
Functions
jean-jacques.levy@inria.fr

August 5, 2013

http://sts.thss.tsinghua.edu.cn/Coqschool2013

5th Asian-Pacific Summer School on Formal Methods
August 5-10, 2013, Tsinghua University, Beijing, China

Notes adapted from
Assia Mahboubi

(coq school 2010, Paris) and
Benjamin Pierce (software

foundations course, UPenn)

• functions and λ-notation

• higher-order functions

• data types

• notation in Coq

• enumerated sets

• pattern-matching on constructors

Plan

Functions and
λ-notation

Functional calculus (1/6)

(�x . x + 1)3 3 + 1 4

(�x . 2 ⇤ x + 2)4 2 ⇤ 4 + 2 8 + 2 10

(�f .f 3)(�x . x + 2) (�x . x + 2)3 3 + 2 5

(�x .�y .x + y)3 2 =

((�x .�y .x + y)3)2 (�y .3 + y)2 (�y .3 + y)2 3 + 2 5

(�f .�x .f (f x))(�x .x + 2) ...

(�f .�x .f (f x))(�x . x + 2) ...

Functional calculus (2/6)

Functional calculus (3/6)
(�f .�x .f (f x))(�x .x + 2)3 ...

(�f .�x .f (f x))((�y .�x .x + y)2)3 ...

 Thus following term:

Fact(3)

Fact = Y (�f .�x . ifz x then 1 else x � f (x � 1))

(� Fact . Fact(3))

(Y (�f .�x . ifz x then 1 else x ? f (x � 1)))

(� Fact . Fact(3))

((�Y .Y (�f .�x . ifz x then 1 else x � f (x � 1)))

(�f .(�x .f (xx))(�x .f (xx))))

also written

Functional calculus (5/6)

λ-calculus

• lambda-terms

M, N, P ::= x, y, z, ... (variables)

| λx.M (M as function of x)

| M (N) (M applied to N)

• Computations “reductions”

(�x .M)(N) M{x := N}

Pure lambda-calculus

• Examples

Examples of reductions (1/2)

(�f .f N)(�x .x) (�x .x)N N

(�x .x)N N

(�x . x x)(�x .xN) (�x .xN)(�x .xN) (�x .xN)N NN

Let I = �x .x , we have I (x) = x for all x .

Therefore I (I) = I . [Church 41]

(name of bound variable is meaningless)(�x .x N)(�y .y) (�y .y)N N

(�x .x)(�x .x) �x .x

Examples of reductions (2/2)

• Examples

(�x . x x)(�x .xN) (�x .xN)(�x .xN) (�x .xN)N NN

(�x . x x)(�x . x x) (�x . x x)(�x . x x) · · ·

• Possible to loop inside applications of functions ...

f (Yf) f (f (Yf)) · · · f n(Yf) · · ·

Yf = (�x .f (xx))(�x .f (xx)) f ((�x .f (xx))(�x .f (xx))) = f (Yf)

• Every computable function can be computed by a λ-term

 Church’s thesis.[Church 41]

Fathers of computability

Alonzo Church

Stephen Kleene

The Giants of computability
Hilbert Gödel Church Turing

Kleene

Post
von Neumann

Curry

• In Coq, all λ-terms are typed

Typed lambda-calculus (1/5)

(�x . x + 1)3 3 + 1 4

(�x . 2 ⇤ x + 2)4 2 ⇤ 4 + 2 8 + 2 10

(�f .f 3)(�x . x + 2) (�x . x + 2)3 3 + 2 5

(�x .�y .x + y)3 2 =

((�x .�y .x + y)3)2 (�y .3 + y)2 (�y .3 + y)2 3 + 2 5

(�f .�x .f (f x))(�x .x + 2) ...

• In Coq, following λ-terms are typable

these terms are allowed

• In Coq, all λ-terms have only finite reductions
(strong normalization property)

Typed lambda-calculus (2/5)

these terms are not allowed

• In Coq, all λ-terms have a (unique) normal form.

• In Coq, the following λ-terms are not typable

(� Fact . Fact(3))

((�Y .Y (�f .�x . ifz x then 1 else x � f (x � 1)))

(�f .(�x .f (xx))(�x .f (xx))))

(�x . x x)(�x . x x)

• The Coq laws for typing terms are quite complex
[Coquand-Huet 1985]

Typed lambda-calculus (3/5)

• In first approximation, they are the following (1st-order) rules:

Basic types: N (nat), B (bool), Z (int), . . .

If x has type ↵, then (�x .M) has type ↵ ! �

If M has type ↵ ! �, then M(N) has type �

1 : nat

x : nat implies x + 1 : nat

(�x . x + 1) : nat ! nat

3 : nat

(�x . x + 1)3 : nat

Example

Typed lambda-calculus (4/5)
Example

x : nat ` x : nat

x : nat ` x : nat 1 : nat
x : nat ` x + 1 : nat

x : nat ` x + 1 : nat
` (�x . x + 1) : nat ! nat

` (�x . x + 1) : nat ! nat 3 : nat
` (�x . x + 1)3 : nat

Typed lambda-calculus (5/5)
Example with currying and function as result

λ-calculus in Coq

lambda-terms (1/3)

Definition plusOne (x: nat) : nat := x + 1.
Check plusOne.

Definition plusOne := fun (x: nat) => x + 1.
Check plusOne.

Definition plusOne := fun x => x + 1.
Check plusOne.

Definition plusTwo (x: nat) : nat := x + 2.

Definition twice := fun f => fun (x:nat) => f (f x).

Compute twice plusTwo 3.

Compute (fun x:nat => x + 1) 3.

three equivalent definitions:

higher-order definitions:

lambda-terms (2/3)

• Coq tries to guess the type, but could fail.
(type inference)

• but always possible to give explicit types.

• Types can be higher-order
(see later with polymorphic functions)

• Types can also depend on values
(see later the constructor cases)

lambda-terms (3/3)

• Coq treats with an extention of the λ-calculus with
inductive data types. It’s a programming language.

• the typed λ-calculus is also used as a trick to make a
correspondance between proofs and λ-terms and propositions
and types for constructive logics (see other lectures).
(Curry-Howard correspondance)

