Lambda-Calculus (III-4)

jean-jacques.levy@inria.fr Tsinghua University, September 14, 2010

Plan

- Consistent lambda theories
- Extensional equivalences
- Congruences and semantics
- Bohm trees

Consistent theories

Consistency

- A lambda-theory is any congruence containing β -equality (interconvertiblity)
- More precisely, a lambda-theory satisfies the following axioms and rules:

$$x \equiv x$$
 $c \equiv c$ $(\lambda x.M)N \equiv M\{x := N\}$ $M \equiv M'$ $N \equiv N'$ $M \equiv M'$ $\overline{MN} \equiv M'N$ $\overline{MN} \equiv MN'$ $\overline{\lambda x.M} \equiv \lambda x.M'$

• A lambda-theory is consistent iff $M \neq N$ for some M, N.

Exercice 1

- 1- Give examples of consistent theories.
- **2-** Show that any lambda-theory containing $x \equiv y$ is inconsistent when $x \neq y$.
- **3-** Same with $I \equiv K$.

Extensional theories

• An **extensional** lambda-theory satisfies the η -rule.

$$x \equiv x$$
 $c \equiv c$ $(\lambda x.M)N \equiv M\{x := N\}$

$M\equiv M'$	$N\equiv N'$	$M\equiv M'$
$\overline{MN} \equiv M'N$	$\overline{MN} \equiv MN'$	$\overline{\lambda x.M} \equiv \lambda x.M'$

$$\lambda x.Mx \equiv M \quad (x \notin var(M))$$

Exercice 2

• Show previous definition is equivalent to following:

 $x \equiv x$ $c \equiv c$ $(\lambda x.M)N \equiv M\{x := N\}$

$$\frac{M \equiv M'}{MN \equiv M'N} \qquad \frac{N \equiv N'}{MN \equiv MN'} \qquad \frac{M \equiv M'}{\lambda x.M \equiv \lambda x.M'}$$

$$\frac{\forall P. MP \equiv NP}{M \equiv N}$$

• A context C[] is a λ -term with a hole. More precisely:

 $C[] ::= [] | C[]N | MC[] | \lambda x.C[]$

- By C[M], we mean the λ -term obtained by putting M in the hole.
- A λ -theory is any equivalence relation \equiv satisfying:

 $M \longrightarrow N \Rightarrow M \equiv N$

 $M \equiv N \Rightarrow C[M] \equiv C[N]$

What are consistent λ-theories ?

- Can we equate 2 different normal forms ?
- No by Bohm theorem!
- Theorem (Böhm)[1968] Let M and N be two normals forms such that $M \neq_{\eta} N$. Let x and y be two variables. There exists a context C[] such that:

 $C[M] \xrightarrow{*} x$ $C[N] \xrightarrow{*} y$

- Proof: not easy !!
- Corollary: any λ -theory equating two different normal forms is inconsistent.

Proof: easy ! Do it as exercice.

What are consistent λ-theories ?

- Can we equate all terms without normal forms ?
- No by a similar argument !
- Fact:

Take $M = x(\Delta \Delta)I$ and $N = x(\Delta \Delta)K$.

Then *M* and *N* have no normal forms. Thus $M \equiv N$ and $C[M] \equiv C[N]$ in any context C[].

Take $C[] = (\lambda x.[](KI))$. Then $C[M] \xrightarrow{*} KI(\Delta \Delta)I \xrightarrow{*} I$. And $C[N] \xrightarrow{*} KI(\Delta \Delta)K \xrightarrow{*} K$.

Therefore $I \equiv C[M] \equiv C[N] \equiv K$. Which is not consistent.

• **Exercice** Do similar argument with $xI(\Delta\Delta) \equiv x(\Delta\Delta)I$

Total undefinedness

- A term *M* is **totally undefined** iff for all context *C*[] whenever there exists *N* such that *C*[*N*] has no normal form, then *C*[*M*] has no normal form.
- Thus *M* is totally undefined iff for all context *C[]* when *C[M]* has a normal form, then *C[N]* has also a normal form for every *N*.
- Examples:
 - **1-** $x(\Delta\Delta)I$ is not totally undefined, since $(\lambda x.x(\Delta\Delta)I)(KI)$ has a normal form, but not $(\lambda x.\Delta\Delta)(KI)$.
 - **2-** $xI(\Delta\Delta)$ is not totally undefined, by similar argument.
 - **3-** $\Delta\Delta$ is totally undefined. Proof is a bit complex. Intuitively, if $C[\Delta\Delta]$ has a normal form, one can reach it by the leftmost-outermost reduction. Never a residual of $\Delta\Delta$ is contracted in this reduction, since it would have been an endless leftmost-outermost redex and this normal reduction would not get the normal form. Then by plugging any N in place of $\Delta\Delta$ in initial term, one get the same reduction and ends with same normal form.

