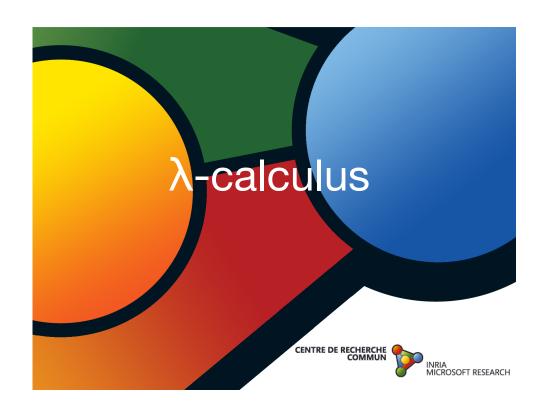


Plan

- language
- abbreviations
- local confluency
- · Church Rosser theorem
- · Redexes and residuals



The lambda-calculus

Lambda terms

$$M, N, P$$
 ::= $x, y, z, ...$ (variables)

| $(\lambda x.M)$ (M as function of x)

| $(M \ N)$ (M applied to N)

| $C, d, ...$ (constants)

· Calculations "reductions"

$$((\lambda x.M)N) \longrightarrow M\{x := N\}$$

Abbreviations

$$MM_1M_2\cdots M_n$$
 for $(\cdots ((MM_1)M_2)\cdots M_n)$

$$(\lambda x_1 x_2 \cdots x_n . M)$$
 for $(\lambda x_1 . (\lambda x_2 . \cdots (\lambda x_n . M) \cdots))$

external parentheses and parentheses after a dot may be forgotten

Exercice 1

Write following terms in long notation:

$$\lambda x.x$$
, $\lambda x.\lambda y.x$, $\lambda xy.x$, $\lambda xyz.y$, $\lambda xyz.zxy$, $\lambda xyz.z(xy)$, $(\lambda x.\lambda y.x)MN$, $(\lambda xy.x)MN$, $(\lambda xy.y)MN$, $(\lambda xy.y)MN$, $(\lambda xy.y)(MN)$

Examples

$$(\lambda x.x)N \longrightarrow N$$

$$(\lambda f. f N)(\lambda x. x) \longrightarrow (\lambda x. x) N \longrightarrow N$$

$$(\lambda x.xx)(\lambda x.xN) \longrightarrow (\lambda x.xN)(\lambda x.xN) \longrightarrow (\lambda x.xN)N \longrightarrow NN$$

$$(\lambda x.xx)(\lambda x.xx) \rightarrow (\lambda x.xx)(\lambda x.xx) \rightarrow \cdots$$

$$Y_f = (\lambda x. f(xx))(\lambda x. f(xx)) \longrightarrow f((\lambda x. f(xx))(\lambda x. f(xx))) = f(Y_f)$$

$$f(Y_f) \longrightarrow f(f(Y_f)) \longrightarrow \cdots \longrightarrow f^n(Y_f) \longrightarrow \cdots$$

Substitution

$$x\{y:=P\}=x \qquad \qquad c\{y:=P\}=c$$

$$y\{y:=P\}=P$$

$$(MN)\{y:=P\}=M\{y:=P\}\ N\{y:=P\}$$

$$(\lambda y.M)\{y:=P\}=\lambda y.M$$

$$(\lambda x.M)\{y:=P\}=\lambda x'.M\{x:=x'\}\{y:=P\}$$
 where $x'=x$ if y not free in M or x not free in P , otherwise x' is the first variable not free in M and P . (we suppose that the set of variables is infinite and enumerable)

Free variables

$$var(x) = \{x\}$$
 $var(c) = \emptyset$
 $var(MN) = var(M) \cup var(N)$
 $var(\lambda x.M) = var(M) - \{x\}$

Conversion rules

$$\lambda x.M \longrightarrow_{\alpha} \lambda x'.M\{x := x'\} \qquad (x' \notin \text{var}(M))$$

$$(\lambda x.M)N \longrightarrow_{\beta} M\{x := N\}$$

$$\lambda x.Mx \longrightarrow_{\eta} M \qquad (x \notin \text{var}(M))$$

- left-hand-side of conversion rule is a **redex** (reductible expression)
- α-redex, β-redex, η-redex, ...
- we forget indices when clear from context, often β

