4 GUIDE TO PART A

Eklof’s chapter discusses the ultraproduct operation, its relation with
first-order logic, and its positive applications to aigebra. Macintyre’s
chapter discusses both positive and negative applications to algebra of
Abraham Robinson’s notion of mode! complete theory and related concepts
of “algebraically closed”

Morley's chapter on homogenous sets discusses so-called
Ehrenfeucht-Mostowski models. This construction has proven extremely
useful in model theory and 1n applications to set theory. It has had some
applications to other parts of mathematics, but should have more once it
becomes better known.

To date the principal application of model theory outside algebra and set
theory comes from Robinson's “nonstandard analysis”. Stroyan's chapter
discusses elementary aspects of the subject and gives a more advanced case
study of the hidden role infinttesimals play in differential geometry.

The last three chapters m Part A go beyond ordinary first-order logic.

- . . . . '
Some extensions of first-order logic are mentioned m the last section of

Barwise’s chapter and discussed in more detail 1 the last section of

Keisler's chapter. Of all the known extensions, the logic L.,. has the

smoothest model theory. This logic, and 1ts admussible fragments, are
discussed in Makkai’s chapter,

The final chapter, by Kock and Reyes, 1s quite different in character. It
gives the category theoretical point of view of some topics from model
theory and other parts of logic.

It was planned to have a chapter on stability theory and one on abstract
model theory. This proved impossible so stability theory 1s now surveyed in
Section 8 of Keisler's chapter. Abstract model theory is discussed at the
end of Barwise’s chapter and is touched on in Keisler's chapter. Among the
other chapters of the Handbook which are particularly reievant to model
theory are Rabin's chapter on decidable and undecidable theories, and
Aczel's chapter on inductive definitions, both n Part C of the book.
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1. Foreword

examples, a feeling for What can and what cannot be expressed in
first-order logic. Most of our examples are taken from tpe wealth of notions
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connecirves: 4 (and), v (or), = (not), — (implies), the equality symbol =
quantifiers ¥ (for all), 3 (there €x1sts) plus an infinite sequence of vanables
¥, 2, X, V1.0 and some pareniheses ), ( to help the formulas stay
readable.

In addition to these logical symbols, a set L of primitive non-logical
Symbols 1s given by the topic under discussion. For example, if we are
working with abelian groups then the set L. hag g function symbol + for
group addition and a constant symboi 0 for the zero element. If we are
working with orderings, then L has a relation symbol < . For the study of
set theory, L has a relation symbol € . We will postpone the rather tedious
formal definition of formula of first-order togic until the next sectron. Here
We stress only that formulas are certain finute strings of symbots.

The “first” in the phrase “first-order logic” is there to distinguish this
form of logic from stronger fogics (like second-order or weak second-order
logic) where certain extralogteal notions (like set or natural number) are

contrast, second-order logic allows one to quantify over subsets of M and
functions F mapping, say, M x M into M. (Third-order logic goes on to
sets of functions, etc.) Weak second-order logic allows quantification over
finite subsets of M and over natural numbers, There are good reasons for

notions:

(a) group,

(b) abelian group,

(c) abelian group with every element of order = p,

(d) divisible group,

(e) torsion-free group,

(f) torsion group,
The notions (a)-(c) are easily axiomatized by a few first-order axioms.
Notions (d) and (e) take an infinite ljst of axioms. The last notion (f) 1s not
first-order. Let’s see why,

Agroup G isa triple G = (G, +,0) (where G isa nenempty set, ) € ¢
and + 1s a function mapping & X G into G) which satssfies the following
first-order axioms, or sentences:
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ViVyVz[x+(y+z)=(x+y)+z] (1)
Vi(x+0=x], (2)
Vx3y([x+y=0] (3)

The. logictan might say that G 1s a model of (1), (2), (3) and write G E (1),
(2), (3), instead of saying that G satisfies (1), (2), (3).
An abelian group 1s a group G satisfymg the axiom

VxVy[x+y=y+x| (4)

The choice of the symbot “ + 7 in (1)—(4) is dictated by convention only; it
has no real significance. '

To express the next notion we abbreviate the formal term (x +x) by 2x,

the term ({(x + x)+ x) by 3x and, by induction, we abbreviate the term

{(nx + x) by (n + 1)x. An abelian group G has every element of order = n
if G 15 a model of

Vx[x=0v2x=0v---vnx=0]. (3)

This 15 a simple first-order sentence.
An avelian group G s divisible if

Vrn=1Vx3y[ny = x]. (6)

This would count as a sentence of weak second-order logic but 1t 18 not a
first-order axiom because the leading quantifier ranges over the set of
positive natural numbers, rather than over the domain of discourse . We

can, however, replace this expression by the following infinite list of
axioms:

Vx3ay 2y = x], {6):
Vx 3y [3y = x], (6)
Vx Ely[ﬁy =x|, . 6).

{We left off (6); since it is the trivial sentence Vx dy[x = y].) For most
purposes such an effectively presented infinite list of axioms 15 practically as
good as a fimte list. Still, 1t is worth proving for our own satisfaction that 1t

1s not just lack of imagination which forces us to use an mfinite list to
express the notion,

2.1. PROPOSITION. Any finite set of first-order sentences true i all divisible
abelian groups is true in some nondivisible abelian group.

cH. A.i, §2] THE REALM OF FIRST-ORDER LOGIC g

In other words, the notion of divisible abelian group 15 not finitely
axiomatizable in first-order logic. We delay the proof of this resuit for a few
paragraphs.

We discover essentially the same phenomenon when we attempt to
axiomatize the concept of torsion-free abelian group:

Yn=1Vx|x#0— nx#0]. (N

This sentence of weak second-order logic turns into an infimte list of
first-order axioms:
Vi|x#0— nx#0]. (N

We have the corresponding negative result.

2.2. Prorosition. The notion of torsion-free abelian group ts not finuely
axiomanzable n first-order logic.

An abelian group G is torsion if 1t satisfies

Vxdn=1[nx = 0]. 8

This 1s a sentence of weak second-order logic but it is not first-order
because it has the quantifier An over natural numbers. We could try to
umnitate (5) but look what happens:

Vx[x=0v2x=0v---vax=0v- -] (8Y

This sort of expression 1s analogous to an mfimte formal power series and
the study of such idealized “infinitary formulas’ has turned out to be quite
profitable (see 5.3, and Chapiers A.2 and A.7) but it is not part of ordinary
first-order logic. To clinch matters we will prove the following result.

2.3. Prorosition. The set of firsi-order sentences true n all torsion abelian
groups 1s true in some abelian group H which 1s not torsion.

In fact, what we will show is that if (G 1s an abelian group with no finite
bound on the order of its elements, then there 1s a group H which 1s not
torsion but such that G = H, which means that every first-order sentence
true in  is also true in H, and vice versa. Therefore the class of torsion

groups cannot be characterized even by a set of first-order axioms — finite
or infinite.
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Nonaxiomatizability results

There are two standard tools for proving nonaxiomatizability results,
They are corollanes of the Completeness Theorem and will be proved in
Section 4. We will use these tools to prove all the results of this section.

2.4. CompacTNEss THEOREM (Godel-Malcev). Let T be any set of first-order
axioms. If for every finite subset T, of T there is a model of all the axioms in
Tu, then there is a single mode!l of all the axioms in T.

An alternate form of the Compactness Theorem is sometimes more
convenient. Let us write T =i to indicate that ¢ 15 a logical consequence of
T in the sense that 15 true in all models which make all the axioms of T
true. Then the Compaciness Theorem is equivalent to the statement: If
T UL} is a set of first order sentences and Ti= i, then there is g finute T,C T
such that ToEi. To see that this follows from 2.4, apply to 2.4 to
T U{—¢}, where — asserts that ¢ 1s false. To prove 2.4 from this
version, let ¢ be some absurd ¢ like Jx (x# x). The Compactness
Theorem fails for second-order logic or even weak second-order logie, as
the proof of 2.1 will show.

The other property of first-order logic sometimes used to prove nonax-
tomatizability results 1s the following Léwenheim-Skolem Theorem. This

tmportant principle also holds for weak second-order logic but not for
second-order logic.

2.5. LoweNHEM-SKOLEM THEOREM. Let x be an nfimte cardinal and let T
be a set of ar most k first-order axioms. If there 1s a mode! making all the

axioms in T rrue, then there is such a model whose set of elements has
cardinaglity = k.

Remark. As long as the set L of nonlogical symbols 1s finite, or even
countable, as has been the case up to now, there can be only a countable set
of first-order formulas, since every formula 1s a finite string. Thus, for such
L, every set T of axioms which has a model has a countable model, by 2.5.

PROOF OF 2.1. Let {4, ..., ¢a } be a finite set of first-order sentences true in
all divisible abelian groups and let ¥ be the conjunction (¢, A - -« A ). Our
task s to prove that ¢ 1s true in some nondivisible abelian group. We apply
the second version of the Compactness Theorem. Let T be the set of
axtoms (1}-(4) plus all the axioms (6).. Thus T is a set of axtoms for
divisible abelian groups. The hypothesis 1s that Tk . By the Compactness
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Theorem there 1s a finite T, C T such that Tyl . This means that there 18
an N such that ¢ 1s true 1n all abelian groups which satisfy ¥x 3y [ny = x}
for n =2,...,N. (This much of the proof 1s common to many proofs.)
Taking the first exampie which comes to mind, let Z, b¢ the group of
integers mod p, for some prime p > N. Th§: group Z, 1s a model of
Vx Ay [ny = x] for n < p, since the map which sends x Fo nx ls_one—one
and hence onto. Thus ¢ 1s true in Z,. But Z, is far from being divisible since
px=0forall xcz, [

The proof of 2.2 1s just like the proof of 2.1 m form so is left to the
reader.

