

Plan

- · Consistent lambda theories
- Extensional equivalences
- · Congruences and semantics
- Bohm trees

Consistent theories

Consistency

- A lambda-theory is any congruence containing β -equality (interconvertiblity)
- More precisely, a lambda-theory satisfies the following axioms and rules:

$x \equiv x$	$c \equiv c$	$(\lambda x.M)N \equiv M\{x := N\}$
$M \equiv M'$	$N \equiv N'$	$M\equiv M'$
$MN \equiv M'N$	$\overline{MN} \equiv MN'$	$\overline{\lambda x.M} \equiv \lambda x.M'$

• A lambda-theory is **consistent** iff $M \neq N$ for some M, N.

Exercice 1

- 1- Give examples of consistent theories.
- **2-** Show that any lambda-theory containing $x \equiv y$ is inconsistent when $x \neq y$.
- **3-** Same with $I \equiv K$.

Extensional theories

• An extensional lambda-theory satisfies the η-rule.

$x \equiv x$	$c \equiv c$	$(\lambda x.M)N \equiv M\{x := N\}$
$\frac{M \equiv M'}{MN \equiv M'N}$	$\frac{N \equiv N'}{MN \equiv MN'}$	$\frac{M \equiv M'}{\lambda x.M \equiv \lambda x.M'}$

 $\lambda x.Mx \equiv M \quad (x \notin var(M))$

Exercice 2

• Show previous definition is equivalent to following:

$x \equiv x$	$c \equiv c$	$(\lambda x.M)N \equiv M\{x := N\}$
$\frac{M \equiv M'}{MN \equiv M'N}$	$\frac{N \equiv N'}{MN \equiv MN'}$	$\frac{M \equiv M'}{\lambda x.M \equiv \lambda x.M'}$
$\frac{\forall P. MP \equiv NP}{M \equiv N}$		

Contexts

- A context C[] is a λ -term with a hole. More precisely:
 - $C[] ::= [] | C[]N | MC[] | \lambda x.C[]$
- By C[M], we mean the λ -term obtained by putting M in the hole.
- A λ -theory is any equivalence relation \equiv satisfying:

$$M \longrightarrow N \Rightarrow M \equiv N$$

$$M \equiv N \Rightarrow C[M] \equiv C[N]$$

What are consistent λ -theories ?

- Can we equate 2 different normal forms ?
- No by Bohm theorem!
- Theorem (Böhm)[1968] Let M and N be two normals forms such that M ≠_η N. Let x and y be two variables. There exists a context C[] such that:

 $C[M] \xrightarrow{*} x$

C[N] 📥 y

Proof: not easy !!

Corollary: any λ-theory equating two different normal forms is inconsistent.
 Proof: easy ! Do it as exercice.

What are consistent λ -theories ?

- Can we equate all terms without normal forms ?
- No by a similar argument !
- Fact:

Take $M = x(\Delta \Delta)I$ and $N = x(\Delta \Delta)K$.

Then *M* and *N* have no normal forms. Thus $M \equiv N$ and $C[M] \equiv C[N]$ in any context C[].

Take $C[] = (\lambda x.[](KI))$. Then $C[M] \stackrel{*}{\longrightarrow} KI(\Delta \Delta)I \stackrel{*}{\longrightarrow} I$. And $C[N] \stackrel{*}{\longrightarrow} KI(\Delta \Delta)K \stackrel{*}{\longrightarrow} K$.

Therefore $I \equiv C[M] \equiv C[N] \equiv K$. Which is not consistent.

• **Exercice** Do similar argument with $xI(\Delta\Delta) \equiv x(\Delta\Delta)I$

Head normal forms

Total undefinedness

- A term *M* is **totally undefined** iff for all context *C*[] whenever there exists *N* such that *C*[*N*] has no normal form, then *C*[*M*] has no normal form.
- Thus *M* is totally undefined iff for all context *C*[] when *C*[*M*] has a normal form, then *C*[*M*] has also a normal form for every *N*.
- Examples:
- **1-** $x(\Delta\Delta)I$ is not totally undefined, since $(\lambda x.x(\Delta\Delta)I)(KI)$ has a normal form, but not $(\lambda x.\Delta\Delta)(KI)$.
- **2-** $xI(\Delta\Delta)$ is not totally undefined, by similar argument.
- **3-** $\Delta\Delta$ is totally undefined. Proof is a bit complex. Intuitively, if $C[\Delta\Delta]$ has a normal form, one can reach it by the leftmost-outermost reduction. Never a residual of $\Delta\Delta$ is contracted in this reduction, since it would have been an endless leftmost-outermost redex and this normal reduction would not get the normal form. Then by plugging any N in place of $\Delta\Delta$ in initial term, one get the same reduction and ends with same normal form.