Reduction step

• let R be a redex in M. Then one can contrat redex R in M and get N:

$$M \xrightarrow{R} N$$

Reductions

$$M \xrightarrow{*} N$$
 when $M = M_0 \longrightarrow M_1 \longrightarrow M_2 \longrightarrow \cdots M_n = N$ $(n \ge 0)$

· same with explicit contracted redexes

$$M = M_0 \xrightarrow{R_1} M_1 \xrightarrow{R_2} M_2 \cdots \xrightarrow{R_n} M_n = N$$

· and with named reductions

$$\rho: M = M_0 \xrightarrow{R_1} M_1 \xrightarrow{R_2} M_2 \cdots \xrightarrow{R_n} M_n = N$$

we speak of redex occurences when specifying reduction steps,
 but it is convenient to confuse redexes and redex occurences when clear from context

Lambda theories

 $M =_{\beta} N$ when M and N are related by a zigzag of reductions M and N are said **interconvertible**

- Also $M =_{\alpha} N$, $M =_{\eta} N$, $M =_{\beta,\eta} N$, ...
- Interconvertibility is symmetric, reflexive, transivite closure of reduction relation
- or with notations of mathematical logic:

$$\alpha \vdash M = N, \ \beta \vdash M = N, \ \eta \vdash M = N, \ \beta + \eta \vdash M = N, \dots$$

• the syntactic equality M=N will often stand for $M=_{\alpha}N$.

Exercice 3

- Show that $M \longrightarrow N$ implies $var(N) \subset var(M)$.
- Find terms M such that:

$$M \longrightarrow M$$
 $M = M_0 \longrightarrow M_1 \longrightarrow M_2 \longrightarrow \cdots M_n = M$ (M_i all distinct)
 $M =_{\beta} \times M$
 $M =_{\beta} \lambda x . M$
 $M =_{\beta} MM$
 $M =_{\beta} MN_1 N_2 \cdots N_n$ for all $N_1, N_2, ... N_n$

Find term Y such that, for any M:

$$YM =_{\beta} M(YM)$$

• Find Y'such that, for any M:

$$Y'M \xrightarrow{*} M(Y'M)$$

• (difficult) Show there is only one redex R such that $R \rightarrow R$

Normal forms

An expression M without redexes is in normal form

$$M \rightarrow$$

• If M reduces to a normal form, then M has a normal form

$$M \stackrel{*}{\longrightarrow} N$$
, N in normal form

Exercice 4

• which of following terms are in β -normal form ? in $\beta\eta$ -normal form ?

$$\lambda x.x \qquad \lambda x.x(\lambda xy.x)(\lambda x.x)$$

$$\lambda xy.x \qquad \lambda xy.x(\lambda xy.x)(\lambda x.yx)$$

$$\lambda xy.xy \qquad \lambda xy.x((\lambda x.xx)(\lambda x.xx))y$$

$$\lambda xy.x((\lambda x.y(xx))(\lambda x.y(xx)))$$

Exercice 5

- Show that if M is in normal form and $M \xrightarrow{*} N$, then M = N
- Show that:

1-
$$\lambda x.M \xrightarrow{*} N$$
 implies $N = \lambda x.N'$ and $M \xrightarrow{*} N'$

2-
$$MN \xrightarrow{*} P$$
 implies $M \xrightarrow{*} M'$, $N \xrightarrow{*} N'$ and $P = M'N'$ or $M \xrightarrow{*} \lambda x.M'$, $N \xrightarrow{*} N'$ and $M'\{x := N'\} \xrightarrow{*} P$

3-
$$xM_1M_2 \cdots M_n \xrightarrow{*} N$$
 implies $M_1 \xrightarrow{*} N_1$, $M_2 \xrightarrow{*} N_2$, ... $M_n \xrightarrow{*} N_n$ and $xN_1N_2 \cdots N_n = N$

4-
$$M\{x := N\}$$
 $\xrightarrow{*}$ $\lambda y.P$ implies $M \xrightarrow{*} \lambda y.M'$ and $M'\{x := N\}$ $\xrightarrow{*}$ P or $M \xrightarrow{*} xM_1M_2 \cdots M_n$ and $NM_1\{x := N\} \cdots M_n\{x := N\}$ $\xrightarrow{*} \lambda y.P$

Reduction (axiomatic def.)

