

Functions

jean-jacques.levy@inria.fr August 5, 2013

Notes adapted from Assia Mahboubi (coq school 2010, Paris) and Benjamin Pierce (software foundations course, UPenn)

Functions and λ-notation

INRIA MICROSOFT RESEARCH

Functional calculus (1/6)

 $(\lambda x. x + 1)3 \longrightarrow 3 + 1 \longrightarrow 4$ $(\lambda x. 2 * x + 2)4 \longrightarrow 2 * 4 + 2 \longrightarrow 8 + 2 \longrightarrow 10$ $(\lambda f. f3)(\lambda x. x + 2) \longrightarrow (\lambda x. x + 2)3 \longrightarrow 3 + 2 \longrightarrow 5$ $(\lambda x. \lambda y. x + y)3 2 =$ $((\lambda x. \lambda y. x + y)3)2 \longrightarrow (\lambda y. 3 + y)2 \longrightarrow (\lambda y. 3 + y)2 \longrightarrow 3 + 2 \longrightarrow 5$

 $(\lambda f.\lambda x.f(f x))(\lambda x.x+2) \longrightarrow \dots$

Plan

- functions and λ -notation
- higher-order functions
- data types
- notation in Coq
- enumerated sets
- pattern-matching on constructors

Functional calculus (2/6)

 $(\lambda f.\lambda x.f(f x))(\lambda x.x+2) \longrightarrow \dots$

Functional calculus (3/6)

Functional calculus (5/6)

Fact(3)

 $Fact = Y(\lambda f.\lambda x. ifz x then 1 else x \star f(x-1))$

Thus following term:

 $(\lambda \operatorname{Fact} . \operatorname{Fact}(3))$

 $(Y(\lambda f.\lambda x. \text{ ifz } x \text{ then } 1 \text{ else } x \star f(x-1)))$

also written

 $(\lambda \operatorname{Fact} . \operatorname{Fact}(3))$ ($(\lambda Y.Y(\lambda f.\lambda x. \operatorname{ifz} x \operatorname{then} 1 \operatorname{else} x \star f(x-1)))$ $(\lambda f.(\lambda x.f(xx))(\lambda x.f(xx)))))$

n 1996
1
12. Institute a relative a line of the state
I mallana and meridian meridian distance distance in the second s

. 155 2.--~ ~

.....

And in case of the Annual State

Law Million Barris

.

Examples of reductions (1/2)

Examples

 $(\lambda x.x)N \longrightarrow N$ $(\lambda f. f. N)(\lambda x.x) \longrightarrow (\lambda x.x)N \longrightarrow N$ $(\lambda x.x N)(\lambda y.y) \longrightarrow (\lambda y.y)N \longrightarrow N$ (name of bound variable is meaningless) $(\lambda x.x x)(\lambda x.xN) \longrightarrow (\lambda x.xN)(\lambda x.xN) \longrightarrow (\lambda x.xN)N \longrightarrow NN$ $(\lambda x.x)(\lambda x.x) \longrightarrow \lambda x.x$ Let $I = \lambda x.x$, we have I(x) = x for all x. Therefore I(I) = I. [Church 41]

Pure lambda-calculus

lambda-terms

M, N, P	::=	x, y, z,	(variables)
	Ι	λ <i>x.M</i>	(M as function
	Ι	M(N)	(M applied to I

• Computations "reductions"

$$(\lambda x.M)(N) \longrightarrow M\{x := N\}$$

	THE OLD OWN OT
of <i>x</i>)	LAMBDA-CONVERSION
V)	ALONZO CHURCH

Examples of reductions (2/2)

- Examples
 - $(\lambda x. x x)(\lambda x. xN) \longrightarrow (\lambda x. xN)(\lambda x. xN) \longrightarrow (\lambda x. xN)N \longrightarrow NN$

 $(\lambda x. x x)(\lambda x. x x) \longrightarrow (\lambda x. x x)(\lambda x. x x) \longrightarrow \cdots$

• Possible to loop inside applications of functions ...

$$\begin{aligned} Y_f &= (\lambda x.f(xx))(\lambda x.f(xx)) \longrightarrow f((\lambda x.f(xx))(\lambda x.f(xx))) = f(Y_f) \\ f(Y_f) \longrightarrow f(f(Y_f)) \longrightarrow \cdots \longrightarrow f^n(Y_f) \longrightarrow \cdots \end{aligned}$$

