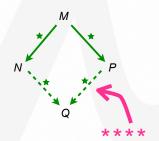
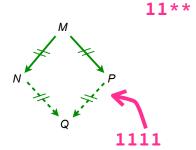


- Residuals of redexes
- · Finite developments theorem
- · A labeled calculus "underlined method"
- Proof of finite developments

Reminders

- Local confluency of β -conversion (lemma 11**)
- Local confluency full confluency
- need for defining parallel reduction (lemma 1111)
- then full confluency (Church-Rosser thm ****)
- interconvertibility (β-equality) is consistent





Residuals of redexes

- · tracking redexes while contracting others
- · examples:

$$\Delta(\underline{la}) \longrightarrow \underline{la}(\underline{la}) \qquad \Delta = \lambda x. xx \quad I = \lambda x. x \quad K = \lambda xy. x$$

$$\underline{la}(\Delta(\underline{lb})) \longrightarrow \underline{la}(\underline{lb}(\underline{lb}))$$

$$\underline{L}(\Delta(\underline{la})) \longrightarrow \underline{L}(\underline{la}(\underline{la}))$$

$$\Delta(\underline{la}) \longrightarrow \underline{la}(\underline{lb})$$

$$\underline{la}(\Delta(\underline{lb})) \longrightarrow \underline{la}(\underline{lb}(\underline{lb}))$$

$$\underline{\Delta\Delta} \longrightarrow \Delta\Delta$$

$$(\lambda x. \underline{la})(\underline{lb}) \longrightarrow \underline{la}$$

Residuals of redexes

- when R is redex in M and M → N
 the set R/S of residuals of R in N is defined by inspecting relative positions of R and S in M:
- **1-** R and S disjoint, $M = \cdots \underbrace{R} \cdots S \cdots \xrightarrow{S} \cdots \underbrace{R} \cdots S' \cdots = N$
- **2-** S in $R = (\lambda x.A)B$ **2a-** S in A, $M = \cdots (\lambda x.\cdots S\cdots)B \cdots \xrightarrow{S} \cdots (\lambda x.\cdots S'\cdots)B \cdots = N$ **2b-** S in B, $M = \cdots (\lambda x.A)(\cdots S\cdots) \cdots \xrightarrow{S} \cdots (\lambda x.A)(\cdots S'\cdots) \cdots = N$
- 3- R in $S = (\lambda y.C)D$ 3a- R in C, $M = \cdots (\lambda y.\cdots R\cdots)D \cdots \xrightarrow{S} \cdots \cdots R\{y := D\} \cdots = N$ 3b- R in D, $M = \cdots (\lambda y.C)(\cdots R\cdots) \cdots \xrightarrow{S} \cdots (\cdots R\cdots) \cdots (\cdots R\cdots) \cdots = N$

4- *R* is *S*, no residuals of *R*.

Residuals of redexes

- when ρ is a reduction from M to N, i.e. ρ: M → N
 the set of residuals of R by ρ is defined by transitivity on the length of ρ
 and is written R/ρ
- notice that we can have S ∈ R/ρ and R ≠ S
 residuals may not be syntacticly equal (see previous 3rd example)
- residuals depend upon reduction. Two reductions between same terms may produce two distinct sets of residuals.
- a redex is residual of a single redex (the inverse of the residual relation is a function): R ∈ S/ρ and R ∈ T/ρ implies S = T

Exercices

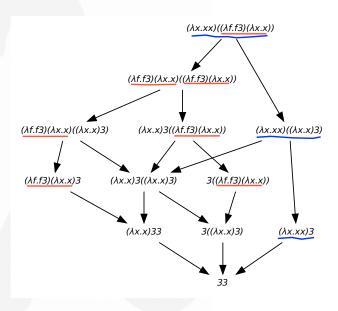
- Find redex R and reductions ρ and σ between M and N such that residuals
 of R by ρ and σ differ. Hint: consider M = I(Ix)
- Show that residuals of nested redexes keep nested.
- · Show that residuals of disjoint redexes may be nested.
- Show that residuals of a redex may be nested after several reduction steps.