Proor oF 2.3. Let G = (G, +,0) be any (possibly torsion) group such that,
for each n, there 1s an element x, of G of order = n. For example, G mlght
be the direct sum of all Z, over all primes p. We will prove that there 1s a
nontorsion group F such that G and H satisfy-exactly the same first-order
sentences. Again we use the Compactness Theorem, this time the first
version. Take a new constant symbol ¢ and let T consist of all sentences
(not mentioning ¢) true in the group (G, +,0) plus all the sentenctas_:
2¢#0,3¢#0,4c# 0, etc. Thus T is a set of sentences 1n a language which
has a name ¢ for a new distinguished element. If H ={H, +,0, ¢} satisfies
all the axioms in T then {H, +,0} will be a group with the same first orcl_er
axioms true as are true in G but H will not be torsion sinpe the
distinguished eiement ¢ will have infinite order. All we need to see 1s thqt
there 1s an H which 1s a model of all of T. By the Compactness Theorem,. it
suffices to find a model of each fimte T, C T. But this 1s easy. Given T, let
N be bigger than all n such that the sentence nc# 0 1s in. Ty. Then we can
use xy to make T, true. That 1s, Ty 1s true n the group (G, +,0, x) with
distinguished element xa, since the order of xy 15 = N. J

The real numbers

Our first set of examples had to do with whole classes of structures, We
now turn to one specific structure, the ordered field R = (R, + ,-. < ,0,1) of
real numbers. Most students of advanced calculus suffer through a con-
struction of R and a proof that certain axioms characterize R up to
1somorphism. The axioms are not first-order, however,

2.6. ProrosiTion. There 1s no first-order set of axtoms which characterize R
up to isomorphism.
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PrOOF. By the remark following 2.5, the set of all sentences true in R is
countable. By the Léwenheim—Skolem Theorem, this set has a countable
model, [

Since the Lowenheim-Skolem Theorem also- holds for weak second-
order logic, the proof of 2.6 shows that there 1s a countable field with the
same weak second-order properties as R, among which is the Archimedean
axiom:

Vx3dn[x = nl),

where nl1s the term ((1+ 1)+ -+ -+ 1), n-times, as before. This is a weak
second-order statement since the quantifier In ranges not over the
elements of an arbitrary model but over the real natural numbers.

The proof of 2.6 is misleading because 1t makes one feel that the problem
has to do with the fact that there are undefinable real numbers, since there
are more reals than there are possible defimtions 1n first-order logic with
countably many symbols. We can correct this impression by proving a
stmilar result for the enriched structure (R. + -, < » Frer Where every real
number r 1s treated as a distinguished element and 1s given a name (i.e.
constant symbol). We continue the (slightly confusing) practice of using an
object r for its own name.

2.7. ProrosiTiON. There 15 a Hon- Archimedean field *R extending R which

satisfies all the first-order sentences true in R, even if we allow names for all
real numbers.

ProoF. The proof is similar, but actually simpler than, the proof of 2.3. We
take another new constant symbol ¢ and write the sentence

c=>r

for all real numbers r. To these sentences we add all true first-order
sentences of R. By the Compactness Theorem this set of sentences has a
model *R. We can consider R as a submode! of *R. Since the field aX10ms$
are true in R they are aiso true 1n *R. [J

Most of the theorems of calculus are first-order so that they will hold 1n
*®. Thus 2.5, far from being a negative result, is actually the basis of
analysis by means of infinitesimals, or, in other words, Robinson’s
‘“nonstandard” analysis. (The element 1/¢ will be a positive wfinitesimal.)
Thus, 1t 15 only a mild exaggeration to say that the universal symbolic
calculus of Leibniz’ imagination eventually led to a Justification of his use
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of infinitesimals in the calculus. For more on this, see Chapter A.6 and its
1.1 1n particular. 7 o
Proposition 2.7 leaves us with the question: Which of the usual axioms
for the real numbers is not first-order? The answer 1s: the completeness
axiom, _ o
YX CR[if X# @ is bounded, then X has a l.u.b.].

This 18 not first-order because the umversal quantifier ranges over the set of
all subsets X of R. Thus, the proof that the real numbers are unique 1s
really relative to a universe of set theory.

Rings and fields

The completehess property of the field of real numbers 1s not first-
order, as we have seen. Let us conciude this introduction into first-order
properties by seeing some of the properties of rings and fields that are first
order. In this discussion our basic language (or vocabulary)} L has the
nonlogical symbols +,-,0, 1. The basic axioms for commutative rings wi_th
identity consist of (1)-(4) above (the abelian group axioms) plus the
following first-order axioms:

YxVy[x -y=vy- x|,
VxVyVz[(x-y)z=x-(y-2)],
VxVyVz[x-(y+2)=(xy)+{x:2)]
VYx|x-l=1x],
0#1.
A nng N={(R, +,-,0,1} 15 an ntegral domain if 1t 1s a model of
Vx¥y[x-y=0—=(x=0vy=0)]

Before going on to ficlds, let us pause to see what to do about a pnime
concern 1n ring theory, the notion of an ideal. A proper ideal of a
commutative ring R = (R, + -,0,1) 1s simply a nonempty, proper subset
I C R which 1s a subgroup of M under addition such that for all x € R and
all y € L x - v € I. To express this in first-order logic we add a name for*f
and consider structures of the form (h, I =4 (R, + -,0,1,I). Then I is an
ideal of R if (M, I) 15 a model of the following three axioms. To keep set
theory out of the picture, we think of I as a 1-place relation and write I(x)
rather than x € I. The middle two axioms assert that I 1s a subgroup under

+ . the last asserts that I 1s closed under multiplication by any element x
of M.
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H0) A= I(1),
YxVy U(x)aI(y)— I(x +y)),
VxVy[I{x)ax +y=0—I(y)]
YxVylI(y)— I(x-y)).
An ideal I 1s a prime ideal if (R, ) 1s a model of
Ve Vy[I(x-y)—I(x)vI(y))

Up till now everything has been simple. Either the natural definition of a
notion was first-order, or else we have been able to show that the notion 1s
not first-order. This is not always the case. Indeed, some of the most useful
applications of logical tools (like ultraproducts) hinge on finding some
first-order equivalent to a notion that doesn’t iook first-order. This 1s often
a nontrivial matter but we give only a simple example. Others can be found
m Chapters A.3 and A 4,

An ideal I 1s a maximal ideat of M if (N, I} 15 a model of

>

VI[ICJAJ anideal > J =1 or J = R]. (9)

This 1s the same form of second-order sentence as the completeness axiom
for the reals, but this time we can find an equivalent first-order axjom by
recalling the lemma which says that I is maximal in i iff the quotient ring
M/ s afield. To say that M/1 is a field is to say that for all x, if x + I is not
the coset O+ I then there is a y such that (x + Iy +N=1+1L Since
(x+D-(y+I)=x-y+1I we can express (9) by the axiom

Yx[I{(x)=3y (x-y+I=1+1)]
which, when written out 1n detail becomes
Vx [ I(x)—3y 3z ((z)axy+z =1)]. 9y

While (9)' Iooses the intuitive content of (9), 1t 1s equrvalent to (9) and it 1s
first-order, which 1s what matters here.

Here 1s a good exercise. A ning M 1s a principal ideal ring if N is a model
of the second-order sentence

VI[I anideal = 3x Vy (I(y) <3z (y = 2x)}].

This has the same general form as (9) but it cannot be expressed m
first-order logic. Indeed, a simple compactness argument shows that there
1s a nng N with the same first order properties as the ring Z of integers
(written & =Z) but where M is not a principal ideal ring.
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A commutative ring N is a field if N 15 a model of
Yx3dy[xZ0—-x-y=1].
A field R 15 of characteristic p {(p a prume) if R 15 a model of
pl=0.
On the other hand R 1s of characteristic 0 if
Yp[p aprime — pl#0]. (10)

Did you catch the weak second-order sentence? The gquantifier ranges not
over I but over the prime numbers. Thus we must replace (10} by an

infinite list:
pl#0, (10),

one axiom for each prime p. The result corresponding to Propositions 2.1
and 2.2 becomes more interesting here. The proof is just like the proof of
2.1.

2.8. PROPOSITlON. Any first-order sentence s true in all fields of characteris-
tic O is true in all fields of charactenistic p for sufficiently large p, that is, forp
greater than some integer N,

Let us abbreviate the formal term (x :x) by x® and, by induction,
abbreviate the formal term (x" - x )by x"*'. A field R 1s aigebraically closed
if 1t 15 a model of all axioms of the form

Yo Ve [£,# 03y (6 -y  +xay" o xy + %o = 0)],

which says that every polynomial of degree n has a root.

