
Inductive data types (II)
jean-jacques.levy@inria.fr

August 5, 2013

http://sts.thss.tsinghua.edu.cn/Coqschool2013

5th Asian-Pacific Summer School on Formal Methods
August 5-10, 2013, Tsinghua University, Beijing, China

Notes adapted from
Assia Mahboubi

(coq school 2010, Paris) and
Benjamin Pierce (software

foundations course, UPenn)

• easy proofs by simplification and reflexivity

• recursive types

• recursive definitions

• structural induction

• example1: lists

• example2: trees

Plan

Recursive types

Recursive types (1/6)

Inductive nat : Set :=
| O : nat
| S : nat -> nat.

Inductive daylist : Type :=
| nil : daylist
| cons : day -> daylist -> daylist.

Base case constructors do not feature self-reference to the type.

Recursive case constructors do.

Definition weekend_days := cons saturday (cons sunday nil)).

Recursive types (1/6)

Recursive types (2/6)

... Coq language can handle notations for infix operators.

Notation "x :: l" := (cons x l) (at level 60, right associativity).

Notation "[]" := nil.

Notation "[x , .. , y]" := (cons x .. (cons y nil) ..).

Notation "x + y" := (plus x y)

(at level 50, left associativity).

Therefore weekend days can be also written:

Definition weekend_days := saturday :: sunday :: nil.

or

Definition weekend_days := [saturday, sunday].

Recursive types (2/6)

saturday sunday

Recursive types (3/6)

... with recursive definitions of functions.

Fixpoint length (l:daylist) {struct l} : nat :=
match l with
| nil => O
| d :: l’ => S (length l’)
end.

Fixpoint repeat (d:day) (count:nat) {struct count} : daylist :=
match count with
| O => nil
| S count’ => d :: (repeat d count’)
end.

The decreasing argument is precised as hint for termination.

Recursive types (3/6)

Recursive types (4/6)

... with recursive definitions of functions.

Fixpoint app (l1 l2 : daylist) {struct l1} : daylist :=
match l1 with
| nil => l2
| d :: t => d :: (app t l2)
end.

Notation "x ++ y" := (app x y)

(right associativity, at level 60).

Example test_app1: [monday,tuesday,wednesday] ++ [thursday,friday] =

[monday,tuesday,wednesday,thursday,friday].

Proof. reflexivity. Qed.

Example test_app2: nil ++ [monday,wednesday] = [monday,wednesday].

Proof. reflexivity. Qed.

Example test_app3: [monday,wednesday] ++ nil = [monday,wednesday].

Proof. reflexivity. Qed.

Recursive types (4/6)

d1 d2 d3 d4 d5++

d1 d2 d3 d4 d5

Recursive types (5/6)

... with recursive definitions of functions.

Definition bag := daylist.

Definition eq_day (d:day)(d’:day) : bool :=
match d, d’ with

| monday, monday | tuesday, tuesday | wednesday, wednesday => true

| thursday, thursday | friday, friday => true

| saturday, saturday => true

| sunday, sunday => true

| _ , _ => false

end.

Fixpoint count (d:day) (s:bag) {struct s} : nat :=
match s with
| nil => 0
| h :: t => if eq_day d h then 1 + count d t else count d t
end.

Recursive types (5/6)

Recursive types (6/6)

Exercice 4 Show following propositions:

Example test_count1: count sunday [monday, sunday, friday, sunday] = 2.

Example test_count2: count sunday [monday, tuesday, friday, friday] = 0.

Exercice 5 Define union of two bags of days.

Exercice 6 Define add of one day to a bag of days.

Exercice 7 Define remove one day from a bag of days.

Exercice 8 Define remove all occurences of a day from a bag of

days.

Exercice 9 Define member to test if a day is member of a bag of

days.

Exercice 10 Define subset to test if a bag of days is a subset of

another bag of days.

Recursive types (6/6)

Remark on constructors

I
Constructors are injective:

Lemma inj_succ : forall n m, S n = S m -> n = m.
Proof.
intros n m H.
injection H.
easy.

Qed.

I
Constructors are all distinct.

Remark on constructors

Induction

Recursive types and structural induction (1/9)

Let us go back to the definition of list of days:

Inductive daylist : Type :=
nil : daylist | cons : day -> daylist -> daylist.