Head normal forms

- Fortunately, there is another (intensional) characterization of totally undefined terms .
- A term is in head normal form (hnf) iff it has the following form:

 $\lambda x_1 x_2 \cdots x_m . x M_1 M_2 \cdots M_n$ with $m \ge 0$ and $n \ge 0$

 $(x \text{ may be free or bound by one of the } x_i)$

• A term not in head normal form is of following form: $\lambda x_1 x_2 \cdots x_m . (\lambda x. M) N N_1 N_2 \cdots N_n$

head redex

· Head normal forms appeared in Wadsworth's phD [1973].

Head normal forms

- A term *M* has a hnf if it reduces to a hnf.
- Definition: H and H' are similar head normal forms iff

 $H = \lambda x_1 x_2 \cdots x_m . x M_1 M_2 \cdots M_n$

 $H' = \lambda x_1 x_2 \cdots x_m . x M'_1 M'_2 \cdots M'_n$

(same external structure)

• Examples:

 $\lambda xy.x(\Delta \Delta)x$ and $\lambda xy.xx(\Delta \Delta)$ are similar hnfs. $xy(\Delta \Delta)x$ and $xxy(\Delta \Delta)$ are similar hnfs. $\lambda xy.x(\Delta \Delta)$ and $\lambda xy.y(\Delta \Delta)$ are not similar.

Head normal forms

- Lemma 1: If $M \xrightarrow{*} H$ in hnf and $M \xrightarrow{*} H'$ in hnf, then H and H' are similar.
- Lemma 2: If *M* has a hnf, it has a minimum hnf *H*₀ such:
 - for every hnf H, we have $M \stackrel{\star}{\longrightarrow} H_0 \stackrel{\star}{\longrightarrow} H$.
- where $\stackrel{\star}{\underset{\text{head}}{\longrightarrow}}$ is head reduction.
- Proofs: easy.
- Lemma 3: If *M* has a hnf, then *M* is not totally undefined.

Proof: easy again.

Let $M \stackrel{*}{\longrightarrow} \lambda x_1 x_2 \cdots x_m . x M_1 M_2 \cdots M_n$. We may suppose x bound. If not, we add an extra binder. So let $x = x_i$. Consider $N_1, N_2, \ldots N_m$ be any term, but $N_i = \lambda x_1 x_2 \cdots x_n . y$. Then $M N_1 N_2 \cdots N_n \stackrel{*}{\longrightarrow} y$ in normal form, but $\Delta \Delta N_1 N_2 \cdots N_n$ has no normal form.

· We will later prove the opposite direction.

Exercices

- **1-** Find Bohm context for *xab* and *xac*; for $\lambda xy.x$ and $\lambda xy.y$; for x(xab)c and x(xad)c.
- 2- Bohm theorem can be generalized to n normal forms, pairwise distinct. Find Bohm context for xab, xac, and xbc.
- 3- Give examples of terms without hnf
- 4- Give examples of terms with hnf, but without normal forms
- 5- Prove that any normal form is also a head normal form
- 6- Show that Y has a hnf.

Bohm trees

• head normal forms are first level of the normal form of M

 $M \xrightarrow{\star} \lambda x_1 x_2 \cdots x_m . x M_1 M_2 \cdots M_n.$

• but we can iterate within M_1, M_2, \ldots, M_n and get second level

$$M_1 \stackrel{*}{\longrightarrow} \lambda y_1 y_2 \cdots y_p . y N_1 N_2 \cdots N_q$$
$$M_2 \stackrel{*}{\longrightarrow} \lambda z_1 z_2 \cdots z_r . z P_1 P_2 \cdots P_s$$
$$\vdots$$
$$M_n \stackrel{*}{\longrightarrow} \lambda v_1 v_2 \cdots v_t . v Q_1 Q_2 \cdots Q_u$$

• and so on ...