Set theory

The first-order axioms for set theory, are discussed at length in Shoen- .
field. The bastc language L of set theory has only 2 membership symbol €
The axioms are arrived at by a careful analysis of our informal concept of
forming sets, sets of sets, sets of sets of sets, and so on 1nto the transfinite.
The resulting set of axioms 1s called ZF, after Zermelo and Fraenkel. The
first axiom about sets one thinks of is the axiom of extensionality: a set 15
completely determined by its members. This becomes

VxVy[Vz(z€ExezEv)—x=y|.
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Properties of mathematical theories

The various first-order theories we have discussed above have radically
different properties from a logical point of view. Let us mentton a few of
them.

The theory of abelian groups 1s a decidable theory, whereas the theory of
groups 1s undecidable. That 1s, one can give an effective procedure which
will tell of an arbitrary sentence mvolving + and 0 whether or not  is a
logical consequence of (1)-(4), 1.e., whether or not ¢ 1s true mn all abelian
groups. There can be no such procedure for the theory of groups. This sort
of question is dealt with in Chapter C.1 and, more fully, in Chapter C.3.

The theory of algebraically closed fields of a fixed characteristic 1s a
complete theory, which 1s to say that any two algebrarcally closed fields
F., F, of the same characteristic have all the same first-order properties,
1e., F, = F,. On the other hand, most of the first-order theories are not
complete. For example. to the theory of rings we can add either
Vx3dy[x#0—x-y=1] or its negation 1 Vx Iy [x£0—>x-v = i] and
have a consistent theory. This just amounts to the triviality that some rings
are fields and some are not. Combining the above mentioned completeness
of the theory of algebrarcally closed fields with the Completeness Theorem
shows, by Theorem 7.2.1n Chapter C.i, that the theory of algebrarcally
closed fields of characteristic 0 1s decidable. Consider the effective proce-
dure P for deciding whether or not a sentence mvolving +.:,0,1 15 a
consequence of this theory. Since all models of this theory have the same
first-order properties, we can appty P to decide which sentences mvolving
+.-,0,Lare truen the field € = (C, +.:,0, 1) of complex numbers. This 1s
expressed by sayng that the field € of complex numbers 1s a decidable
model.

Godel's: famous Incompieteness Theorem shows that the ring Z of
integers ts not decidable. Thus, any mechanical procedure which attempts
to decide of sentences ¢ involving +.-,0,1 whether or not ¢ ts true in Z
must fail for ifimtely many sentences. A consequence of this is that any
effective list T of true axioms we write down about Z must Inveitably yield
an incomplete theory (since otherwise the argument used on € would work
on Z). Gédel’s Second Incompleteness Theorem 1n fact tells us how to go
about finding a sentence ¢ true in Z but not a consequence of 7. Chapter
D.1 contains a thorough discussion of Gédel’s Incompleteness Theorems.
These results are usually stated in terms of the structure N = N, + .0,
of natural numbers, rather than in terms of the ring Z. The standard
definition of Z from N shows that the results apply equally to Z.
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There are a number of topics that could be gone into at this point, but 1t
15 more reasonable to let the topics speak for themselves in the chapters
that follow. Chapter A.2 discusses the basics of the theory of models for
first-order logic. Chapter A.3 treats the ultraproduct construction, an
algebraic version of the compactness theorem. Chapter A.4 will also be Qf
particular interest to algebraists, treating as 1t does, model thgoret;c
analogues of the notion of ““algebraically closed’” and their applications in
algebra. The fundamental resuits of Ax-Kochen and Ersov are discussed in
both of the chapters.

3. The formalization of first-order logic

Let L be a given set of function symbols, relgtlon symbols and constant
symbols. We make no restriction on the size of the set L, though usualiy L.
is fimite or countably nfimte. Each function symbol f € L has a positive
integer #(f) assigned to 1t; if n = #(f), then f is called an n-ary functi_on
symbol. Similarly, each relation symbol R € L comes w?th a p_osn_tlve
mnteger #(R); if n = #(R) then R issaid to be an n-ary relation symbol.

Examples. For the language L = {+,0} appropnate to group theory there
are no relation symbols and #(f) = 2. For the language L ={€} of set
theory, there are no functions or constant symbols and #{( € }=2.

Given a language L we have a natural notion of structure or model for .L.
A structure T assigns a nonempty collection M of objects over which the
quantifiers range, and IN also assigns appropriate interpretations of the
basic primtive relation, function and constant symbols of L.

3.1. DeFNITION. A (set-theoretic) structure for L 1s a pair M= (M, F)
where M is a nonempty set and F is an operation with domain L such that,
writing x™ for F(x),
(i) if R €L 1s an n-ary relation symbol, then R*C M";
(ii) if f€ L 1s an n-ary function symbol, then f":M" — M:
(iti) if ¢ € L. 1s a constant symbol then ¢™ € M.

One often writes M as (M, R™, .. f% ..., c¢™. ...} The parenthetical
adjective “‘set-theoretic” 1 3.1 1s there because one sometimes wants to
consider more generous notions of structures where M may be too large to

be a set. For example, the natural structue IR for the language L={€ } of
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set theory has domain M the collection V of all sets. which is not itself a
set. However, a consequence of the Completeness Theorem 15 that any set
of axioms that has a model in any reasonable sense will have as a model a
reasonably small set theoretic structure. We henceforth deal onty with
set-theoretic structures.

Exampte. IfL=1{+,0}is the language appropriate to group theory, then a
structure for L has the form M = (M, +™, 0M) where M is a nonempty set,

+M M X M->M and O™ € M, We usually use 7 rather than % and drop
the superscripts.

We now turn to syntactic notions of first-order logic. Recall the basic
building blocks A, v, —, =¥, 3, X, ¥,2,...,),(, mentioned early in Sec-
tion 2. Let L be a fixed language. Any finite sequence, each element of
which 15 one of these basic symbols or an element of L, 1s called an
expression. From the set of expressions we want to singie out the ones to
which we can assign a meaning.

3.2. DeFINITION. The ferms of L form the smallest set of expressions
containing the vanables x, v, z, ..., all constant symools of L (if any) and
closed under the formation rule: if r,, . . ., 1, are terms of L andif fE€ Lisan
n-ary function symbol, then the expression f{t--<t.) 15 a term of L. A
Closed term 15 a term 11 which no variable appears,

If there are no function symbols i L then the formation rule 1s vacuous
so the only terms are variables and the constants of L.

Example. If L ={+ 0} then, strictly speaking, the terms are eXpressions
like
+(xy), + {0+ (x0)).

We naturally agree to abbreviate these by the more natural
x+y, 0+ (x +0),

respectively, thus moving the symboi + inside and leaving oft the outer
parentheses if no confusion arises. As m Section 2 we use mx as an
abbreviation of (---((x + x)+x)+---+x), n times, for n = i. For this
language the only ciosed terms are the expressions built up from ( and + .
none of which are very interesting from a group theoretic pomnt of view.

3.3. DeFINITION. AR atomic formuia of L 1s an expression of either of the
two forms:
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(t=1), R(ti...t)

where, in the first case, ¢, and ¢, are terms of L. In the second case R €L s
any n-ary reiation symbol and 1,,..., 4, are terms of L.

Exampies. In the language L = {+,0} of group theory there are not apy
relation symbols, so the only atomic formulas are statements of equalities
between terms, expressions like

(x+y=2z), (x+y=y+x), (x+y)+tz=x+({y+2z)

In the language L ={ &} of set theory where all terms are vanables, the
only atomic formulas are those of the form (v = w) and € (vw) for
variables v, w. We write the latter as v € w.

3.4, Dermnition. The first-order formuias of L form the smallest set of
expressions containing the atomic formulas and closed under the following
formation rules:

(i) If ¢, v are formulas so are the expressions

—ip, (e ad), (evid), (¢e—y);

(i) if ¢ 15 a formula and » 1s a vanable, then (Jve) and (Vve) are
formulas. 7 -

We associate parentheses to the right in strings where the same symbol is
repreated. Thus @ A dr A 0 is (@ A(f A f))and ¢ — ¢ — 818 (¢ — (Y — 8)).

Example. Let L.={+ ,0}. The following are formulas:
(x+y=0),
3y (x +y =0)),
(Vx (Fy (x +y =0)))

The Jast 15 what we wrote more informally as sentence (3) m Section 2.
Note that i the first formula both x and y are sort of “floating free”, in the
second formula y is “‘bound up” by 3 and in the last formuia both x and y
are “bound’. Ohly the last formula makes any mtuitive sense as an axiom.
This 1s stmilar to the situation 1t elementary calculus where

¥ +2x +1

1s an expression which has a variable 1n 1t, but the expression

f (x*+2x +1)dx
0
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has x “bound”; 1t has a meaning ihdependent of x. The defintte integral is
performing roughly the same syntactic role that the quantifiers 3 and ¥
play 1n logic. The next definition makes the notion of “free vanable”

precise. One can think of it as defined by induction on the length of the
formula .

3.5. DeriNiTioN. The set FV(e) of free vanables of a formula ¢ 15 defined
as follows:
(i) If ¢ 15 an atomic formula, then FV{p) 1s Just the set of variables
appearing 1 the expression ¢,
(1) FV(—¢)=FV(e),
(i) FV(p n )= FV(e v ) = FV(p - §) = FV(p) UFV(y),
(v) FV(Jop)=FV(Yve) = FV(p)—{vt.

