

Plan

- Normalization
- Strong normalization
- Standardization theorem
- Normalization strategies

Reminders

- Redexes may be tracked with residuals
- One can define parallel reduction → of a given set *F* of redexes by considering any of its finite developments.
- Lemma of parallel moves (other version of confluency lemma 1111)
- Cube lemma (consistency of residual relation w.r.t. finite developments)
- The labeled calculus was a technical tool to name redexes and prove Curry's Finite Development Theorem.

Strong Normalization

• *M* is strongly normalizable iff every reduction from *M* is finite

• Exercice: which of following terms is strongly normalizable ?

$$\begin{split} &I, II, \Delta\Delta, \Delta I, Y, YI, YK, KI(\Delta\Delta) \\ &\text{where } I = \lambda x.x, \ \Delta = \lambda x.xx, \ K = \lambda x.\lambda y.x \\ &\text{and } Y = \lambda f.(\lambda x.f(xx))(\lambda x.f(xx)). \end{split}$$

Strong Normalization

- In typed lambda-calculi, all terms are strongly normalizable:
- in 1st-order typed calculus, in system F , F-omega, terms are in \mathcal{SN}
- terms of Coq are also strongly normalizable.

Non termination

- In a fully expressive language, you have non-termination:
- in PCF + Y operator, in Ocaml, in Haskell, some terms are not in \mathcal{SN}
- Confluency ensures deterministic calculations
- but possibly not terminating with a normal form.

Normalization

• *M* is **normalizable** iff a reduction from *M* leads to a normal form.

N

normal form

• Exercice: which of following terms is normalizable ?

 $\begin{array}{l} I, II, \Delta\Delta, \Delta I, Y, YI, YK, KI(\Delta\Delta) \\ \text{where } I = \lambda x.x, \ \Delta = \lambda x.xx, \ K = \lambda x.\lambda y.x \\ \text{and } Y = \lambda f.(\lambda x.f(xx))(\lambda x.f(xx)). \end{array}$

infinite reduction

but normal form

Normalization strategies

- Suppose *M* is normalizable. Is there a strategy to reach the normal form ? (normalizing strategy)
- Conversely, if M has an infinite reduction, is there a strategy to fall in an infinite reduction ?
 (perpetual strategies) [see Barendregt + Klop]
- Take: $M = (\lambda x. y)(\Delta \Delta) \xrightarrow{*} y$ but $(\lambda x. y)(\Delta \Delta) \longrightarrow (\lambda x. y)(\Delta \Delta) \longrightarrow \cdots$
- Take: $M = I(\Delta(KI(\Delta\Delta))) \stackrel{*}{\longrightarrow} I$ but $M = I(\Delta(KI(\Delta\Delta))) \stackrel{}{\longrightarrow} I(\Delta(KI(\Delta\Delta))) \stackrel{}{\longrightarrow} \cdots$
- Take: $M = I(\Delta(K(\Delta\Delta)I)) \stackrel{*}{\longrightarrow} \Delta\Delta \longrightarrow \Delta\Delta \longrightarrow \cdots$ but $M \stackrel{*}{\longrightarrow} N$ in normal form ??

Normalization strategies

• Take: $M = Y'(KI) \xrightarrow{\star} I$

```
but M = Y'(KI) \xrightarrow{*} KI(Y'(KI)) \xrightarrow{*} KI(KI(Y'(KI))) \xrightarrow{*} \cdots
where Y' = (\lambda xy.y(xxy))(\lambda xy.y(xxy))
```

• Comparable to evaluation strategies in programming languages:

```
static int f (int x, int y) {
    if (x == 0)
        return 1;
    else
        return f (x-1, f(x, y));
}
```

```
what is value of f (1, 0)???
```

• In PCF, it would be:

```
Y(\lambda f \times y. \text{ ifz } x \text{ then } 1 \text{ else } f(x-1)(f \times y)) 1 0
```

Normalization strategies

- In programming languages, evaluation strategies could be:
 - **call-by-value**: compute value of arguments of functions and pass values to the function parameters (Ocaml, Java)
 - **call-by-name**: pass symbolic expression of arguments to the function parameters and calculate them when needed.
 - call-by-need: variation of call-by-name in order to avoid recalculations of arguments (lazy languages -- Haskell)
- there are also CBV, CBN strategies in the lambda-calculus (we don't do it here)
- Call-by-need is more complex [JJL'78, Lamping'90, Gonthier-Abadi-JJL'92]

Standardization

Standard reduction

Redex *R* is to the left of redex *S* if the λ of *R* is to the left of the λ of *S*.

