
J-O-Caml (3)
jean-jacques.levy@inria.fr

pauillac.inria.fr/~levy/qinghua/j-o-caml
Qinghua, November 26

Plan of this class

• records

• references and mutable data

• input/output

• exceptions

• a tour in library

• modules and interfaces

• labeling algorithm

Exercices

• Conway sequences - solution 1

• Conway sequences - solution 2 (with less many conses) ?

Zero-ary functions

• functions are monadic in Caml

• type constructors (which are not functions) have arity (maybe 0)

Records
• type ``record’’ needs be declared

Records
• type ``record’’ needs be declared

Mutable fields in records

• several fields may be declared mutable in records (students in
previous example)

• until now, all variables were constant

• important information for garbage collector, parallel evaluator, caches,
etc

• constant values are less error-prone than mutable values, especially
with sharing, concurrency, etc.

• in C, C++, Java, etc, variables are mutable by default

• in ML, it’s the opposite

• Keeping variables constant is the basis of Functional Programming
(no side-effects)

• In Haskell, mutable world (monads) and constant world (usual
expressions) are distinct.

References

• ref v is L-value of the mutable value v (a pointer address!)

• !x dereferences x and produces v

• := modifies the value of a reference

(Beware: := for references; <- for arrays and strings!!)

• a reference is equivalent to a record with a single mutable field contents

v

ref v

Imperative programming

• with references, records, strings and arrays, one can use the imperative style of
C, C++, Java, etc.

• however dereferencing of references must be explicit (no R-values)

Imperative programming

• sorting arrays (a la Sedgewick)

Exceptions
• There are several built-in exceptions

• Failure, Division_by_zero, Invalid_argument, etc

• but exceptions may also be declared by:

• raise and try ... with ... handle exceptions with pattern-matching

try e with
| exception_1 -> e_1
| exception_2 -> e_2
...
| exception_n -> e_n

Input/Output

Input/Output

Input/Output

Modules

• modules group functions of same nature

• qualified notation Array.make, List.length as in Java, Modula, etc

• they can be opened as in open Printf

• module Pervasives always open

• fetch modules in documentation at
caml.inria.fr/pub/docs/manual-ocaml

• module Graphics is a portable graphics library (needs graphics.cma to
be compiled as first argument of the ocamlc command)

• module names (List) start with uppercase letter

• and correspond to interfaces (list.cmi) starting with lowercase letter.

Graphics

ocamlc graphics.cma g1.ml

a.out

Graphics

• elementary functions moveto, lineto, draw_rect, fill_rect, ...

• type color is int

• images are internal representation of bitmaps

• a matrix of colors can be made into an image make_image

• an image can be displayes dump_image

Combien d’objets
dans une image?

Jean!Jacques L"vy
INRIA

Labeling

16 objects in this picture

1

1

2 3

4 5 6

7
8 9

10

11 12

13 14

Algorithm
1) first pass

- scan pixels left-to-right, top-to-bottom giving a new object id each time a new
object is met

2) second pass
- generate equivalences between ids due to new adjacent relations met during
scan of pixels.

3) third pass
- compute the number of equivalence classes

Complexity:
- scan twice full image (linear cost)

- try to efficiently manage equivalence classes (Union-Find by Tarjan)