It is common practise to use the notation ¢(v,,..., v,) to mdicate that
FV(e)C{v,, ..., v.} without implying that all of v,--- g, are actually free
 ¢. This 1s similar to the practise in algebra of writing p(x,, ..., x,) for a
polynomial p in the variables x,, ..., x, without implying that all of them
have nonzero coeficient,

3.6. DEFINITION. A (first-order) sentence of L is a formula without any free
vartables.

So far the terms, formuias and sentences of L are sumply finite strings of
symbois. We must make sure to assign the intended meanings to our logrcal
symbols so that the formuias of Section ? express what we intend. This is
done by defining the satisfaction retation i @ between structures on the
one hand (the left one) and sentences on the other,

Let I = (M, ...) be a structure for a language L. An assignment in M is
a function s with domain the set of vanables of L and range a subset of M,
We think of s as assigning a meaning s(v) to the variable v. We can then

define, for each term + of L 3 function ¥ which maps assignments to
elements of M.

3.7. DeFNiTION. Let M be given. For ¢ a term of L define 1™ as follows:
(i) If # 15 a constant symbol ¢, then t"(s)=c" for all s:
(1) if 7 is a variable o, then t™(s) = s(v) for all s:
(iit) if ¢ 1s the term f(t-+ - 1,) tnen, for all s, define

() = FR(s), . . ., 17(s)).
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In (iii), since each of &,.... % 1S sxmplerm than ;l we clazEl zss:;r;ienebdg
induction on (the complexity of) terms that v, ..., #, are alr hyomd et
" is defined since N is a structure forr I.and f EL. The r_eacle:hs .
that if $:(v) = s:(v) agree on all vanables v appeanng in lt),er :fnvalue; -
t™(s;). Thus t™, as a function, depends on only a finite num

its argument s.

1 or
Examp[é. Let L be the language of rings and let f be the term,
olynomiai,
Y xi+2x + 1.
i H
Then t", for any ring %, 1s the corresponding polynom:atrfuncuon:romd ‘
mto R ,If s(x)}= a. then t"(s)= a’+2a +1, the operations of + an

bemng those of the ring ] i s
In the following definition we use s(i} for the assignment 5° which ag

with s except that s'(v) = a.

3.8. DerNiTION. Let I be an L-structure. We define a relation
ME els],

. . o :
(read: the assignment s satisfies the formula ¢ 1 M) for all assignments
and all formulas ¢ as follows.

() Mt = L)[s] iff (7(s) = £3(s), ; .

(i) ME R(t -~ 1) [s] iff (t7(s),.... 0 (s)ER™,
(iii) M= —e[s] iff not M @[s],

(iv) ME (@ A )[s] iff MEels] and IME gs], N

(v) M= (o v ¢)[s] iff MW=e[s] or MWk [s] or bo ﬂiu:,l,[sl
wi) M= (o — P)[s] iff erther not MEels] or elseﬁmi: [S(a,)]

(vii) ME(Qve)[s] iff there is an a € M sucnathat e[s(3)],

(viii) M=(Voe)[s] iff for all a € M‘, flRl=(p[s.(,J)]. 7 .
There 1s nothing surprising here. It 1s just making sure tha-tb]eac oo
symbols means what we want it 1o meafn. There tl:] oneallnc;s;;alyir;o(on th_:

int, in (i), caused by our using = for both the re: ,
i(;lr?t:lal:]d(l;de) and tt)lre symboi for equality (on the 1ef?). hﬁinyju;?oi
abhor this confusion of use and mention and use something like =

L. _
fo%LTrzz]:roshould observe that the truth or faisity of M ¢[s] deppt?;i
only on the values of s(v) for variables v which are 'actgljlta:y fre]e 1;;::1.5 ,
15, if s:(v) = s:(v) for all v free’in ¢, then M= p[s:] iff ZIEAR ! \;mt
is @(vi-v,) and a =s(vy),....a. =s(vs), then we may
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MEela,, ..., a.] for M ¢ [s] without confusion. Also, if ¢ is a sentence,
then the truth or faisity of Mk o[s] is completely independent of 5. Thus
we may write Mk ¢ (read: M is a model of ¢, or M satisfies ¢ ) if for some
(hence every) assignment s, Pk e[s].

If ¢ (v) 15 a formula and ¢ 1s a term then ®{t/v}) (or, more simpiy, e(1))
denotes the result of repiacing all occurrences of the free variable v by the
term ¢ throughout. When using this notation we always assume that none
of the variables in # occur as bound variables i . If they did we could
always rename the bound variables, Otherwise we would distort the

meaning of ¢ (¢). For example, if ¢ is w and e(v)1s Aw (v# w), then e(t):

should assert Iw'(w# w'), not Iw (w#w)

A structure M is a mode! of a set ® of sentences if M forall ¢ € @,
Given two structure %, N for L, we say that I and N are elementarily
equivalent, and write M =N, iff for all sentences e of L, Mo iff N . If
M=RN (i.e. M is isomorphic to N, 1n the obvious sense) then I =N,
Finally, let % be a class of structures for a language L. X is (finitety)
axtomatizable if there 1s a (finite) set @ of first-order sentences of L such
that, for all structures I, M € I iff WM is a model of &. This agrees with our
terminology in Section 2. Some authors call a finitely axiomatizable class an
elementary class, or EC. They are then forced into calling an axiomatizable
class elemenatary in the wider sense, or EC,

4. The Completeness Theorem

Surely the most important discovery.for mathematics by the ancient
Greeks was of the notion of proof, turning mathematics 1nto 2 deductive
science. Each theorem ¢ must have a proof from a set T of more or less
explicitly stated assumptions, or axioms. The proof must demonstrate that
the conclusion ¢ follows from the axioms in T by the laws of logic atone.
The mathematician implictly assumes that he understands the notion of
proof and that, in particular, he will be able to check 1n a rigorous manner
whether a purported complete proof does indeed establish the conclusion
from the stated assumptions. The naturai question 1s: Can the notions
“laws of logic” and “‘proof” be made mathematically precise?

In this section we want to show that there is a mathematically precise
notion of ““¢ is provable from T* which captures completely the intuitive
notion “¢ follows from T by the laws of logic alone™, for first-order ¢ and
T. More fully, we want to provide a concrete set of obviously valid rujes of
mference such that ¢ follows from T by the laws of logic alone if and only
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if there 1s a proof of ¢ from axioms in T which uses ounly the permitted
rules of inference.

There 15 a seeming obstacie to our program. How can we hope to prove
such a result without knowing n advance what 1t means to follow by the
laws of logic alone? Luckily, we do not need to know. A.ll we nf_:ecl 15 to
agree that, whatever 1t means, 1t at least implies _tngt @ -w1ll hold 1n all set
theoretic structures which are models of T 1.e., 1t implies T‘I= ¢. Thus, tq
realize our goal, 1t more than suffices to provide valid rult_as pf l_nference and
show that Tk ¢ if and only i ¢ 18 provabie from T. This is the content of
Godel’s Completeness Theorem. _

The plan of this section 1s as follows. In 4.0 and 4.2 we _take c_are of
so-called propositional logic. In 4.3-4.8 we discuss a me_thod, due n
essence to Henkin, for reducing certain problems of first-order togic back
to problems about propositional logic. The proofs of the Co_mpactnes.s
Theorem and the Ldwenheim-Skolem Theorem fall out of this method.
Finally we present two different versions of the Gédg:l Completeness
Theorem which are consequences of 4.8., a Hilbert-style formal system
(4.9) and a Gentzen-style formal system (4.13).

Propositional logic

It 1s expeditious to break the study of first-order logic up into two parts,
the trivial part having to do with the propositional connectives A, v, =1, —>,
and then the part having to do with equality and the quantiﬁersIV and 3.

Let P be a set of objects called prime formulas. They might be sentences
of some natural language or letters p, g, r,... of the aiphabet, fqr_example.
In our application, they will be those first-order f.ormulas which are not
proposttional combinations of simpier formulas, that 1s, atomic formulas
and formulas beginning with a quantifier. The set of propositional formulas
of P form the smallest set of expressions containing the members of P and
closed under the rule: if A, B are propositional formulas then so are A,
(A A~ B), (A v B)and {A — B). The prime constituents of a pr(_)posmonal
formula A are just the prime formuias out of which A is built.

Examples. Suppose P = {p, g, r}. The following are propositional formulas
of P:
p.a. (pvq), (qvp), ((pva)—{gvp))
We want to show exactly how the truth or falsity of a propositional
formula depends on the truth or falsity of its prime constituents. The_,n,
going a step further, we show how to decide which propositional formulias
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are always true, regardless of the truth or falsity of their prime constituents,

formulas like (p v —ip), ((p—=q)rmg)— —p), etc. Such formulas are
called propositional lautologies, since they are true by virtue of their

syntactic form alone. These tautologies provide a small first step 1n
isolating the Jaws of logic.

Let t and f be distinct new symbols, thought of as “true” and “false”. A
truth assignment for a set P of prime formulas 18, by defimtion, a function
v:P—{t f}. For each truth assignment » we define its extension 7 to the

set of all propositional formulas of P by induction on length of formulas as
follows:

P(A)y=v(A) if A is prime;
P(mA)=f if 5(A)=t,
=t if 7(A)=*F
v(AaB)=t if 5(A)=5(B)=t,
=f otherwise;
P(AvB)Y=t if 5"(A)=tor v(B)=t or both,
=f otherwise;
V(A—>B)=1t if #(A)=tand P(B)=H{,

=t otherwise.