- Fortunately, there is another (intensional) characterization of totally undefined terms.
- A term is in head normal form (hnf) iff it has the following form:

 $\lambda x_1 x_2 \cdots x_m . x M_1 M_2 \cdots M_n$ with $m \ge 0$ and $n \ge 0$

• A term not in head normal form is of following form:

(x may be free or bound by one of the x_i)

 $\lambda x_1 x_2 \cdots x_m . (\lambda x. M) N N_1 N_2 \cdots N_n$

head redex

head variable

• Head normal forms appeared in Wadsworth's phD [1973].

- A term *M* has a hnf if it reduces to a hnf.
- **Definition:** *H* and *H*' are **similar head normal forms** iff

 $H = \lambda x_1 x_2 \cdots x_m . x M_1 M_2 \cdots M_n$

 $H' = \lambda x_1 x_2 \cdots x_m . x M'_1 M'_2 \cdots M'_n$

(same external structure)

• Examples:

 $\lambda xy.x(\Delta \Delta)x$ and $\lambda xy.xx(\Delta \Delta)$ are similar hnfs. $xy(\Delta \Delta)x$ and $xxy(\Delta \Delta)$ are similar hnfs. $\lambda xy.x(\Delta \Delta)$ and $\lambda xy.y(\Delta \Delta)$ are not similar.

- Lemma 1: If $M \xrightarrow{\bullet} H$ in hnf and $M \xrightarrow{\bullet} H'$ in hnf, then H and H' are similar.
- Lemma 2: If *M* has a hnf, it has a minimum hnf *H*₀ such:

for every hnf *H*, we have $M \xrightarrow{\bullet} H_0 \xrightarrow{\bullet} H$. where $\xrightarrow{\bullet}_{head}$ is head reduction. **Proofs: easy.**

• Lemma 3: If *M* has a hnf, then *M* is not totally undefined.

Proof: easy again.

Let $M \xrightarrow{*} \lambda x_1 x_2 \cdots x_m x M_1 M_2 \cdots M_n$. We may suppose x bound. If not, we add an extra binder. So let $x = x_i$. Consider $N_1, N_2, \ldots N_m$ be any term, but $N_i = \lambda x_1 x_2 \cdots x_n y$. Then $MN_1 N_2 \cdots N_n \xrightarrow{*} y$ in normal form, but $\Delta \Delta N_1 N_2 \cdots N_n$ has no normal form.

• We will later prove the opposite direction.

Exercices

- **1** Find Bohm context for *xab* and *xac*; for $\lambda xy.x$ and $\lambda xy.y$; for x(xab)c and x(xad)c.
- 2- Bohm theorem can be generalized to *n* normal forms, pairwise distinct. Find Bohm context for *xab*, *xac*, and *xbc*.
- **3-** Give examples of terms without hnf
- 4- Give examples of terms with hnf, but without normal forms
- 5- Prove that any normal form is also a head normal form
- 6- Show that Y has a hnf.

• head normal forms are first level of the normal form of M

$$M \xrightarrow{\bullet} \lambda x_1 x_2 \cdots x_m . x M_1 M_2 \cdots M_n.$$

• but we can iterate within M_1, M_2, \ldots, M_n and get second level

$$M_{1} \xrightarrow{\bullet} \lambda y_{1}y_{2} \cdots y_{p}.yN_{1}N_{2} \cdots N_{q}$$

$$M_{2} \xrightarrow{\bullet} \lambda z_{1}z_{2} \cdots z_{r}.zP_{1}P_{2} \cdots P_{s}$$

$$\vdots$$

$$M_{n} \xrightarrow{\bullet} \lambda v_{1}v_{2} \cdots v_{t}.vQ_{1}Q_{2} \cdots Q_{u}$$

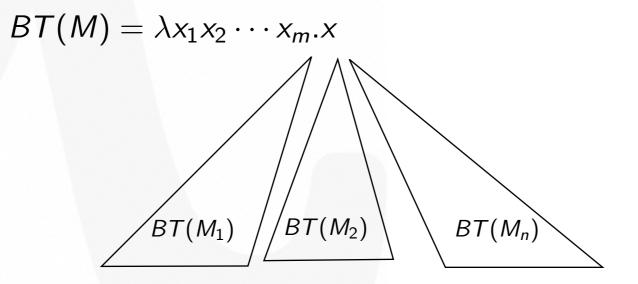
• and so on ...

