤ P (M and N are prefix compatible), then BT(M � N) =
BT(M) ∩ BT(N). (Thus BT is stable in Berry’s sense, 1978). What if not com-
patible ?

3- Find M and N such that MP ≡ NP for all P, but M �≡ N. (Meaning that ≡ is
not extensional)

Exercices
7- [Barendregt 1971]

A closed expression M (i.e. var(M) = ∅) is solvable iff:

∀P, ∃N1,N2, ...Nn such that MN1N2 · · · Nn =β P

(in short:

∀P, ∃�N, M�N =β P )

Show that for every closed term M, the following are equivalent:

1. M has a hnf

2. ∃�N, M�N has a normal form

3. ∃�N, M�N =β I

4. M is solvable

8- [Barendregt 1974]

Show that, in the λI-calculus, a term M is solvable iff it has a normal form.

Exercices
9- Let R be a preorder on N (reflexive + transitive) compatible with its structure:

a1 R b1, ... an R bn implies xa1a2 · · · an

a R b implies λx .a R λx .b

Let M �R N iff ∀a ∈ BT(M), ∃b ∈ BT(N), a R b

Show that when M is a closed term, one has:

∀�P, M�P �R N�P iff ∀C [ ], C [M] �R C [N]

10- (cont’d 1) Let M R N be “if M has a normal form, then N has a normal form”

Give examples of M and N such that M �R N but M �� N.

(cont’d 2) Let M R N be “if M has a hnf, then N has a hnf”

Give examples of M and N such that M �R N but M �� N.

11- 

12- (cont’d 2) Let M R N be “if M has a hnf, then N has a similar hnf”

Give examples of M and N such that M �R N but M �� N. (Hint: consider

M = λx .xx and N = λx .x(λy .xy)) [Compare with Hyland 1975])



Exercices
13- Lévy-Longo trees [JJL,1974;GL,1978]

Bohm tree construction can also be done by separating Ω and λx .Ω. Therefore
trees will be labeled as follows:

λx1

λx2

BT (M2)BT (M1) BT (Mn)

λxn

x

LLT (λx1x2 · · · xn.xM1M2 · · · Mn) =

Redo all theory with LL-trees. What is LL-tree of YK?