We can define reduction \longrightarrow axiomatically by following axioms and rules:

• Definition [beta reduction]:

[App1 Rule]
$$\frac{M \to M'}{MN \to M'N}$$
 [App2 Rule] $\frac{N \to N'}{MN \to MN'}$

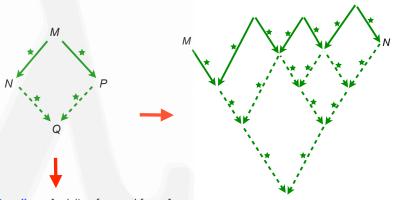
[Abs Rule]
$$\frac{M \longrightarrow M'}{\lambda x.M \longrightarrow \lambda x.M'}$$
 [//Beta Axiom] $(\lambda x.M)N \longrightarrow M\{x := N\}$

Exercice 6

Give axiomatic definition for $\stackrel{\star}{\longrightarrow}$, \longrightarrow_{η} , $\stackrel{\star}{\longrightarrow}_{\beta,\eta}$.

Confluency

Question: If $M \xrightarrow{*} N$ and $M \xrightarrow{*} P$, then $N \xrightarrow{*} Q$ and $P \xrightarrow{*} Q$ for some Q?

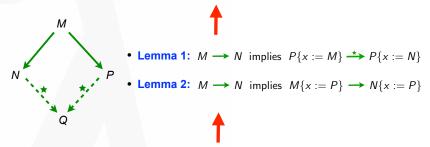


Corollary: [unicity of normal forms]

If $M \stackrel{*}{\longrightarrow} N$ in normal form and $M \stackrel{*}{\longrightarrow} N'$ in normal form, then N = N'.

Local confluency

• Theorem 1 [lemma 11**]: If $M \to N$ and $M \to P$, then $N \stackrel{*}{\to} Q$ and $P \stackrel{*}{\to} Q$ for some Q



• Substitution lemma: $M\{x := N\}\{y := P\} = M\{y := P\}\{x := N\{y := P\}\}$ when x not free in P

Local confluency

• Substitution lemma: $M\{x := N\}\{y := P\} = M\{y := P\}\{x := N\{y := P\}\}$ when x not free in P

Proof:

Write
$$A^* = A\{x := N\}\{y := P\}$$
 and $A^{\dagger} = A\{y := P\}\{x := N\{y := P\}\}$ for any A .

Case 1:
$$M = x$$
. Then $M^* = N\{y := P\} = M^{\dagger}$.

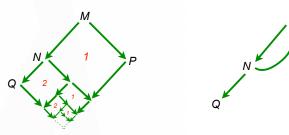
Case 2: M = y. Then $M^* = P = P\{x := A\}$ for any A since $x \notin \text{var}(P)$. Therefore $M^* = P\{x := N\{y := P\}\} = M^{\dagger}.$

Case 3: $M = M_1 M_2$. This case is easy by induction.

Case 4: $M = \lambda z. M_1$. We assume (by α -conversion) that z is a fresh variable neither in N, nor in P. Then induction is easy, since $M^* = \lambda z.M_1^*$ and $M^{\dagger} = \lambda z.M_1^{\dagger}$. This case is then similar to the previous one.

Confluency

• Fact: local confluency does not imply confluency



10 km/hr

Confluency

We define # such that $\rightarrow \subset \# \subset \stackrel{*}{\longrightarrow}$

• Definition [parallel reduction]:

[Var Axiom]
$$x \not\longrightarrow x$$

[Abs Rule]
$$\frac{M \# M'}{\lambda x.M \# \lambda x.M'}$$

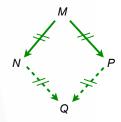
Example:

$$\frac{x \not \# x \quad z \not \# z}{|z \not \# z|} \quad \frac{x \not \# x \quad z \not \# z}{|z \not \# z|}$$

$$\frac{|z \not \# z|}{|z (|z|) \not \# zz} \qquad I = \lambda x.x$$

Confluency

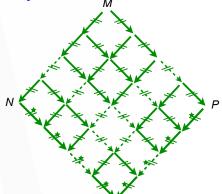
• Goal is to prove strongly local confluency:



• Example:
$$(\lambda x.xx)(lz)$$
 $\xrightarrow{\#}$ $(\lambda x.xx)z$ $\xrightarrow{}$ $lz(lz)$ $\xrightarrow{\#}$ zz

Confluency

• Proof of confluency :



Confluency

- Lemma 4: $M \not \longrightarrow N$ and $P \not \longrightarrow Q$ implies $M\{x := P\} \not \longrightarrow N\{x := Q\}$
- Lemma 5: If M

 → N and M
 → P, then N
 → Q and N
 → Q for some Q.
 Proofs L6/L7: structural induction + substitution lemma.
- Lemma 6: If $M \rightarrow N$, then $M \not\!\!\!/ N$.
- Lemma 7: If $M \not\longrightarrow N$, then $M \xrightarrow{\star} N$.

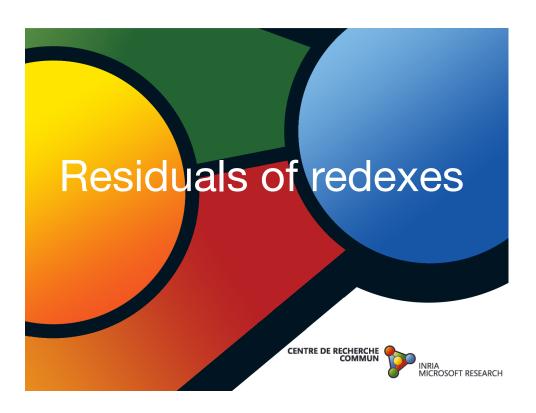
Proofs L6/L7: obvious.

• Theorem 2 [Church-Rosser]: If $M \xrightarrow{*} N$ and $M \xrightarrow{*} P$, then $N \xrightarrow{*} Q$ and $P \xrightarrow{*} Q$ for some Q.

Confluency

- · previous axiomatic method is due to Tait and Martin-Löf
- Tait--Martin-Löf's method models inside-out parallel reductions
- there are other proofs with explicit redexes

· Curry's finite developments



Residuals of redexes

- tracking redexes while contracting others
- · examples:

$$\Delta(la) \longrightarrow la(la)$$

$$\Delta = \lambda x. xx \quad l = \lambda x.x \quad K = \lambda xy.x$$

$$la(\Delta(lb)) \longrightarrow la(lb(lb))$$

$$l(\Delta(la)) \longrightarrow l(la(la))$$

$$\Delta(la) \longrightarrow la(la))$$

$$la(\Delta(lb)) \longrightarrow la(lb(lb))$$

$$\Delta\Delta \longrightarrow \Delta\Delta$$

$$(\lambda x. la)(lb) \longrightarrow la$$

Residuals of redexes

- when R is redex in M and M → N
 the set R/S of residuals of R in N is defined by inspecting relative positions of R and S in M:
- **1-** R and S disjoint, $M = \cdots R \cdots S \cdots \xrightarrow{S} \cdots R \cdots S' \cdots = N$
- 2- S in $R = (\lambda x.A)B$ 2a- S in A, $M = \cdots (\lambda x.\cdots S\cdots)B \cdots \xrightarrow{S} \cdots (\lambda x.\cdots S'\cdots)B \cdots = N$ 2b- S in B, $M = \cdots (\lambda x.A)(\cdots S\cdots) \cdots \xrightarrow{S} \cdots (\lambda x.A)(\cdots S'\cdots) \cdots = N$
- **3-** R in $S = (\lambda y.C)D$ **3a-** R in C, $M = \cdots (\lambda y.\cdots \cancel{R}\cdots)D\cdots \xrightarrow{S} \cdots \cdots \cancel{R}\{y:=D\}\cdots = N$ **3b-** R in D, $M = \cdots (\lambda y.C)(\cdots \cancel{R}\cdots)\cdots \xrightarrow{S} \cdots (\cdots \cancel{R}\cdots)\cdots (\cdots \cancel{R}\cdots)\cdots = N$
- 4- R is S, no residuals of R.