• this process gives the following tree-structure:

If M has no hnf

$$BT(M) = \Omega$$

If
$$M \longrightarrow \lambda x_1 x_2 \cdots x_m x M_1 M_2 \cdots M_n$$



$$BT(\Delta\Delta) = \Omega$$

$$BT(Ix(Ix)(Ix)) = x$$

$$BT(Ix(\Delta\Delta)(Ix)) = x$$

$$BT(Ix(Ix)(\Delta\Delta)) = x$$

$$BT(Y) = \lambda f.f = BT(Y')$$

$$|$$

$$f$$

$$|$$

$$f$$

$$|$$

 $Y = \lambda f.(\lambda x.f(xx))(\lambda x.f(xx))$ $Y' = (\lambda xy.y(xxy))(\lambda xy.y(xxy))$

Need to define Bohm trees properly !

• A finite approximant is any member of the following set of terms:

$$a, b$$
 ::= Ω
 $\mid \quad \lambda x_1 x_2 \cdots x_m . x a_1 a_2 \cdots a_n \quad (m \ge 0, n \ge 0)$

• examples of finite approximants:

 $x\Omega\Omega$ $xx\Omega$ $x\Omega x$ $\lambda xy.xy(x\Omega)$ $\lambda xy.x(\lambda z.y\Omega)$

- we call $\,\mathcal{N}$ the set of finite approximants

• Finite approximants can be ordered by following prefix ordering:

 $\Omega \leq a$ $a_1 \leq b_1, a_2 \leq b_2, \dots a_n \leq b_n \text{ implies}$ $\lambda x_1 x_2 \cdots x_m . x a_1 a_2 \cdots a_n \leq \lambda x_1 x_2 \cdots x_m . x b_1 b_2 \cdots b_n$

• examples:

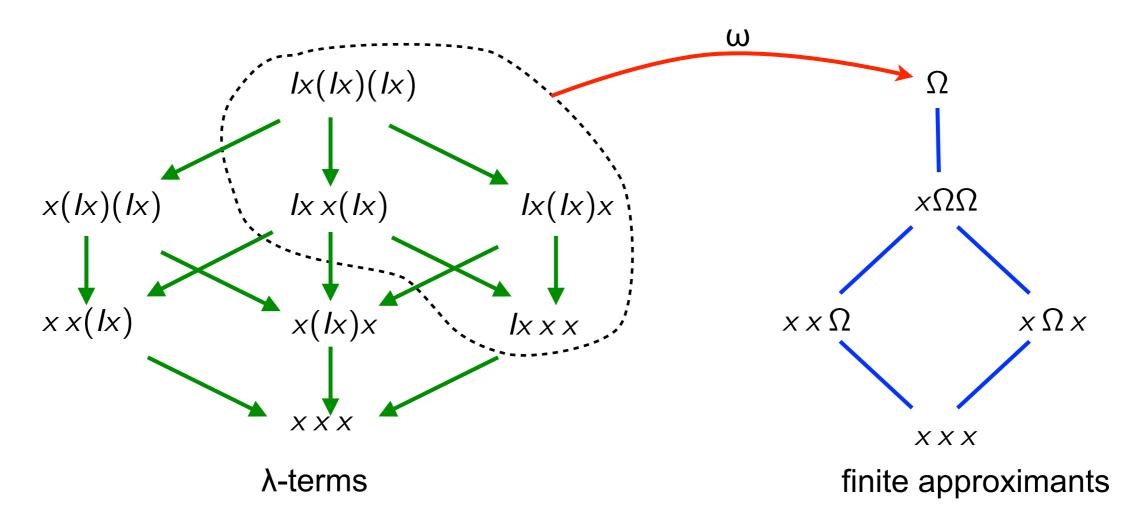
 $x\Omega\Omega \le xx\Omega$ $x\Omega\Omega \le x\Omega x$ $\lambda xy.x\Omega \le \lambda xy.xy$

• thus $a \le b$ iff several Ω 's in *a* are replaced by finite approximants in *b*.

• $\omega(M)$ is **direct approximation of** *M*. It is obtained by replacing all redexes in *M* by constant Ω and applying exhaustively the two Ω -rules:

 $\Omega M \longrightarrow \Omega$ $\lambda x. \Omega \longrightarrow \Omega$

• examples of direct approximation:



• Lemma 1:

 $\omega(M) = \Omega$ iff M is not in hnf.