This definition can be summanized by means of the following truth table :

A B —A (AAB) {(AvB) (A B)

-
= St =k e

L B
- mh e
- - . .
- gy

By constructing such truth tables we can completely analyze how the truth

or falsity of a propositionai formula depends on the truth or falsity of its

prime constituents. We iilustrate the method for the formula
(mprg)agq)—p).

We simplify the table by leaving out some of the t's.
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p oglma prmg Tpamg) T(paTglag ((paTig)ag)—
t t f 1

t f f f

f t 1 f f

f f f f

Thus, the only circumstances under which our final formula ts false 1s whei
p 1s faise and g 1s true.

4.1. DermviTION. A propsoitional formula A of P is a tautology if #{A)=
for all truth assignments » : P —{t,f}. A 15 consistent if 7(A )=t for som

v:P—{tf.

The method of truth tables makes 1t a trivial matter to see whether .
propositional formula 1s a tautology or not, or whether it 1s consistent 0
not. If we write A < B for (A - B)a(B— A), then we see that th

following are tautologies:

(Av—A) (law of the excluded middle),

=1(A A7 A} (law of contradiction),

T(AAB)e> (DA Vv _‘B)} {de Morgan’s laws),
—{AvB)o (A Arm1 B)
1A <> A (law of double negation}.

Just to make sure the method of truth tables 1s perfectly clear, we presen
an example with three prime constituents p, g, r:

{{prgy=rIn(mr—q)]—>(p—~r)
—— e ey e

A B C
p oq r prg A —wvr B AAB C [AaB|—C
t t t f
t t f f f f
t f f t
t f f f f t f
f ot t f f
f t f f
t ft t 1 f
f t f t f t
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Thus, since no falses turn up in the last column, the formula is indeed 3
tautology. :

In practise, there is a much shorter method to check to see whether a
formula is or 15 not a tautoiogy. One works backwards, trying to find a
consistent assignment which makes the formula false. Applied to the
above, to make |A A B|— C false, we need to have #{A)=p(B)=t but
#(Cy=1. To make #(C)=1f, we must make v(p)=t, #(r)=1 To have
#(B)=1 we must have #(q)=t, since v(—r)=t..But now we have
ﬂ(p)% v(g)=1t and #(r)=f which gives #(A)=A{, a contradiction. Thus
the above formula 1s a tautology.

A set T of propositional formulas 1s said to be consistent (in the sense of

propesitional logic) if there 1s a truth assignment ¥ such that r{A)=tfor
all AeT.

4.2. CoMPACTNESS THEOREM FOR ProrosiTIONAL LOGIC. A set T of proposi -
tional formuias is consistent if and only if every fintte subset of T is consistent.

Proor. We present two proofs of the nontrivial half.

First proof. For the purposes of this proof call a set S finitely consistent if
every finite subset of § is consistent. We wish to prove that every finitely
consistent set1s consistent. Call S maximal finitely consistent if § is finitely
consistent and for every formula A, either A € § or (—A)ES.

There 1s a naturai torrespondence between valuations » and maximal,
finitely consistent sets. To any v assign the set §, = {A | 5(A) =1}. This set
15 maximal, finitely consistent. Conversely, given a maximai, finitely
consistent set S, define v(p)=tif p e §, v(ip)=1tif pZ §. The following
facts follows immediately from tne fact that § s maximal, finitely consis-
tent, and imply (by induction on formulas A) that §=58,:

BeS iff (—B)ZS,
(ArB)ES iff AE€S and Bes
(AvB)ES iff AE€S or Bes,
(A—=B)ES f AZS or Bes

For example, let’s prove that (AvB)eS mmplies A€ES or Be S.
Suppose not. Then (A v B) € § but (T'A)E S and (—B) € S, by maximal-

ity. But then {(A vB), DA, — B} 1s a finte, inconsistent subset of S, a
contradiction,

Thp abgve remarks show that proving a finttely consistent set T
consistent 1s equivalent to finding a maximal, fimtely consistent set $DOT.
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We show how to construct such an § in the case where the underlying set F
of prime formulas 1s countable. Essentially the same proof works as long as
P is well-ordered and hence, by the axiom of choice, works for all P. The
proof for well-ordered P does not need the axiom of choice.

If P 1s countable, so 1s the set of all formulas so we enumerate them:
AnAz, . A, Define L CT.C---CT,C--- by

Thw =T, U{A} if this 1s finitely consistent,
=T, J{A,} otherwise.

Let S = UT,. Clearly TC S and for every A, cither A € § or (MA)E S
To finish the proof we need only show that each T,, and hence S, 1s finitely
consistent, This 1s proved by induction on n with n =0 being the
hypothesis of the theorem that T is finitely consistent. Assume T, 1s finitely
consistent, and prove that T,., 1s finitely consistent.

Case 1. T...= T, U{A.}. By the definition of T,.,, this 1s finitely
consistent.

“Case 2. T.,,= T, U{—1A,} Thiscan only happen if there 1s some finite
set T, CT, such that T, U{A,} 1s not consistent. Suppose that T,.. is no
finitely consistent. Then there 15 a finite set T*C T, such that T U{— A,
1$ nat consistent. But then T, U T is a finite subset of T, so 1s consistent
Any assignment p making all of T U T% true must make one of A, o
—A, true, contradicting the inconsistency of both T,UJ{A,) and T4\
{—ALL

Thus, 1n either case, T,., 1s after all fimitely consistent. This fimshes the
proof.

Second proef. We can give a faster proof by guoting the Tychonof
Theorem. It hides the basic construction, though, and thus 15 less suitabl
for other constructions 1n medel theory. Let 2 = {t, f} be the two element

space with the discrete topology and let X =2° the space of all trutl

assignments of P with the product topology. By the Tychonoff Theoren
X 18 a compact, Hausdorff space. Hence if & ={F:|i € I} 1s an indexe
family of closed subsets, and if {1, F =@, then there is a finite [,C
such that ﬂ,-E,U F. = @. For each proposttional formula A, let F, = {v € X
v(A)=1}. We claim that each F, 1s clopen (both closed and open) m X
For A = p a prime formula F, 1s open by the very defimition of the produc
topology. But X — F, ={v|»(p)=f} 15 also open, by defimtion, so F, i
clopen. For more complicated formulas, the claim follows by induction o1
length of formulas and the following equations:
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F(AVB) =F, U Fs, F(AAH) =F. N FB:
Fiaom=Fg — F,, F..=X-F..

This establishes the claim. Now let T be as given 1n the theorem. By
hypothesis, for each finite T, C T, thereisa p making all ¢ € T, true. ie.
ﬂAETO F,#0. By the compactness of X, () erFo # @. Thus, there 15 a
truth assignment 7 making all A € T true. []

The standard classroom example of a simple application of the Compact-
ness Theorem for Propositional Logic 1s to prove that if an infinite map
cannot be colored by k colors then some finite submap cannot be colored
by k cotors. To prove this one assigns & prrme formulas to each *“‘country”
on the map, one for each color, and writes down the obvious “‘axioms’’
asserting that each country gets exactly one color “true’ and that adjacent
countries do not have the same color “true”. Another example, if one gives

the first proof of the Compactness Theorem, s to prove the Tychonoff
Theorem for 2.

The use of Henkin constants for reducing first-order logic to
propositional logic

In this subsection we apply the notions of propositional logte to
first-order logic. Given a language L Iet P be the set of formulas of L which
are atomic or begin with ¥ or 3. Thus. a tautology of first-order logic 1s any
formula which 1s true regradless of what truth assignment 1s given to the
pnime formulas. For example the following are tautologies,

VxR(x)v —VxR(x),
(VxR (x)A dxS(x)) e (—VxR(x)v =1 3x5(x)),

but the following sentences are not tautologies:

VX (R(x)v R(x)),
—3xS(x)—>Vx =S(x).
The first two are prime formulas, the third has the form —1p — g for prime

p and g. We see that the tautologies of first-order logic barely scratch the
surface of the collection of “laws of logic”

We state an obvious lemma for the record.
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4.3, Lemma. Let = (M,...) be a structure for a language L and:let s be
an assignment in M, ie., a function mapping the variables of L into M.
There ts a truth assignment v to the prime formulas of L ;uch that, for all
formulas ¢ of L, M= o|s] if and onty if v(¢)=1t. In pc_zr-n'cutar, any set of
ﬂsentences true tn N is consistent m the sense of propositional logic.

Proor. For ¢ a prime formula, define v(p)=1t if M= ¢[s], otherwise
v(p) =f. Since every formula is built up from prime formulas by means of
proposttional connectives, the conclusion 1s obvious, [

The converse of the lemma 1s far from true. For example_the following
set of sentences is consistent in the sense of propositional logic (they are all
prime formulas) but has no model:

Vx (R(x)— S{x)), VxR(x), Ax 0 S(x)}.

There has been no analysis of the gquantificational structure of the
sentences.

4.4. EouaLity axioms. The equality axioms are as follows, where
i, W, U, ... denote variables and constant symbols of L.

(u = u),
(u=w)->(w = u),
(i1 = by Aoy = us)— (U, = us),
{(wi=win-au,=w)=> (R0 u )= R(w, - - w,)),
(i=win At =wo )=t wa)=t{wa s wy)),

where R 1s an arbitrary n-ary relation symbol of L and t is an arbitrary
n-ary term of L. The equality axioms are valid 1n that for all such axioms
@, all M and all assignments s to variables, Mk ¢[s]. The last four axiom:s
-for equality might well be called Leibmz Law.