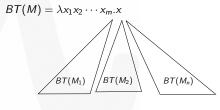
Bohm trees

• this process gives the following tree-structure:

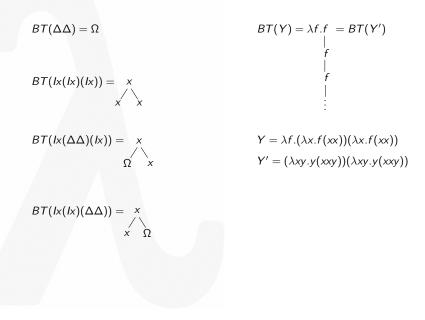
If M has no hnf

 $BT(M) = \Omega$

If $M \xrightarrow{\star} \lambda x_1 x_2 \cdots x_m x M_1 M_2 \cdots M_n$



Bohm trees



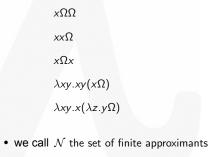
Need to define Bohm trees properly !

Finite Bohm trees

- A finite approximant is any member of the following set of terms:
 - a, b ::= Ω

 $\lambda x_1 x_2 \cdots x_m . x a_1 a_2 \cdots a_n \quad (m \ge 0, n \ge 0)$

• examples of finite approximants:



Finite Bohm trees

· Finite approximants can be ordered by following prefix ordering:

 $\Omega \leq a$

 $a_1 \leq b_1, a_2 \leq b_2, \ldots a_n \leq b_n$ implies

 $\lambda x_1 x_2 \cdots x_m . x_a a_1 a_2 \cdots a_n \leq \lambda x_1 x_2 \cdots x_m . x_b b_2 \cdots b_n$

• examples:

 $x\Omega\Omega \leq xx\Omega$

 $x\Omega\Omega \leq x\Omega x$

 $\lambda xy.x\Omega \leq \lambda xy.xy$

• thus $a \leq b$ iff several Ω 's in a are replaced by finite approximants in b.

Finite Bohm trees

• Lemma 1:

 $\omega(M) = \Omega$ iff M is not in hnf.

 $\omega(\lambda x_1 x_2 \cdots x_m . x M_1 M_2 \cdots M_n) = \lambda x_1 x_2 \cdots x_m . x(\omega(M_1))(\omega(M_2)) \cdots (\omega(M_n))$

- Lemma 2: $M \rightarrow N$ implies $\omega(M) \leq \omega(N)$
- Lemma 3: The set $\mathcal N$ of finite approximants is a conditional lattice with \leq .
- **Definition:** The set $\mathcal{A}(M)$ of direct approximants of M is defined as: $\mathcal{A}(M) = \{\omega(N) \mid M \stackrel{*}{\longrightarrow} N\}$
- Lemma 4: The set A(M) is a sublattice of N with same lub and glb.
 Proof: easy application of Church-Rosser + standardization.

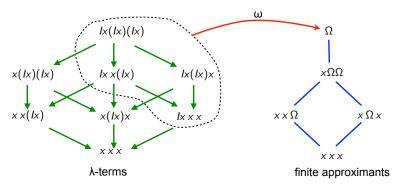
Finite Bohm trees

• *ω*(*M*) is direct approximation of *M*. It is obtained by replacing all redexes in *M* by constant Ω and applying exhaustively the two Ω-rules:

 $\Omega M \longrightarrow \Omega$

 $\lambda x. \Omega \longrightarrow \Omega$

· examples of direct approximation:



Bohm trees

• **Definition:** The Bohm tree of *M* is the set of prefixes of its direct approximants:

 $\mathsf{BT}(M) = \{a \in \mathcal{N} \mid a \leq b, b \in \mathcal{A}(M)\}$

• In the terminology of partial orders and lattices, Bohm trees are ideals. Meaning they are directed sets and closed downwards. Namely:

directed sets: $\forall a, b \in BT(M), \exists c \in BT(M), a \leq c \land b \leq c$. ideals: $\forall b \in BT(M), \forall a \in \mathcal{N}, a \leq b \Rightarrow a \in BT(M)$.