 $\omega(\lambda x_1 x_2 \cdots x_m . x M_1 M_2 \cdots M_n) = \lambda x_1 x_2 \cdots x_m . x(\omega(M_1))(\omega(M_2)) \cdots (\omega(M_n))$

- Lemma 2: $M \rightarrow N$ implies $\omega(M) \leq \omega(N)$
- Lemma 3: The set \mathcal{N} of finite approximants is a conditional lattice with \leq .
- **Definition:** The set $\mathcal{A}(M)$ of direct approximants of M is defined as:

$$\mathcal{A}(M) = \{ \omega(N) \mid M \stackrel{*}{\longrightarrow} N \}$$

• Lemma 4: The set $\mathcal{A}(M)$ is a sublattice of \mathcal{N} with same lub and glb. Proof: easy application of Church-Rosser + standardization.

• **Definition:** The Bohm tree of *M* is the set of prefixes of its direct approximants:

 $\mathsf{BT}(M) = \{a \in \mathcal{N} \mid a \leq b, b \in \mathcal{A}(M)\}$

• In the terminology of partial orders and lattices, Bohm trees are ideals. Meaning they are directed sets and closed downwards. Namely:

directed sets: $\forall a, b \in BT(M), \exists c \in BT(M), a \leq c \land b \leq c$.

ideals: $\forall b \in BT(M), \forall a \in \mathcal{N}, a \leq b \Rightarrow a \in BT(M).$

- In fact, we made a completion by ideals. Take $\overline{\mathcal{N}} = \{A \mid A \subset \mathcal{N}, A \text{ is an ideal}\}$ Then $\langle \mathcal{N}, \leq \rangle$ can be completed as $\langle \overline{\mathcal{N}}, \subset \rangle$.
- Thus Bohm trees may be infinite and they are defined by the set of all their finite prefixes.

• Examples:

- **1-** $BT(\Delta\Delta) = {\Omega} = BT(\Delta\Delta\Delta) = BT(\Delta\Delta M)$
- **2-** BT($(\lambda x.xxx)(\lambda x.xxx)$) = BT(YK) = { Ω }
- **3-** BT(M) = { Ω } if M has no hnf
- **4-** BT(I) = { Ω , I}
- **5-** BT(K) = { Ω, K }
- **6-** BT(Ix(Ix)(Ix)) = { $\Omega, x\Omega\Omega, xx\Omega, x\Omega x, xxx$ }
- **7-** BT(Y) = { Ω , $\lambda f.f\Omega$, $\lambda f.f(f\Omega)$, ... $\lambda f.f^n(\Omega)$, ...}
- 8- BT(Y') = { Ω , $\lambda f.f\Omega$, $\lambda f.f(f\Omega)$, ... $\lambda f.f^n(\Omega)$, ...}

Bohm tree semantics

Bohm tree semantics

• **Definition 1:** let the Bohm tree semantics be defined by:

 $M \equiv_{\mathsf{BT}} N$ iff $\mathsf{BT}(M) = \mathsf{BT}(N)$

• **Definition 2:** we also consider Bohm tree ordering defined by:

 $M \sqsubseteq_{\mathsf{BT}} N$ iff $\mathsf{BT}(M) \subset \mathsf{BT}(N)$

When clear from context, we just write \equiv for \equiv_{BT} and \subseteq for \subseteq_{BT} .

- New goal: is Bohm tree semantics a (consistent) λ -theory ?
- We want to show that:

 $M \xrightarrow{\bullet} N$ implies $M \equiv N$

 $M \sqsubseteq N$ implies $C[M] \sqsubseteq C[N]$

Bohm tree semantics

• **Proposition 1:** $M \xrightarrow{\bullet} N$ implies $M \equiv N$

Proof: First $BT(N) \subset BT(M)$, since any approximant of N is one of M. Conversely, take a in BT(M). We have $a \leq b = \omega(M')$ where $M \xrightarrow{*} M'$. By Church-Rosser, there is N' such that $M' \xrightarrow{*} N'$ and $N \xrightarrow{*} N'$. By lemma 1, we have $\omega(M') \leq \omega(N')$. Therefore $a \leq \omega(N')$ and $a \in BT(N)$.

Homeworks

CENTRE DE RECHERCHE COMMUN

Exercices

- **1** What is the finest (consistent) λ-theory.
- 2- Do carefully examples at slide just before Bohm tree semantics.
- **3-** Give 2 λ -terms without normal form, but with distinct finite Bohm trees
- **4-** Give 2 λ -terms with distinct infinite Bohm trees
- **5-** Jacopini proved that $I \equiv \Delta \Delta$ makes a consistent theory. Why this is not contradictory with other results in this lecture?
- 6- Easy terms are terms which can be consistently equated to any other term. ΔΔ is easy. Why again this is not contradictory with current chapter?