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Plan

* Consistent lambda theories
* Extensional equivalences

* Congruences and semantics
* Bohm trees

Sistent theories

CENTRE DE RECHERCHE
COMMUN
INRIA
MICROSOFT RESEARCH

Consistency

* Alambda-theory is any congruence containing B-equality (interconvertiblity)

* More precisely, a lambda-theory satisfies the following axioms and rules:
(Ax.M)N = M{x := N}

M=M N=N M=M
MN = M'N MN = MN' Ax.M = .M’

¢ Alambda-theory is consistent iff M £ N for some M, N.

Exercice 1

1- Give examples of consistent theories.

2- Show that any lambda-theory containing x = y is inconsistent when x # y.
3- Same with | = K.



Extensional theories

* An extensional lambda-theory satisfies the n-rule.

X = X c=c (Ax.M)N = M{x := N}
M=M N=N M=M
MN = M'N MN = MN’ MM = .M

Mx.Mx =M (x & var(M))

Exercice 2

* Show previous definition is equivalent to following:

X = x c=c (Ax.M)N = M{x := N}
M=M N=N M=M
MN = M'N MN = MN’ MX.M = \x.M'
VP. MP = NP
M=N
Contexts

* A context C[]is a A-term with a hole. More precisely:

Cll == (1| ClIN [ MC[] | Ax.C[]

* By C/M], we mean the A-term obtained by putting M in the hole.

* A A-theory is any equivalence relation = satisfying:
M—>N= M=N

M=N = C[M]= C[N]

What are consistent A-theories ?

* Can we equate 2 different normal forms ?

* No by Bohm theorem!

* Theorem (B6hm)[1968] Let M and N be two normals forms such that M #, N.

Let x and y be two variables. There exists a context C[] such that:
CM] = x
CIN] =y
Proof: not easy !!
* Corollary: any A-theory equating two different normal forms is inconsistent.

Proof: easy ! Do it as exercice.

Y

What are consistent A-theories ?

* Can we equate all terms without normal forms ?
* No by a similar argument !

* Fact:
Take M = x(AA)! and N = x(AA)K.

Then M and N have no normal forms. Thus M = N and C[M] = C[N] in any
context C[].

Take C[ ] = (Ax.[ [(KI)). Then C[M] <> KI(AA)I > I. And C[N] =>
KI(AD)K —> K.

Therefore | = C[M] = C[N] = K. Which is not consistent.

* Exercice Do similar argument with x/(AA) = x(AA)/



Head normal forms

* Fortunately, there is another (intensional) characterization of totally undefined
terms .

e Aterm is in head normal form (hnf) iff it has the following form:

‘normal forms

AX1X2 -+ X XMy My - - - M, with m>0and n>0

N.— head variable

(x may be free or bound by one of the x;)

* Aterm not in head normal form is of following form:
/\X1X2 3 .Xm.()\X.M)NNlN2 P Nn

'L_—— head redex

* Head normal forms appeared in Wadsworth’s phD [1973].
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Total undefinedness Head normal forms

* Aterm M is totally undefined iff for all context C[] whenever there exists N
such that C/N] has no normal form, then C/M] has no normal form.

¢ Aterm M has a hnf if it reduces to a hnf.

¢ Definition: H and H’are similar head normal forms iff
* Thus M is totally undefined iff for all context C[ ] when C[M] has a normal form,
H = Xx1x0++* Xp. XMy M, - - - M,
then C[N] has also a normal form for every N.
H = Xxaxo - X xM{ Mg - - M),
* Examples:

1- x(AA)l is not totally undefined, since (Ax.x(AA)/I)(KI) has a normal form, but
not (Ax.AA)(KI).

(same external structure)

e Examples:

2- xI(AA) is not totally undefined, by similar argument.
Axy.x(AA)x and Axy.xx(AA) are similar hnfs.

3- AA is totally undefined. Proof is a bit complex. Intuitively, if C[AA] has a normal xy(AA)x and xxy(AA) are similar hnfs.
form, one can reach it by the leftmost-outermost reduction. Never a residual of B
AA is contracted in this reduction, since it would have been an endless leftmost- Axy.x(AA) and Axy.y(AA) are not similar.

outermost redex and this normal reduction would not get the normal form. Then
by plugging any N in place of AA in initial term, one get the same reduction and
ends with same normal form.



Head normal forms

Lemma1: If M > H in hnf and M => H’ in hnf, then H and H’ are similar.

Lemma 2: If M has a hnf, it has a minimum hnf Hy such:
for every hnf H, we have M === Hy —> H.

where == is head reduction.

Proofs: easy.

Lemma 3: If M has a hnf, then M is not totally undefined.

Proof: easy again.

Let M =5 Axix2 -+ - Xm. XM My - - - M,,. We may suppose x bound. If not, we add
an extra binder. So let x = x;. Consider Ny, N, ... N, be any term, but N; =
Ax1%p - Xp.y. Then MNyNy - - - N, <> y in normal form, but AAN; N, - - - N, has
no normal form.

We will later prove the opposite direction.

Exercices

1- Find Bohm context for xab and xac; for Axy.x and Axy.y; for x(xab)c and x(xad)c.

2- Bohm theorem can be generalized to n normal forms, pairwise distinct. Find Bohm
context for xab, xac, and xbc.

3

Give examples of terms without hnf

4- Give examples of terms with hnf, but without normal forms
5- Prove that any normal form is also a head normal form

6- Show that Y has a hnf.