$$M = \cdots (\lambda x.A)B \cdots (\lambda y.C)D \cdots$$

or
$$M = \cdots (\lambda x. \cdots (\lambda y.C)D \cdots)B \cdots$$

or
$$M = \cdots (\lambda x.A)(\cdots (\lambda y.C)D \cdots)\cdots$$

$$R$$

The reduction $M = M_0 \xrightarrow{R_1} M_1 \xrightarrow{R_2} M_2 \cdots \xrightarrow{R_n} M_n = N$ is standard iff for all $i, j \ (0 < i < j \le n)$, redex R_j is not a residual of redex R'_j to the left of R_i in M_{i-1} .

Standardization

• Theorem [standardization] (Curry) Any reduction can be standardized.

- The normal reduction (each step contracts the leftmost-outermost redex) is a standard reduction.
- **Corollary [normalization]** If *M* has a normal form, the normal reduction reaches the normal form.

Standard reduction

Standardization lemma

- **Notation:** write $R <_{\ell} S$ if redex *R* is to the left of redex *S*.
- Lemma 1 Let R, S be redexes in M such that $R <_{\ell} S$. Let $M \xrightarrow{S} N$. Then $R/S = \{R'\}$. Furthermore, if $T' <_{\ell} R'$, then $\exists T, T <_{\ell} R, T' \in T/S$. [one cannot create a redex through another more-to-the-left]

 Proof of standardization thm: [Klop] application of the finite developments theorem and previous lemma.

Standardization axioms

- 3 axioms are sufficient to get lemma 1
- Axiom 1 [linearity] $S \leq_{\ell} R$ implies $\exists ! R', R' \in R/S$
- Axiom 2 [context-freeness] $S \not\leq_{\ell} R$ and $R' \in R/S$ and $T' \in T/S$ implies $T \Re R$ iff $T' \Re R'$ where \Re is $<_{\ell}$ or $>_{\ell}$
- Axiom 3 [left barrier creation] $(R <_{\ell} S \text{ and } \nexists T', T \in T'/S) \text{ implies } R' <_{\ell} T \text{ where } R/S = \{R'\}$

Standardization proof

• Proof:

Each square is an application of the lemma of parallel moves. Let ρ_i be the horizontal reductions and σ_j the vertical ones. Each horizontal step is a parallel step, vertical steps are either elementary or empty.

We start with reduction ρ_0 from M to N. Let R_1 be the leftmost redex in M with residual contracted in ρ_0 . By lemma 1, it has a single residual R'_1 in M_1 , M_2 , ... until it belongs to some \mathcal{F}_k . Here $R'_1 \in \mathcal{F}_2$. There are no more residuals of R_1 in M_{k+1} , M_{k+2} ,

Let R_2 be leftmost redex in P_1 with residual contracted in ρ_1 . Here the unique residual is contracted at step *n*. Again with R_3 leftmost with residual contracted in ρ_2 . Etc.

Standardization proof

• Proof (cont'd):

Now reduction σ_0 starting from M cannot be infinite and stops for some p. If not, there is a rightmost column σ_k with infinitely non-empty steps. After a while, this reduction is a reduction relative to a set \mathcal{F}_i^j , which cannot be infinite by the Finite Development theorem.

Then ρ_p is an empty reduction and therefore the final term of σ_0 is *N*.

Standardization proof

• Proof (cont'd):

We claim σ_0 is a standard reduction. Suppose R_k (k > i) is residual of S_i to the left of R_i in P_{i-1} .

By construction R_k has residual S_k^j along ρ_{i-1} contracted at some j step. So S_k^j is residual of S_i .

By the cube lemma, it is also residual of some S_i^j along σ_{j-1} . Therefore there is S_i^j in \mathcal{F}_i^j residual of S_i leftmore or outer than R_i .

Contradiction.

Exercices

- **1-** Show that $\Delta\Delta(II)$ has no normal form when $I = \lambda x.x$ and $\Delta = \lambda x.xx$.
- **2-** Show that $\Delta \Delta M_1 M_2 \cdots M_n$ has no normal form for any M_1, M_2, \dots, M_n $(n \ge 0)$.
- **3-** Show there is no *M* whose reduction graph is exactly the following:

- 4- Show that rightmost-outermost reduction may miss normal forms.
- 5- Show that if $M \xrightarrow{*} \lambda x.N$, there is a minimal N_0 such that for all P, such that if $M \xrightarrow{*} \lambda x.P$, then $N_0 \xrightarrow{*} P$.