 \bullet Every computable function can be computed by a $\lambda\text{-term}$

Church's thesis. [Church 41]

Fathers of computability

Alonzo Church

Stephen Kleene

CENTRE DE RECHERCHE

INRIA MICROSOFT RESEARCH

HibertGödelChurchTuringImage: Stress of the stress of

Typed lambda-calculus (1/5)

- In Coq, all $\lambda\text{-terms}$ are typed
- In Coq, following λ -terms are typable

 $(\lambda x. x + 1)3 \longrightarrow 3 + 1 \longrightarrow 4$ $(\lambda x. 2 * x + 2)4 \longrightarrow 2 * 4 + 2 \longrightarrow 8 + 2 \longrightarrow 10$ $(\lambda f. f3)(\lambda x. x + 2) \longrightarrow (\lambda x. x + 2)3 \longrightarrow 3 + 2 \longrightarrow 5$ $(\lambda x. \lambda y. x + y)3 2 =$ $((\lambda x. \lambda y. x + y)3)2 \longrightarrow (\lambda y. 3 + y)2 \longrightarrow (\lambda y. 3 + y)2 \longrightarrow 3 + 2 \longrightarrow 5$

 $(\lambda f.\lambda x.f(f x))(\lambda x.x+2) \longrightarrow \dots$

these terms are allowed

Typed lambda-calculus (2/5)

- In Coq, all λ -terms have only finite reductions (strong normalization property)
- In Coq, all λ -terms have a (unique) normal form.
- In Coq, the following $\lambda\text{-terms}$ are not typable

 $(\lambda x. x x)(\lambda x. x x)$

 $(\lambda \, \texttt{Fact.Fact}(3))$

 $((\lambda Y.Y(\lambda f.\lambda x. ifz x then 1 else x \star f(x-1)))$

 $(\lambda f.(\lambda x.f(xx))(\lambda x.f(xx))))$

챴

these terms are not allowed

Typed lambda-calculus (3/5)

• The Coq laws for typing terms are quite complex [Coquand-Huet 1985]

• In first approximation, they are the following (1st-order) rules: Basic types: \mathcal{N} (nat), \mathcal{B} (bool), \mathcal{Z} (int), ...

If x has type α , then ($\lambda x.M$) has type $\alpha o \beta$

If *M* has type $\alpha \rightarrow \beta$, then *M*(*N*) has type β

Example 1:nat

x: nat implies x+1: nat $(\lambda x. x+1):$ nat \rightarrow nat 3: nat $(\lambda x. x+1)3:$ nat

Typed lambda-calculus (5/5)

Example with currying and function as result

Typed lambda-calculus (4/5)

Example	$x: \texttt{nat} \vdash x: \texttt{nat}$		
	$\frac{x: \texttt{nat} \vdash x: \texttt{nat}}{x: \texttt{nat} \vdash x + 1: \texttt{nat}}$		
	$\frac{x: \mathtt{nat} \vdash x+1: \mathtt{nat}}{\vdash (\lambda x. x+1): \mathtt{nat} \to \mathtt{nat}}$		
+	$rac{\lambda - (\lambda x. x + 1): extsf{nat} o extsf{nat}}{dash (\lambda x. x + 1)3: extsf{nat}}$		

lambda-terms (1/3)

three equivalent definitions:

Definition plusOne (x: nat) : nat := x + 1. Check plusOne.

Definition plusOne := fun (x: nat) => x + 1. Check plusOne.

Definition plusOne := fun x => x + 1. Check plusOne.

Compute (fun x:nat \Rightarrow x + 1) 3.

higher-order definitions:

Definition plusTwo (x: nat) : nat := x + 2.

Definition twice := fun f => fun (x:nat) => f (f x).

Compute twice plusTwo 3.

lambda-terms (2/3)

- Coq tries to guess the type, but could fail. (type inference)
- but always possible to give explicit types.

• Types can be higher-order (see later with polymorphic functions)

• Types can also depend on values (see later the constructor cases)

lambda-terms (3/3)

• Coq treats with an extention of the λ -calculus with inductive data types. It's a programming language.

• the typed λ -calculus is also used as a trick to make a correspondance between proofs and λ -terms and propositions and types for constructive logics (see other lectures). (Curry-Howard correspondance)