The Inductive keyword means that at definition time, this system

generates an induction principle:

daylist_ind : forall P : daylist -> Prop,

P nil ->

(forall (d: day) (l1: daylist), P l1 -> P (cons d l1)) ->

forall l : daylist, P l

Recursive types / structural induction (1/9)

Recursive types and structural induction (2/9)

For any P : daylist ! Prop, to prove that the theorem

forall l : daylist, P l

holds, it is su�cient to:

I
Prove that the property holds for the base case:

I (P nil)

I
Prove that the property is transmitted inductively:

I forall (d : day) (l1 : daylist),
P l1 -> P (d :: l1)

The type daylist is the smallest type containing nil and closed

under cons.

Recursive types / structural induction (2/9)

Recursive types and structural induction (3/9)

The induction principles generated at definition time by the system

allow to:

I
Program by recursion (Fixpoint)

I
Prove by induction (induction)

Example: append on lists.

Fixpoint app (l1 l2 : daylist) {struct l1} : daylist :=
match l1 with
| nil => l2
| d1 :: l1’ => d1 :: (app l1’ l2)
end.

Recursive types / structural induction (3/9)

Recursive types and structural induction (4/9)

Associativity of append on lists.

Theorem ass_app : forall l1 l2 l3 : daylist,
l1 ++ (l2 ++ l3) = (l1 ++ l2) ++ l3.

Proof.
intros l1 l2 l3. induction l1 as [| d1 l1’ IHl1’].

[] ++ l2 ++ l3 = ([] ++ l2) ++ l3
- reflexivity.

d1 : day
l1’ : daylist
l2 : daylist
l3 : daylist
IHl1’ : l1’ ++ l2 ++ l3 = (l1’ ++ l2) ++ l3
============================

(d1 :: l1’) ++ l2 ++ l3 = ((d1 :: l1’) ++ l2) ++ l3

- simpl. rewrite IHl1’. reflexivity.
Qed.

Recursive types / structural induction (4/9)

Recursive types and structural induction (5/9)

Length of appended lists.

Fixpoint length (l:daylist) {struct l} : nat :=
match l with
| nil => O
| d :: t => S (length t)
end.

Theorem app_length : forall l1 l2 : daylist,
length (l1 ++ l2) = (length l1) + (length l2).

Proof.
intros l1 l2. induction l1 as [| d1 l1’ IHl1’].
- reflexivity.
- simpl. rewrite IHl1’. reflexivity.

Qed.

Recursive types / structural induction (5/9)

Recursive types and structural induction (6/9)

Induction on natural numbers.

Lemma n_plus_zero : forall n:nat, n + 0 = n.
Proof.
intros n. induction n as [| n’ IH].
- reflexivity.
- simpl. rewrite IH. reflexivity.

Qed.

Lemma n_plus_succ : forall n m :nat, n + S m = S (n + m).
Proof.
intros n m. induction n as [| n’ IH].
- reflexivity.
- simpl. rewrite IH. reflexivity.

Qed.

Exercice 11 Show associativity and commutativity of +.

Recursive types / structural induction (6/9)

Recursive types and structural induction (7/9)

Exercice 12 Show

length (alternate l1 l2) = (length l1) + (length l2).

where

Fixpoint alternate (l1 l2 : daylist) {struct l1} : daylist :=

match l1 with

| [] => l2

| v1 :: l1’ => match l2 with

| [] => l1

| v2 :: l2’ => v1 :: v2 :: alternate l1’ l2’

end

end.

Recursive types / structural induction (7/9)

Recursive types and structural induction (8/9)

Another recursive type: binary trees.

Inductive natBinTree : Type :=
| Leaf : nat -> natBinTree
| Node : nat -> natBinTree -> natBinTree -> natBinTree.

Abstract Syntax Trees for terms.

Inductive term : Set :=
| Zero : term
| One : term
| Plus : term -> term -> term
| Mult : term -> term -> term.

Recursive types / structural induction (8/9)

Recursive types and structural induction (9/9)

Counting leaves and nodes in binary trees.

Fixpoint count_leaves (t : natBinTree) {struct t} : nat :=
match t with
| leaf n => 1
| node n t1 t2 => (count_leaves t1) + (count_leaves t2)
end.

Fixpoint count_nodes (t : natBinTree) {struct t} : nat :=
match t with
| leaf n => 0
| node n t1 t2 => 1 + (count_nodes t1) + (count_nodes t2)
end.

Exercice 13 Show

Lemma leaves_and_nodes : forall t : natBinTree,
count_leaves t = 1 + count_nodes t.

Recursive types / structural induction (9/9)