The witnessing expansion L{C) of a language L is constructed as follows\
Let Cy = 0 and, once C, 1s defined, let L, = L U C,. For each formula ¢ (v
of L, with exactly one free varable let ¢, be a distinct ne\fv constan!
symbol and let (i be the set of all these ¢, Given Cn assign distinct new
constant symbols ¢, to each formula ¢ (¢) of L, which 1s not already ¢
formula of L,-, (i.e., if some constant from C, appears in go)..Let Cusr DE
C. union the set of all these new ¢,,,. Let C=1J,C, and let L(C) =

LUC
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4.5. Derivrrion. The constant symbol ¢

o) 18 called a witnessing constant
and the sentences

I (oo (v) = ¢ (cony),

I P(Coem) > Yoo (v)

are called Henkin axioms of types I and II.

The informal idea behind the Henkin axioms is quite stmple. If v (v)
1s true in a structure, choose an element a satisfying ¢ () and give 1t a‘new

name ¢, If Voo (v) 1s false, choose a counterexampie b and call it by the
NEW NAME €,y

4.6. DEFINITION. Theniin 18, by definition, the set of all sentences of L{C)

which are either Henkin axioms or else of one of the forms:
III Yog(v)— (1), ¢ aclosed term of L(C);
Iv ¢()—Ave(v), * aclosed term of L{C).

These latter are called the quantifier axioms. Their informal content 1s
clear,

The set Thenwn 15 N0t true 1n every L{C)-structure, but the next lemma
shows that every L-structure can be turned into an L(C)-structure which 1s
a model of Thenvin, Using the idea discussed following 4.5,

If LCL' are languages and ' = (M. F" is a structure for L’ then
M= (M, F'] L is called the reduct of L' to L, and M’ is cailed an expansion

of I to the language L’. Thus. % and DY are the same except that I
ass1gns meanmgs to the symbols in I/~

4.7, LEMMA. Let M be any structure for a language L and let L(C) be the
witnessing expansion of L. There is an assignment of elements of M to the

constant symbols of C so that the resulting expansion of M 15 a modei of
T‘chkin- - -

Proor. The quantifier axioms TI1, IV are going to be true regardless, so we
only need worry about those of types I, 1. Suppose we contrive to make
those of type I true, and consider a typical one of type II:

(P(C‘*-w(v))ﬁ VU@(U)'

Suppose the hypothesis is true in the expanston, but not the conciusion.
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But then 3v —e(v) 15 true, so by I, 7@ {c—,) 18 true, a contradiction.
Thus, if all axioms of type [ are true, so are all of type IL

We proceed to assign elements to the constants in C, by induction on n
If ¢,y € C: then v (v) 1s a sentence of L and hence makes sense 1n M. T
MEJve (), choose some a € M so that Mk @(a) and set ¢ =a. [
ME —Ave(v), define ¢l arbitrarily. This makes all the positive Henkir
axioms about the ¢, € C. true. But once the constants of C. are
interpreted, all the sentences of L, = L U C. make sense, s0 we can carr}
out the same argument and assign elements to the ¢, € C;, andsoon. L

A canontcal structure for L{C) is a structue T = (M. .. .) such that even
a € M 1s denoted by some ¢ € C. That 15, M = {¢™{c € C}. The set E«
mentioned in 4.8 is the set of equality axtoms of L{C) which are sentence:
of L(C); 1.e., those which contain no variables.

The following iemma may seem rather techmcal but the equivalence o
(i) and (iii) show that we have reduced problems about models of first-orde
theories to essentiaily trivial questions about propositional logic. There 1s:
price to be paid, however. Even 1n the case where the T in (i) 1s finite, th:
propositional theory 1n (iii) 1s infinite,

4.8. Man LEmMa (The reduction to propositional logic). Let L be .
first-order language and let L(C) be the wunessing expansion of L. For an
set T of sentences of L the following conditions are equivalent:

(i) T has a model; ve. there is an L-structure X which 1s a model of a
sentences n T,

(ii) There is a canomcal L(C)-structre I which i1s a model of a

sentences in T.
(iii) T U Tiensin U Eq ts constsient in the sense of propositional logic.

Proor. The implication (ii) = (i) is immediate, while (i} = (jii) follow
from Lemma 4.3. We prove (iii) = (ii). Let v be a truth assignment to th
prime sentences of L(C) such that v(¢)=tforall¢ € T U Twenrin YUEQ. T
prove the lemma, we construct a canonical model 2R = (M, ...} such tha
for all sentences ¢ of L(C),

MEe it #(e)=t

The main function of Tuenn 18 to guarantee that # satisfies the followir
conditions:

(Fve ()=t i Flelc,mP=1
s(Wve())=t iff b{e(t))=1 for all closed terms ¢ of L(C).
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The conditions allow us to construct our model % out of the constants in C
1 a way that is analogous to the construction of a group from generators
(the elements of C} and defining relations (the axioms of T). To define IR
we must (a) specify the universe M of I, (b) define, for each n-ary relation
symbol R €L an n-ary relation R™ to interpret R, {c) define for each
n-ary function symbol f € L an mterpretation ™. M" — M, and {d) define
for each constant symbol ¢ of LU C an element ¢™€ M. Having thus
constructed N 1t will remain only to verify that Mk ¢ iff #(e)=1t, for all
Eg;l-tz%cgsbgovsf L(C). This condition tells us how we must fuifill conditions

(a) Define an equivalence relation ~ on C by
c=d i »({(c=4d))=t

The equality axioms gurantee that =~ 15 an equivalence rejation on C
S}Jppose, for example, that ¢ ~ d and d ~ e. We check to see that ¢ = e.
%mce vic=d)=t, v(d=¢)=t by ¢=d d=¢e¢ and sincé
v({((c =dnrl =e)—c=e¢))=t since this sentence is an equality axiom
vic=e)=t so c=e Let ¢ be the equivalence class of ¢ and Ie;

M={leceC].
(b) Define R™ by
(€,.. . &)ERY™ iff »(R(cy,...c.)) =t

To see that this 1s well defined we must check that if

E::d],...,c_n=6?" and {EI,...,C_H}ERSR,
then (d,,....d,) € R™ This 1s a consequence of the fact that
C1:du\"'AC.,:d,.AR(CI,...,CH)—>R(d|,...,d,,)

1s ‘an equality axiom and hence 1s assigned true by .

(¢} Letey,....,c, ECand fEL be given. We claim there isa ¢ € C such
that »(f(c.---c.)=c)=t. For consider the formuja ¢(x) given b
(fler- - c)=x). It 7(Qve(v))=t. then »(f(c.---c.)= c.)=1t So sup)-i
pose that »(Jve(v))=f But one member of Th.... is the sentence
(e(flc:-- - c.))=Tve(v)) so that 7(@(f(cr-- - c,)) = £ But this says that »
asmgn‘s f to the atomic sentence (flei e} = flc. - ¢,)). But vlc. = ¢;)
xt,(z_ = 1,._..,n)and lcr=cinng, = )= (flcica}=flci ¢ )[)
_:t since these are equality axioms, which is a contradiction T;us
F(Ave(v))=t after all. We can define (€1, ...,E.)=¢ for that' ceC

such that v(f(c----c,})=c)=1t. An ar i
\ : n . gument like that used 1n (b) sh
that f* is well defined. (®) snovs
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(d) If ¢ € Clet ¢™ = €. 1f d € L, then an argument similar to that u
(c) shows that there is a ¢ € C such that v(d = c) =1t so let d* =
this c.

This completes the construction of X and guarantees that for a
sentences Mtk ¢ iff v(e) =1 To prove this for other sentences we pr
by induction on length of formulas. The propositional connective
triviai. For example, IME(e A ¢) iff ME¢ and Vi ¢ (by defimtion
iff 7(¢)= #(4) = t(by the induction hypothesis) iff #(¢ A ¢)=1. Supj
1s Ax ¢ (x). If #(¢) = t then, by the condition above, there 1s a ¢ suc
#{@(c)) = tso, by induction hypothesis, M ¢r(c) so ME=Txd(x)so?
On the other hand, if #{@) = fthen #(Ax ¥ (x)) = fs0 by Treomins P(w(
for all closed terms t of L(C). In particutar, for every ¢ € C, #(¢(c
By the induction hypothess, Itk = (c) for ali ¢ € C. Since every el
of M is denoted by some ¢ € C, E-—13x ¢ (x). Thus ME=Fx
v(Jx ¢ (x)) = t. The proof in the case when ¢ begins with ¥ is similar.

The Main Lemma provides a method for actually constructing mo«
theories out of symbols. In particular, 1t gives us immediate proofs
Compactness and Lowenheim-Skolem Theorems.

PrOOF OF THE CoMPACTNESS THEOREM (2.4). Let T be a set of senter
the first-order language L such that every fimte subset of T has a1
We need to show that T has a model. By (iii) = (i) of the Main Lemr
amounts to proving that T U Theaan U Eq 1s consistent n the se
propositional logic. But, by the Compactness Theorem for Propos
Logic, it suffices to prove that for every finte subset
To U Thenrin Y Eq 15 consistent, which follows from the hypothes
(i) = (i) of the Main Lemma. [J

Other proofs of this theorem appear 1n Chapters A.2 and A.3.
follows directly from the Completeness Theorem below.

