Y

v m g‘ Eé‘ -
5th Asian-Pacific Summer Sc oo’réri Formal Method:

August 5-10, 2013, Tsinghua University, Beijing, China

Inductive data types (ll) T ecursive types

jean-jacques.levy@inria.fr
August 5,2013

http://sts.thss.tsinghua.edu.cn/Cogschool2013
E E L ;EE Notes adapted from
ri = Assia Mahboubi
(coq school 2010, Paris) and
Benjamin Pierce (software
foundations course, UPenn)

CENTRE DE RECHERCHE
COMMUN
INRIA
MICROSOFT RESEARCH

Plan Recursive types (1/6)

Inductive nat : Set :=

| 0 : nat
* easy proofs by simplification and reflexivity | S : nat -> nat.

* recursive types

* recursive definitions ImIiUC‘.cive :ayi}st : Type :
nil : daylis

| cons : day -> daylist -> daylist.

e structural induction
* example1: lists

* example2: trees
Base case constructors do not feature self-reference to the type.
Recursive case constructors do.

Definition weekend_days := cons saturday (cons sunday nil)).

Recursive types (2/6)

... Coq language can handle notations for infix operators.

Recursive types (4/6)

. with recursive definitions of functions.

Notation "x :: 1" := (cons x 1) (at level 60, right associativity). F1xp01nt app. (11 12 daYllSt) {StIHCt 11} : daYllSt =
Notation "[1" := nil. match 11 with
Notation "[x , .. , y 1" := (cons x .. (cons y nil) ..). | nil => 12
| d::t=>d:: (app t 12)
Notation "x + y" := (plus x y) d
(at level 50, left associativity). end.
Notation "x ++ y" := (app x y)

Therefore weekend_days can be also written:

Definition weekend_days saturday sunday ::

or

Definition weekend_days [saturday, sunday].

saturday

\ 4

sunday

Recursive types (3/6)
. with recursive definitions of functions.

Fixpoint length (1l:daylist) {struct 1}
match 1 with
| nil => 0
| d :: 1> => 8 (length 17)
end.

nat

Fixpoint repeat (d:day) (count:nat) {struct count} :
match count with

| 0 => nil
| S count’ => d :: (repeat d count’)
end.

The decreasing argument is precised as hint for termination.

nil.

(right associativity, at level 60).
Example test_appl: [monday,tuesday,wednesday] ++ [thursday,friday] =
[monday,tuesday,wednesday, thursday,friday] .
Proof. reflexivity. Qed.

Example test_app2: nil ++ [monday,wednesday] =
Proof. reflexivity. Qed.

[monday ,wednesday] .

Example test_app3: [monday,wednesday] ++ nil = [monday,wednesdayl].
Proof. reflexivity. Qed.

[F->{@[(]] + [aa[F->a=]]
(o] F->{az] F->{a3] F—>{aa[F->[a=] |

Recursive types (5/6)
. with recursive definitions of functions.

Definition bag := daylist.

Definition eq_day (d:day) (d’:day)
match d, d’ with
| monday, monday | tuesday, tuesday | wednesday, wednesday => true
thursday, thursday | friday, friday => true
saturday, saturday => true
sunday, sunday => true
=> false

: bool

daylist

end.
Fixpoint count (d:day) (s:bag) {struct s} : nat :=
match s with
| nil => 0
| h ::
end.

t => if eq_day d h then 1 + count d t else count d t

Recursive types (6/6)

Exercice 4 Show following propositions:

Example test_countl: count sunday [monday, sunday, friday, sunday] = 2.
Example test_count2: count sunday [monday, tuesday, friday, friday] = 0.

Exercice 5 Define union of two bags of days. a3
Exercice 6 Define add of one day to a bag of days. I n d u Ct I O n
Exercice 7 Define remove_one day from a bag of days.

Exercice 8 Define remove_all occurences of a day from a bag of
days.

Exercice 9 Define member to test if a day is member of a bag of
days.

Exercice 10 Define subset to test if a bag of days is a subset of

ZENTRE DE RECHERCHE
Fer b ‘4 COMMUN ? NRIA
another bag of days. MICROSOFT RESEARCH

Remark on constructors Recursive types / structural induction (1/9)

Let us go back to the definition of list of days:
» Constructors are injective:
Inductive daylist : Type :=

L inj : forall ,8Sn=8m->n=nm.
emma 1nj-suce orati nm n n n=n nil : daylist | «cons : day -> daylist -> daylist.