Residuals of redexes

- when ρ is a reduction from M to N, i.e. ρ: M → N
 the set of residuals of R by ρ is defined by transitivity on the length of ρ and is written R/ρ
- notice that we can have $S \in R/\rho$ and $R \neq S$ residuals may **not** be syntacticly **equal** (see previous 3rd example)
- residuals depend on reductions. Two reductions between same terms may produce two distinct sets of residuals.
- a redex is residual of a single redex (the inverse of the residual relation is a function): R ∈ S/ρ and R ∈ T/ρ implies S = T

Exercice 7

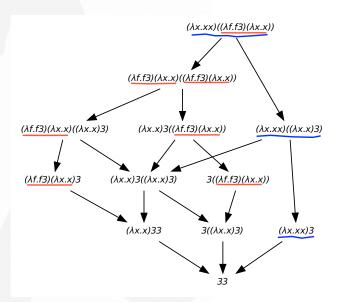
- Find redex R and reductions ρ and σ between M and N such that residuals
 of R by ρ and σ differ. Hint: consider M = I(Ix)
- · Show that residuals of nested redexes keep nested.
- Show that residuals of disjoint redexes may be nested.
- Show that residuals of a redex may be nested after several reduction steps.

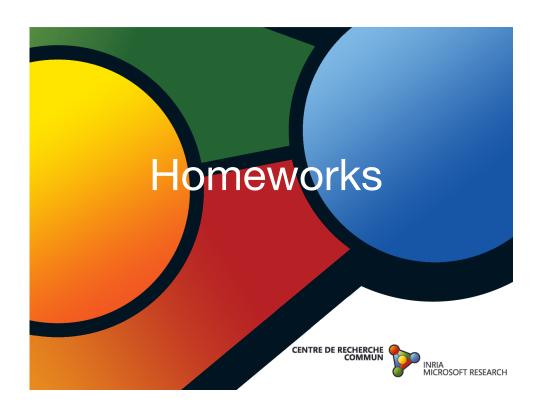
Created redexes

A redex is created by reduction ρ if it is not a residual by ρ of a redex in initial term. Thus R is created by ρ when ρ: M → N and ♯S, R ∈ S/ρ

$$(\lambda x.xa)I \rightarrow Ia \qquad IIa \rightarrow Ia$$
$$(\lambda xy.xy)ab \rightarrow (\lambda y.ay)b \qquad \Delta \Delta \rightarrow \Delta \Delta$$

Residuals of redexes





Exercices 8

. Show that:

1-
$$M \longrightarrow_{\eta} N \longrightarrow P$$
 implies $M \longrightarrow Q \xrightarrow{*}_{\eta} P$ for some Q

2-
$$M \xrightarrow{*}_{\eta} N \xrightarrow{*} P$$
 implies $M \xrightarrow{*} Q \xrightarrow{*}_{\eta} P$ for some Q

3-
$$M \xrightarrow{\star}_{\beta,n} N$$
 implies $M \xrightarrow{\star} P \xrightarrow{\star}_{n} N$ for some P

4-
$$M \rightarrow N$$
 and $M \rightarrow_{\eta} P$ implies $N \xrightarrow{*}_{\eta} Q$ and $P \xrightarrow{1} Q$ for some Q

5-
$$M \xrightarrow{*}_{\eta} N$$
 and $M \xrightarrow{*}_{\eta} P$ implies $N \xrightarrow{*}_{\eta} Q$ and $P \xrightarrow{*}_{\eta} Q$ for some Q

6-
$$M \xrightarrow{\star}_{\beta,n} N$$
 and $M \xrightarrow{\star}_{\beta,n} P$ implies $N \xrightarrow{\star}_{\beta,n} Q$ and $P \xrightarrow{\star}_{\beta,n} Q$ for some Q

Therefore $\Longrightarrow_{\beta,\eta}$ is confluent.

• Show same property for β -reduction and η -expansion ($\longrightarrow \cup \longleftarrow_{\eta}$)*

Exercices

- **7-** Show there is no *M* such that $M \xrightarrow{*} Kac$ and $M \xrightarrow{*} Kbc$ where $K = \lambda x.\lambda y.x$.
- **8-** Find M such that $M \xrightarrow{*} Kab$ and $M \xrightarrow{*} Kac$.
- 9- (difficult) Show that $\stackrel{\star}{\longleftarrow}$ is not confluent.