Created redexes

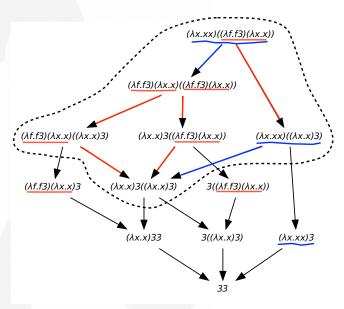
• A redex is **created by reduction** ρ if it is not a residual by ρ of a redex in initial term. Thus R is created by ρ when $\rho: M \xrightarrow{*} N$ and $\nexists S$, $R \in S/\rho$

$$(\lambda x.xa)I \longrightarrow Ia \qquad IIa \longrightarrow Ia$$
$$(\lambda xy.xy)ab \longrightarrow (\lambda y.ay)b \qquad \Delta \Delta \longrightarrow \Delta \Delta$$

Residuals of redexes



Relative reductions



Finite developments

- Let F be a set of redexes in M. A reduction relative to F only contracts residuals of F.
- When there are no more residuals of $\mathcal F$ to contract, we say the relative reduction is a **development of** $\mathcal F$.
- Theorem 3 [finite developments] (Curry) Let \mathcal{F} be a set of redexes in M. Then:
 - relative reductions cannot be infinite; they all end in a development of ${\mathcal F}$
 - all developments end on a same term N
 - let R be a redex in M. Then **residuals** of R by finite developments of \mathcal{F} are the same.

Finite developments

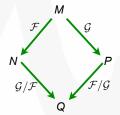
• Therefore we can define (without ambiguity) a new parallel step reduction:

$$\rho: M \xrightarrow{\mathcal{F}} N$$

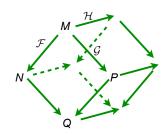
and when R is a redex in M, we can write R/\mathcal{F} for its residuals in N

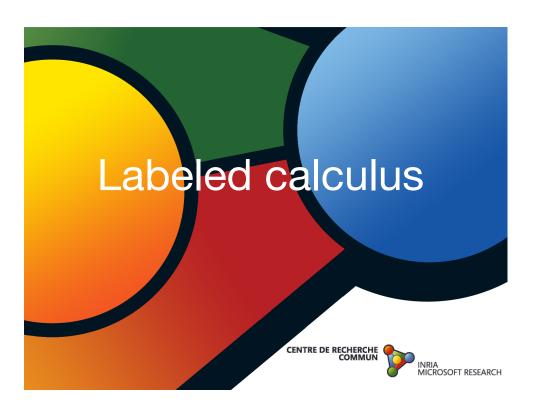
Two corollaries:

Lemma of Parallel Moves



Cube Lemma





Labeled calculus

- Finite developments will be shown with a labeled calculus.
- Lambda calculus with labeled redexes

$$M, N, P$$
 ::= $x, y, z, ...$ (variables)
| $(\lambda x.M)$ (M as function of x)
| $(M N)$ (M applied to M)
| $C, d, ...$ (constants)
| $(\lambda x.M)^r N$ (labeled redexes)

• F-labeled reduction

$$(\lambda x.M)^r N \longrightarrow M\{x := N\}$$
 when $r \in \mathcal{F}$

Labeled substitution

... as before
$$((\lambda x.M)^r N)\{y := P\} = ((\lambda x.M)\{y := P\})^r (N\{y := P\})$$

Labeled calculus

Take
$$\mathcal{F} = \{s, u, v\}$$
 and

 $M = I^r(\Delta^s(I^tx))(\Delta^u(I^vy))$
 $\rightarrow I^r(I^tx(I^tx))(\Delta^u(I^vy))$
 $\rightarrow I^r(I^tx(I^tx))(\Delta^uy)$
 $\rightarrow I^r(I^tx(I^tx))(yy)$

but also

 $M \rightarrow I^r(\Delta^s(I^tx))(I^vy(I^vy))$
 $\rightarrow I^r(I^tx(I^tx))(I^vyy)$
 $\rightarrow I^r(I^tx(I^tx))(yy)$
also development of s, u, v
 $\downarrow I^r(I^tx(I^tx))(yy)$
 $\downarrow I^r(I^tx(I^tx))(yy)$

Labeled calculus

- Theorem For any \mathcal{F} , the labeled calculus is confluent.
- Theorem For any F, the labeled calculus is strongly normalizable (no infinite labeled reductions).
- Lemma For any \mathcal{F} -reduction $\rho: M \xrightarrow{*} N$, a labeled redex in N has label r if and only if it is **residual** by ρ of a redex with label r in M.