PROOF OF THE LOWENHEIM-SKOLEM THEOREM (2.5). Let x be some
cardinal and let L be a language with = k symbols. Since every fosr
L is a finite sequence of symbols, there are = « formulas of L. Re
definition of the witnessing expansion L(C) of L, where C=
Clearly, by mduction, each C, has cardinality =« so C has carc
= k. Thus, any canonical structure for L(C) has =« eiements,
desired result 15 an immediate consequence of (i) = (i) in the

Lemma. [J
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The Completeness Theorem for a Hilbert-style format system H

There are several quite distinct approaches to the Completeness
Theorem, corresponding to different ways of thinking about proofs. Within
each of the approaches there are endless variations in the exact formuia-
tion, corresponding to which laws of thought are taken as basic, which as
derived. We will ignore the minor variations, The different basic ap-
proaches are important, though, for different notions of proof iend
themselves to different applications. The most important thing to re-
member, however, 1s that while there are many nottons of proof, there is
only one real notion of provable for first-order logic, as the Completeness
Theorem shows.

The first type of formal system we discuss 15 a so called Hilbert-style
formal system. It 1s usuaily the favorite of the mathematician because 1t 1s
elegant and easy to remember. In 4.6 we sketch a Gentzen-type format
system. This type has proven very useful in analyzing the proof-theoretic
strength of vartous mathematicay theories. In a classroom situation,
however, where students actually seem to enjoy working out formal proofs,
the Fitch-type subordinate proof method or the Beth-type semantic
tableaus are even better. The latter are discussed at length m SmuLLyan
[1968].

In a Hilbert-styte formal system, the emphasis is on logical axigms,
keeping the rules of inference at a mintmum. If we had taken Jx as a
defined symbol, treating 3x as —Vx —p, the system would have been
superficially even simpler. It seems somehow more to the point, however,
to treat the laws of thought behind these quantifiers separately.

Let L be a fixed first-order language. All formulas below are first-order
formulas of I, and all terms ! are terms of L. Recall our convention
Section 3 about writing ¢ (t/v), the resuit of replacing v by ¢ in @, only 1n

case the variables in t do not occur bound in ¢ We wnite ¢(f) for e(t/v)
below.

Axiom Schemata of H
(1) All tautologies,
(2) ANl equality axioms,
(3) All formuias of either of the forms

VMoe(v)—o(r),  ¢()— Jve(v).

Rules of Inference of H
(1) (Modus Ponens) From (¢ — ) and ¢ infer ¥,
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(2) (Generalization rules) 1f the vaniable v is not free in ¢, then:
from ¢ — ¢ (v) mfer ¢ = Vy ¢ (y),
from ¢ {v)— ¢ nfer Ay (y)— o.

These rules are usually wrntten schematically as

(p—¥) ¢
W

If v not free 1n ¢, then:

@ — §(v) v(v)— e
e—=Vygl(y) " Fygly)—e
A proof of ¢ from a set of sentences T (in the formal syst_e_m_ H) ls‘g fini
sequence dl',, ..ty of formulas, with &, = ¢, each otj whlch 1s either :
axiom of H, a member of T, or else follows from eatlier i _by one of ti
three rules of inference. We say that ¢ is provable from T, and write T - ¢,
there 1s a proof of ¢ from T.

4.9. GopeL CoMPLETENESS THEOREM ForR H. Let T be a set .of sentenceg of
tanguage L. A sentence ¢ is provable from T if and only if ¢ 15 tr?te ;{1:
sei-theoretic structures which are models of T. In symbols, T ¢ iff i

The easy half of the Completeness Theorem follows from the Soundne
Lemma.

4.10. SounpnEess LEmma. Let t be a set of sentences, M a modei of T.
¢(v1,....0.) is provable from T, then MEYv. - VYo, 0(vi,.. ., 0.)

ProoF. One proves, by mduction on n, that if ¢, .. .. ¢, 15 a proof from
then ME=Vo, - v dfo- -6}, O

In the proof of the Completeness Theorem we need the followil

lemma.

4.11. LemMma. Let T be a set of sentences. _
(i) If THe — ) and TH(Tp — ), then TH.
@) If Tt = 0)— 4, then TH(—p — ) and TH(O — ). i
(iii) If v does not appear 1 § and if TFH[@Aye(y)— o(v))— ],
Tt 4.
(iv) Ifvdoes not appearin yand if TH(p{v)—¥ye(y)— ¢, then T
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Proor. (i) Notice that [l = ¢)— ((—g — ¥)— ¢)]isa tautology. Thus, if
we write a proof of (¢ — t) and apply modus ponens we get a proof of
(79 > ¥)— . Then write a proof of (—¢ — ¢) and apply modus ponens
to get a proof of 4.

(i) Note, [((¢ — 8)— ¢)— (—1¢ — $)] ana [((6 = 0)— v)— (6 — ¥i)]
are tautologies.

(iii) Suppose THEye(y)— ¢ (0) > &), where v 15 not free in ¢. By
(ii), TH(—3Iy e (y)= —h) and THe (v)— o Apply the second generaliza-
tion rule and we have T+-(3ye(y)— ¥). But then by (i), T+ 4. The proof
of (iv} 1s similar, but uses the first generalization rule. [J

PROOF OF THE COMPLETENESS THEOREM. Suppose that TE @. By the Main
Lemma (4.8) and the Compactness Theorem for propositional logic, there
1safiniteset SC T U T ttenkin U Eq such that S U {7} is inconsistent 1n the
sense of propositional calculus, List the members of § in a list ay, ..., ay,
B - .., Bu as follows. The sequence wy, .. ., an conststs of those members of
S which are either in T U Eq or else are quantifier axioms (types ITI and
IV) listed in any order. The B’s are the members of § which are Henkin
axioms of types I, II, but we must list them more carefully. Recall the
languages L=L,CL.C--- such that L(Cy= U, L, Define the rank of
® € L(C) to be the least n such that ¢ € L.. Now, choose for B: a Henkin
axwom in $ of maximum rank. Choose for B:a Henkin axiom mn § — {81} of
maximum rank, etc. The pomt of arranging things in this way 1s that the
witnessing constant about which By speaks, is not mentioned in Bivin .oy Bas
For example, if B s
Jon(v)—> n(e,w),

then ¢, does not appear in any of the other 8,, ..., Bum, by the maximality
condition on ..

Recalling that § U {=1@} is not consistent in the sense of propositional
logic, and associating parentheses to the right, we see that

(a«—éaz—>-.-—>aN—~9B,—->...h_)BM_>€D)

IS a tautology. Replace each WItnessing constant in this sentence by a
distinct new varable. The result is still a tautology:

ax-—>a2—>—>a;~,—>ﬁ{_k>i,'8nr4_>w

but ¢’= ¢ since ¢ has no witnessing constants in it. Each QL ..., ayls
either a logical axiom or else 1s a member of T, so we may apply modus
ponens N trmes and obtain a proof of:

Bi— =Bl o

: s
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: But now we apply parts (iii} and {iv) of Lemma 4.11 to succesively removi
81, B, ..., 8% and obtain a proof of ¢. [

Notice that our proof used only the denved Tules 4,11 (iii), (iv) 50 Wi
could have used them in place of the more standard rules of H. This i

~ - discussed 1 SMULLYAN [1968].

. The Completeness Theorem for a Genizen-type formal system G

Hilbert-style systems are easy to deﬁne. and admut a sumple proof of th
Completeness Theorem but they are difficult to use. Gentzen sys emc
reverse this situation by emphasizing the mmportance of inference rules
reducing the role of logical axioms to an absolute mimmum, 7 .

We use I, A to range over fimte sets of formulas. A, sequent 15 a pai
(I, A which 1s wnitten I'F A and read, 1nf0rmally,ras F. yields A orE riihtt:
-the conjunction of all the formulas 1n I yields the disfuncnion of a
formulas 1n A, We wnite I, ¢ for I U{?}. 7

We first restrict attention to propositional logic.

Axioms: I' o FA, 0.
Rutes:

i FA, ¢

Lo phA TIFA @ I'kA4,

(1) Tl rirra S N CYY)
.:r, FA F.l[fl‘A rl—As@:dl

(vh) qor,@w)m (FY) Frdtev o)
rrA, o Fota

Y reera (F7) Tra—e
Frd e TrA Lotd,y

&Y TTresoa . ) Tra o)

A denivation in this system is a finite tree of formulas like, e.g.

with axioms at the upper nodes and such that each sequent on tl'll:{e :lrle
follows from the ones immediately above 1t by one of _thc rul_cs. athe
than define this precisely, we given an example, a denivation of the sequer

(e A1) v B)}(o v 8):
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. Wit 8 (axiom)
(p AT ), 0 (by A t) 6te, 6  (axiom)
(prnd)Heve) bytv)  61(pvh) (by Fv)
(e A g)vo)-(eva) by vi)

4,12. THE COMPLETENESS THEOREM FOR THE PROPOSITIONAL FrRAGMENT OF
G. Let I'A be finite sets of propositional formuias. The following are
equivalent

(i} Every truth assignment v making all o € I true makes at least one
i € A frue,

(ii) There 1s a denvation of I't A using the above axioms and rules.