- In fact, we made a completion by ideals. Take N
 = {A | A ⊂ N, A is an ideal}
 Then ⟨N, ≤⟩ can be completed as ⟨N, ⊂⟩.
- Thus Bohm trees may be infinite and they are defined by the set of all their finite prefixes.

Bohm trees

• Examples:

- **1-** $BT(\Delta\Delta) = {\Omega} = BT(\Delta\Delta\Delta) = BT(\Delta\Delta M)$
- **2-** BT(($\lambda x.xxx$)($\lambda x.xxx$)) = BT(YK) = { Ω }
- **3-** BT(M) = { Ω } if M has no hnf
- **4-** BT(I) = { Ω , I}
- **5-** $BT(K) = \{\Omega, K\}$
- **6-** BT(Ix(Ix)(Ix)) = { $\Omega, x\Omega\Omega, xx\Omega, x\Omega x, xxx$ }
- **7-** BT(Y) = { Ω , $\lambda f. f\Omega$, $\lambda f. f(f\Omega)$, ... $\lambda f. f^n(\Omega)$, ...}
- 8- BT(Y') = { Ω , $\lambda f.f\Omega$, $\lambda f.f(f\Omega)$, ... $\lambda f.f^n(\Omega)$, ...}

Bohm tree semantics

• **Definition 1:** let the Bohm tree semantics be defined by:

 $M \equiv_{\mathsf{BT}} N$ iff $\mathsf{BT}(M) = \mathsf{BT}(N)$

• Definition 2: we also consider Bohm tree ordering defined by:

 $M \sqsubseteq_{\mathsf{BT}} N$ iff $\mathsf{BT}(M) \subset \mathsf{BT}(N)$

When clear from context, we just write \equiv for \equiv_{BT} and \sqsubseteq for $\sqsubseteq_{\mathsf{BT}}.$

- New goal: is Bohm tree semantics a (consistent) λ-theory ?
- We want to show that:

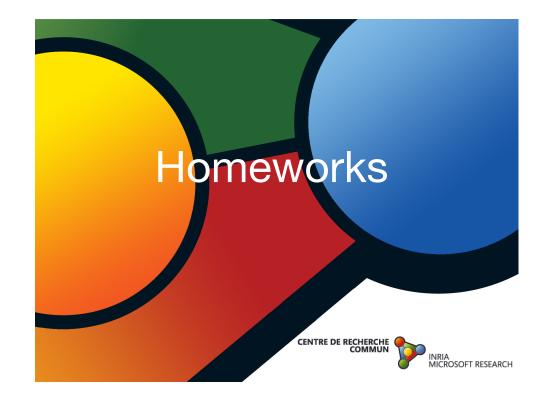
 $M \xrightarrow{\star} N$ implies $M \equiv N$

 $M \sqsubseteq N$ implies $C[M] \sqsubseteq C[N]$

Bohm tree semantics

• **Proposition 1:** $M \xrightarrow{*} N$ implies $M \equiv N$

Proof: First $BT(N) \subset BT(M)$, since any approximant of N is one of M. Conversely, take a in BT(M). We have $a \leq b = \omega(M')$ where $M \stackrel{\bullet}{\longrightarrow} M'$. By Church-Rosser, there is N' such that $M' \stackrel{\bullet}{\longrightarrow} N'$ and $N \stackrel{\bullet}{\longrightarrow} N'$. By lemma 1, we have $\omega(M') \leq \omega(N')$. Therefore $a \leq \omega(N')$ and $a \in BT(N)$.



Exercices

- 1- What is the finest (consistent) λ-theory.
- 2- Do carefully examples at slide just before Bohm tree semantics.
- **3-** Give 2 λ -terms without normal form, but with distinct finite Bohm trees
- **4-** Give 2 λ -terms with distinct infinite Bohm trees
- **5-** Jacopini proved that $I \equiv \Delta \Delta$ makes a consistent theory. Why this is not contradictory with other results in this lecture?
- **6-** Easy terms are terms which can be consistently equated to any other term. $\Delta \Delta$ is easy. Why again this is not contradictory with current chapter?