• Theorem 3 [finite developments] (Curry)

Labeled calculus proofs

• Definition [\mathcal{F}-labeled parallel reduction]:

Labeled calculus proofs

• Substitution lemma: $M\{x:=N\}\{y:=P\}=M\{y:=P\}\{x:=N\{y:=P\}\}$ when x not free in P

Proof: Induction on ||M||. Cases 1-4 are as in the unlabeled calculus.

Case 5: $M=(\lambda z.M_1)'M_2$. This case is easy. Write $A^*=A\{x:=N\}\{y:=P\}$ and $A^\dagger=A\{y:=P\}\{x:=N\{y:=P\}\}$ for any A.

We have $M^*=((\lambda z.M_1)^*)^rM_2^*=((\lambda z.M_1)^\dagger)^rM_2^\dagger$ by induction. Thus again $M^*=M^\dagger$.

Labeled calculus proofs

- Proof of confluency is again with Martin-Löf's axiomatic method.
- Proof of residual property is by simple inspection of a reduction step.
- Proof of termination is slightly more complex with following lemmas:
- Notation $M \stackrel{*}{\underset{\text{int}}{\longrightarrow}} N$ if M reduces to N without contracting a toplevel redex.
- Lemma 1 [Barendregt-like] $M\{x:=N\} \xrightarrow{*} (\lambda y.P)^r Q$ implies $M = (\lambda y.A)^r B$ with $A\{x:=N\} \xrightarrow{*} P$, $B\{x:=N\} \xrightarrow{*} Q$ or M = x and $N \xrightarrow{*} (\lambda y.P)^r Q$
- Lemma 2 $M, N \in SN$ (strongly normalizing) implies $M\{x := N\} \in SN$
- Theorem $M \in \mathcal{SN}$ for all M.

Labeled calculus proofs

• Lemma 1 [Barendregt-like] $M\{x:=N\}$ $\xrightarrow{\text{int}}$ $(\lambda y.P)^rQ$ implies $M=(\lambda y.A)^rB$ with $A\{x:=N\}$ $\xrightarrow{*}$ P, $B\{x:=N\}$ $\xrightarrow{*}$ Q or M=x and N $\xrightarrow{*}$ $(\lambda y.P)^rQ$

Proof Let P^* be $P\{x := N\}$ for any P.

Case 1: M = x. Then $M^* = N$ and $N \xrightarrow{*} (\lambda y.P)^r Q$.

Case 2: M = y. Then $M^* = y$. Impossible.

Case 2: $M = \lambda y.M_1$. Again impossible.

Case 3: $M=M_1M_2$ or $M=(\lambda y.M_1)^sM_2$ with $s\neq r$. These cases are also impossible.

Case 4: $M = (\lambda y. M_1)^r M_2$. Then $M_1^* \xrightarrow{*} P$ and $M_2^* \xrightarrow{*} Q$.

QED

Labeled calculus proofs

• Lemma 2 $M, N \in SN$ (strongly normalizing) implies $M\{x := N\} \in SN$

Proof: by induction on $\langle \operatorname{depth}(M), ||M|| \rangle$. Let P^* be $P\{x := N\}$ for any P.

Case 1: M = x. Then $M^* = N \in \mathcal{SN}$. If M = y. Then $M^* = y \in \mathcal{SN}$.

Case 2: $M = \lambda y. M_1$. Then $M^* = \lambda y. M_1^*$ and by induction $M_1^* \in \mathcal{SN}$.

Case 3: $M = M_1 M_2$ and never $M^* \xrightarrow{\bullet} (\lambda y.A)^r B$. Same argument on M_1 and M_2 .

Case 4: $M = M_1 M_2$ and $M^* \xrightarrow{*} (\lambda y.A)^r B$. We can always consider first time when this toplevel redex appears. Hence we have $M^* \xrightarrow[]{*} (\lambda y.A)^r B$. By lemma 1, we have two cases:

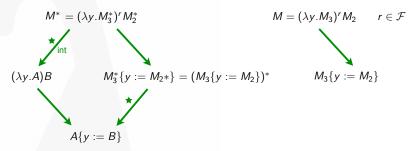
Case 4.1: $M=(\lambda y.M_3)^rM_2$ with $M_3^* \xrightarrow{*} A$ and $M_2^* \xrightarrow{*} B$. Then $M^*=(\lambda y.M_3^*)^rM_2^*$. As $M_3 \in \mathcal{SN}$ and $M_2 \in \mathcal{SN}$, the internal reductions from M^* terminate by induction. If $r \notin \mathcal{F}$, there are no extra reductions. If $r \in \mathcal{F}$, we can have $M_3^* \xrightarrow{*} A$, $M_2^* \xrightarrow{*} B$ and $(\lambda y.A)^rB \longrightarrow A\{y := B\}$. But $M \longrightarrow M_3\{y := M_2\}$ and $(M_3\{y := M_2\})^* \xrightarrow{*} A\{y := B\}$. As depth $(A\{y := B\} \subseteq A)$ depth $(A\{y := B\} \subseteq A)$ by induction.

Case 4.2: M = x. Impossible.

QED

Labeled calculus proofs

Case 4.1 (bis): still by induction on $\langle depth(M), ||M|| \rangle$.



We need substitution lemma and main lemma of Martin-I of's axiomatic method:

$$M\{x:=N\}\{y:=P\}=M\{y:=P\}\{x:=N\{y:=P\}\}$$
 when x not free in P $M \not\longrightarrow M'$ and $N \not\longrightarrow N'$ implies $M\{x:=N\} \not\longrightarrow M'\{x:=N'\}$ (in last one, one can replace $\not\longrightarrow$ by $\xrightarrow{*}$)

Labeled calculus proofs

• **Theorem** $M \in \mathcal{SN}$ for all M.

Proof: by induction on ||M||.

Case 1: M = x. Obvious.

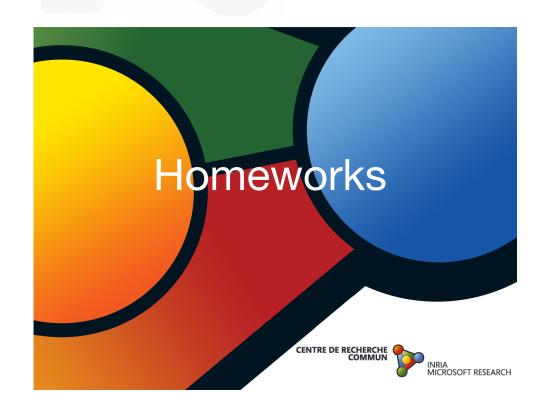
Case 2: $M = \lambda x. M_1$. Obvious since $M_1 \in SN$ by induction.

Case 3: $M = M_1 M_2$ and $M_1 \neq (\lambda x.A)^r$. Then all reductions are internal to M_1 and M_2 . Therefore $M \in \mathcal{SN}$ by induction on M_1 and M_2 .

Case 4: $M = (\lambda x. M_1)^r M_2$ and $r \notin \mathcal{F}$. Same argument on M_1 and M_2 .

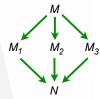
Case 5: $M = (\lambda x. M_1)^r M_2$ and $r \in \mathcal{F}$. Then M_1 and M_2 in \mathcal{SN} by induction. But we can also have $M \xrightarrow{*} (\lambda x. A)^r B \longrightarrow A\{x := B\}$ with A and B in \mathcal{SN} . By Lemma 2, we know that $A\{x := B\} \in \mathcal{SN}$.

QED



Exercices

- **1-** Show there is no M such that $M \xrightarrow{\star} Kac$ and $M \xrightarrow{\star} Kbc$ where $K = \lambda x. \lambda y. x$.
- **2-** Find M such that $M \xrightarrow{*} Kab$ and $M \xrightarrow{*} Kac$.
- **3-** (difficult) Show that **←** is not confluent.
- **4-** Show there is no *M* whose reduction graph is exactly following:



- **5-** Show there is no M such that $M \xrightarrow{\star} \lambda x.N$ and $M \xrightarrow{\star} yM_1M_2\cdots M_n$.
- **6-** Show there is no M such that $M \xrightarrow{*} xN_1N_2 \cdots N_n$ and $M \xrightarrow{*} yP_1P_2 \cdots P_n$ $(x \neq y)$.
- **7-** Show that $\stackrel{\star}{\longleftarrow}_{\eta}$ and $(\longrightarrow \cup \longleftarrow_{\eta})^*$ are confluent.

Exercices

8- Equivalence by permutations.