Bohm trees
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Bohm trees

¢ head normal forms are first level of the normal form of M
M —=> )\X1X2 . 'Xm.XMle 8. M,,.

* but we can iterate within My, M,, ... M, and get second level
My = Ayiya - yp yNiNo - - N

M2—'))\2122-~~Z,.ZP1P2"'P5
M, — )\V1V2"'Vt-VQlQQ"'Qu

e andsoon...



Bohm trees

* this process gives the following tree-structure:

If M has no hnf

BT(M) =Q
Need to define Bohm trees properly !

|fM—'—>)\X1X2"'Xm.X M1 M2 M,,

BT (M) = Ax1x2 - -+ Xm.X

Bohm trees Finite Bohm trees
BT(AA)=Q BT(Y)=M.f =BT(Y") * A finite approximant is any member of the following set of terms:
|
‘f RO — ()
BT (Ix(Ix)(Ix)) = x ‘f | Aaxe:--Xm.xaiaz---a, (m>0,n>0)
/ !

* examples of finite approximants:

BT (Ix(AA)(Ix)) = /x\ Y = M. (Ax.f(xx))(Ax.f(xx)) xQQ
x Y = (Axy.y () (Axy.y (xxy)) o
xQx

BT (Ix(Ix)(AA)) = /X\ Axy.xy(x2)

2 Axy . x(Az.yQ)

e we call AV the set of finite approximants



Finite Bohm trees

* Finite approximants can be ordered by following prefix ordering:
0<a
a; < by, ax < by, ... a, < b, implies
AX1X0 **+ Xm.Xa1d2 -+ - an < AX1Xo + + * Xm.Xb1bo - - - by,
* examples:
xQQ < xxQ
xQQ < xQx

Axy.xQ < Axy.xy

e thus a < b iff several Q's in a are replaced by finite approximants in b.

Finite Bohm trees

* w(M) is direct approximation of M. It is obtained by replacing all redexes in M by

constant Q and applying exhaustively the two Q-rules:
QM — Q
Ax.Q — Q

* examples of direct approximation:

2 () /\Q

x(Ix)(Ix) Ix x(Ix) lx(lx)x xQQ
xxl(lx) ‘>< ....;><‘Ixxlx / \

~ .~ NS

XXX

A-terms

XXX

finite approximants

Finite Bohm trees

* Lemma 1:
w(M) = Q iff M is not in hnf.

W(Axyx2 - X XMy My - - - M) = Axaxa -+ XX (w(My))(w(Ma)) - - - (w(M,))
e Lemma 2: M — N implies w(M) < w(N)

e Lemma 3: The set \V of finite approximants is a conditional lattice with <.

Definition: The set A(M) of direct approximants of M is defined as:

A(M) = {w(N) | M => N)

e Lemma 4: The set A(M) is a sublattice of A/ with same lub and glb.

Proof: easy application of Church-Rosser + standardization.

Bohm trees

* Definition: The Bohm tree of M is the set of prefixes of its direct approximants:
BT(M)={aeN | a<b, be AM)}
* In the terminology of partial orders and lattices, Bohm trees are ideals. Meaning
they are directed sets and closed downwards. Namely:

directed sets: Va, b € BT(M), 3c € BT(M), a<c A b<ec.
ideals: Vb € BT(M), Vae N, a<b = ac BT(M).

* In fact, we made a completion by ideals. Take N' = {A| A C N, Ais an ideal}
Then (N, <) can be completed as (N, C).

* Thus Bohm trees may be infinite and they are defined by the set of all their finite
prefixes.



Bohm trees Bohm tree semantics

o Examples: * Definition 1: let the Bohm tree semantics be defined by:

1- BT(AA) = {Q} = BT(AAA) =BT(AAM) M =gr N iff BT(M) = BT(N)

2- BT((Ax.xxx)(Ax.xxx)) = BT(YK) = {Q}

3- BT(M) = {Q} if M has no hnf * Definition 2: we also consider Bohm tree ordering defined by:
4- BT() ={Q. 1} M Cgr N iff BT(M) C BT(N)

5- BT(K) ={Q, K}

6- BT(Ix(Ix)(Ix)) = {2, xQQ, xx, xx, xxx}

7- BT(Y) = {Q M.FQAF(FQ), . AF.F(Q), ..}
8- BT(Y') = {Q A.FQAFF(FQ), .. AF.F(Q), ..}

When clear from context, we just write = for =g and C for Cgry.

* New goal: is Bohm tree semantics a (consistent) A-theory ?
* We want to show that:

M —=> N implies M =N
MC N implies C[M]C C[N]

Bohm tree semantics

e Proposition1: M > N implies M= N

Proof: First BT(N) C BT(M), since any approximant of N is one of M.
Conversely, take a in BT(M). We have a < b = w(M’) where M > M’
By Church-Rosser, there is N such that M' =» N’ and N > N’. By lemma 1,

tree semantics

Therefore a < w(N') and a € BT(N).

CENTRE DE RECHERCHE
COMMUN
INRIA
MICROSOFT RESEARCH




1-

2-

3-

lomeworks
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Exercices

What is the finest (consistent) A-theory.

Do carefully examples at slide just before Bohm tree semantics.

Give 2 A-terms without normal form, but with distinct finite Bohm trees
Give 2 A-terms with distinct infinite Bohm trees

Jacopini proved that /| = AA makes a consistent theory. Why this is not contra-
dictory with other results in this lecture?

Easy terms are terms which can be consistently equated to any other term.
A Ais easy. Why again this is not contradictory with current chapter?