Proof.
intros n m H.
injection H.
easy.

Qed.

The Inductive keyword means that at definition time, this system
generates an induction principle:

daylist_ind : forall P : daylist -> Prop,
.. P nil ->
» Constructors are all distinct.

(forall (d: day) (11: daylist), P 11 -> P (cons d 11)) —->

forall 1 : daylist, P 1

Recursive types / structural induction (2/9)

For any P : daylist — Prop, to prove that the theorem
forall 1 : daylist, P 1
holds, it is sufficient to:

» Prove that the property holds for the base case:
» (P nil)

> Prove that the property is transmitted inductively:

» forall (d : day) (11 : daylist),
P11 ->P (d :: 11)

The type daylist is the smallest type containing nil and closed
under cons.

Recursive types / structural induction (3/9)

The induction principles generated at definition time by the system
allow to:

» Program by recursion (Fixpoint)

» Prove by induction (induction)

Example: append on lists.

Fixpoint app (11 12 : daylist) {struct 11} : daylist :
match 11 with

| nil => 12
[d1 :: 11’ =>d1 :: (app 11’ 12)
end.

Recursive types / structural induction (4/9)

Associativity of append on lists.

Theorem ass_app : forall 11 12 13 : daylist,
11 ++ (12 ++ 13) = (11 ++ 12) ++ 13.
Proof.
intros 11 12 13. induction 11 as [| d1 11’ TIH11’].
[]++12 4413 = ([] ++ 12) ++ I3
- reflexivity.
dl1 : day
11" : daylist
12 : daylist
13 : daylist
IHIT 211" 4+ 12 ++ 13 = (11" ++ 12) ++ 13
(d1 2 11°) 4+ 12 4+ 13 = ((d1 =2 117) ++ 12) ++ I3
- simpl. rewrite IH11’. reflexivity.
Qed.

Recursive types / structural induction (5/9)
Length of appended lists.

Fixpoint length (1l:daylist) {struct 1} : nat :=
match 1 with

| nil => 0
| 4 :: t => S (length t)
end.

Theorem app_length : forall 11 12 : daylist,
length (11 ++ 12) = (length 11) + (length 12).
Proof.
intros 11 12. induction 11 as [| d1 11’ IH11’].
- reflexivity.
- simpl. rewrite IH11’. reflexivity.
Qed.

Recursive types / structural induction (6/9)

Induction on natural numbers.

Lemma n_plus_zero : forall n:nat, n + O = n.

Proof.
intros n. induction n as [| n’ IH].
- reflexivity.

- simpl. rewrite IH. reflexivity.
Qed.

Lemma n_plus_succ : forall nm :nat, n + Sm =S (n + m).

Proof.
intros n m. induction n as [| n’ IH].
- reflexivity.

- simpl. rewrite IH. reflexivity.
Qed.

Exercice 11 Show associativity and commutativity of +.

Recursive types / structural induction (7/9)

Exercice 12 Show

length (alternate 11 12) = (length 11) + (length 12).
where

Fixpoint alternate (11 12 : daylist) {struct 11} : daylist :=
match 11 with

| []1 =12

| vi :: 11’ => match 12 with
I [1=>1
| v2 :: 127 => vl :: v2 :: alternate 11’ 12’
end

end.

Recursive types / structural induction (8/9)

Another recursive type: binary trees.

Inductive natBinTree : Type :=
| Leaf : nat -> natBinTree
| Node : nat -> natBinTree -> natBinTree -> natBinTree.

Abstract Syntax Trees for terms.

Inductive term : Set :=

| Zero : term

| One : term

| Plus : term -> term -> term
| Mult : term -> term -> term.

Recursive types / structural induction (9/9)

Counting leaves and nodes in binary trees.

Fixpoint count_leaves (t : natBinTree) {struct t} : nat :=
match t with

| leaf n => 1

| node n t1 t2 => (count_leaves tl1) + (count_leaves t2)
end.

Fixpoint count_nodes (t : natBinTree) {struct t} : nat :=
match t with

| leaf n => 0
| node n t1 t2 => 1 + (count_nodes t1) + (count_nodes t2)
end.

Exercice 13 Show

Lemma leaves_and_nodes : forall t : natBinTree,
count_leaves t = 1 + count_nodes t.