Proor. The proof of (i) = (i) 15 easy
derivation. For the proof of (i) = (i), start with a pair (I, A) satistying (i).
We attempt to build a derivation of I'FA by working backwards. At each
step, we work on a formulain ' U A of maximal length, breaking 1t apart
by means of one of the rules. For example, if (¢ — 0)E I is the longest
formula in "'U A then, at the first stage, we write down

by induction on the length of the

Fol‘d,l,il F(),(,D"A
F']’(¢_>9)|_A (->}“)

where I'v= I —{(¢ - 0)}. We now work on {otA, ¢ and Iy, @ A sepa-
rately. Eventually we end up with sequents which cannot be broken down
further. If each of the Sequents on the ends 1s an axiom, re., has a prime
formula common to both sides, then we have constructed a denvation of

I'+A. So suppose that one of these end nodes I''F A’
Define v on "y A’ by

_Jt if per,
”(P)‘{f if pea

1S not an axtom,

and define » arbitrarily on other prime formujas, This 1s possible since
I"'NA4'=p. A case by case examination of the rules shows that every
sequent I+ A" beneath I+ A’ aiso gets tassigned to everything on tie Jeft

by ¥ but f to everything on the right. In particular, this happensto I'F A, a
contradiction. [

To pass from propositional logic to first-order logic we add equality
axioms, an equality rule and four quantifier rules.
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= -.Equa[ity axtoms: T'FA, (¢ = t) (¢ any term).
. Equality rute: 1f E is (t, = t;) or (2= 1), then

F, (P(rl)FAs ll'](tl) .
IE ¢(t)FA (1)

A @(t
(V) INTICI (-3) T'tA, Jve(v)

In the next two rutes, the vartable v 1s not allowed to occur free in " U A

vy LrAew g, Le(@rd

TFAYyo(y) " I 3ye(y)+d

The formal si/stem G has the above axtoms and rules of inference. The
system G* has, in additron, a rule called “‘cut’ which 1s the counterpart of

S ponens:
modus p Foba I o

rra

cut:

Given a set T of sentences of L, we say that a formula ¢ is deriv;ble
from T in G* if there is a denvation of I'H{e} for some finite T C T.

4.13. THE CoMmPLETENESS THEOREM FOR G'. A sentence o 1s derivable from ¢
set T of sentences in the system G iff Tk o.

Proor. The (=) direction follows by a Soundness Lemma entirely
analogous to 4.10. To prove (<) we use the Main Lemma, the Compact-.
ness Theorem for propositional logic and 4.12.. By tl_le M.am {Lemma anc
the Compactness Theorem for Propositional Loglc, there llS a finite
S C T U Tuewn JEQ such that every truth valuation v making § true
makes ¢ true. Using the exact notation as in the p’roof of 4_1.9, lel
S =4 an Bu.. By, and let al..oal Bl Bl be as before
Thus, if I' ={ai, ..., ak Bl,..., Bi}, we see that F}-Q is derivable mlf}
using only the axioms and rules of proposmonlal logic, by 4.;2. “(;1
Iy={ai.....al}, K =N, bethe subset of{ai a a it of members of T. We
can turn the derivation of I' F ¢ nto a denivation of I'gF ¢ by means of tn
s.
fOI(I?)WiIf]i ‘:;a&ll?equality axiom or a quantifier axiom IT1 or TV, then @ ¢.
Lthen T'UTMFA UA' _
Th(zs)eljrg ls—lﬁiu:vle and from them we obtamn I'yb 'l for all J,< ¢ = N, SO W¢
can apply cut N —J tumes and get a derivation of Iy U{B1, ..., Bitto.
3) U I{(p—0)FA then I'FA, ¢ and I, 6 F A,

This 1s similar to 4.11(i1). We prove the first.
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Ne—0ra (hypothesis) I'etrA4, g e i (axiom)

Ne—0FA ¢ (by2) Tra,(¢—6)¢ (1)

I't4,¢  (cut)

The second is stmilar. Combinin | '
. g these, the rul
o vecon rules (FV) and (3+), and cut
@ If rAve(y)— e(v)FA and v s not free 1n I"UA, then I'+A,
G) IE T e(v)=>Voo(v)FA and v not free m I"U A, then I'A.

Using these _derlved rules we remove 81,..., B4 from the hypothesis and
obtain a derivation of I'yke. [

We have used the cut rule heavily

Theorem for G*, but 1t did not enter into the proof for the Propositi
part. Is it really necessary? No. One can, by working directlypwimmtrilal
system G, and expanding on the proof of the propositional part, prove tne
completeness of the system G. See, €.8. SMULLYAN [1968]. This ;n .
the cut rule can be eliminated. Historically, . hor we
round, and constituted the first important ch
Godel’s Incompleteness Theorems,

m our proof of the Completeness

things went the other way
apter n proof theory after

4.14_1. CUT-E-LIMINATION Tneorem (Gentzen). Any sequent which has a
denvation with the cut rule has one without i Le, G*

and G have
dertvable sequents. the same

Gentzen’s proof was by a complicated double induction, showing how to
transform any derivation allowing the cut rule into a derivation without
cut. By analyzing such inductive proofs one is able to a obtam precise least
upper bqund to the methods of induction which are provable n first-order
anithmetic. This topic 1s treated in detail in Chapter D.2 on cut-elimination
The system used there is simpler since only formulas 1n so called .
normal form” are considered.

This conclgdes our discussion of the Completeness Theorem. We leave
the reader with the instructive exercise of proving Ay [¢(y)— Vx o (x )] n
the systems H, G and G*. The informal proof is: pick y so that —e(y), if

there 1s such a y; otherwise let i i
; y be arbitrary. Thus, if then Vx
The proof in G* 1s similar. e o

negation
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' 5. Beyond first-order logic

Many logicians would contend that there 1s no logic beyond first-orde

- logic, 1 the sense that when one is forced to make all one’s mathematice
7. (extra-logical) assumptions explicit, these axioms can always be expresse

in first-order logic, and that the informal notion of provable used i

. mathematics 1s made precise by the formal notion provable in first-orde

logic. Following a sugestion of Martin Davis, we refer to this view a

Hilbert’s Thesis.
The first part of Hilbert’s Thesis, that all of ciassical mathematics |

- ultimately expressible in first-order logic, is supported by empirical ev

dence. It would indeed be revolutionary were someone able to introduce
new notion which was obviously part of logic. The second part of Hilbert
Thesis would seem to follow from the first part and Godel's Completenes
Theorem. Thus Hilbert’'s Thesis 15, to some extent, accepted by man

. mathematical logiclans.

Even those who accept Hilbert’s Thests m theory, however, are a far o1
from accepting it n practice. It would be completely impractical and, i
fact, counter-productive, to always make all one’s extra-logical assumj

. tions explicit.

Let us reconsider a couple of examples from Section 2.

Example. The axiom Vx In = 1 {(nx = 0) expressing the torsion propert
for abelian groups is not a first-order axiom (by 2.3). If we were to app.
Hilbert’s Thesis in this case, we would have to axiomatize not only grou
theory but also the properties of natural numbers needed to carry out th
arguments we were after. This would mean that the theory of torsic
groups encompasses all of first-order number theory, something clearly n
in the spint of modern algebra.

Exampte. The notions of metric space and Hilbert space are relative
simple, modulo the ordered field R of real numbers. As we saw 1n Sectic
2, however, | 1s only categorical relative to set theory. It would be count
productive, though, even to pretend to formulate all ones theorems abo
metric spaces within some formal system of set theory, when most of wh
one wants to do 1s first-order modulo the field B, There 1s no point

saddling the study of metric spaces with any more of the problems inhere
in set theory, unsolvable problems the likes of which mathematics h
never known before, than necessary.
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The examples show that 1t
certain notions and structures

student of analysis, metric spaces and Hilbert spaces begins with the
structure R of reals. Logicians have developed strengthenings of first-order
logtc which allow him to pe more faithfyul to thi
logics which absorb certain mathematical notions, or structures, into the
logic, in tite same way that the algebrajst attempts to absorb the notion of

finite 1nto his informal logic. In this section we breefly discuss some of these
extensions of first-order logic.

5.1. Many-sorted first-order logic

Two-sorted first-order logic is just like ordinary first-order logic except
that one has two distinet sorts of variables, For example, the natura) way of
writing the axioms for Vector spaces 1s to have one sort of variable v, S ...
OVer scalars (elements of a field %) and a different sort v, w,... over
vVectors. A vector space consists of 4 trple (§,%B,-) where # 1s a field,
B=(V, +,0) the structure of vectors with vector addition, and the
operatton - of scalar mulitiplication. In general, a two-sorted structure
(%,ER,...) consists of two ordinary siructures plus some functions and
relations on their union., Two-sorted (or many-sorted) logic 1s only superfi-
cially stronger, though often more natural, than ordinary logic, since we
can always take a structure (mLm, .. .) and turn it 1nto a ordinary structure
(MUN,M,N,...,.. -»--.) with unary predicates M and N 1o sort out the

different sorts of elements. This reduction allows most results of first-order

logic to be transferred to many-sorted logic, and is part of the evidence for

nd Feferman, among others, have stressed the
advantages of working directly with the many-sorted case. A good intro-
ductton can be found in FEFERMARN 1974).

5.2. w-logic

If we take a two-sorted language and consider two-sorted structures

(M, N, ...) with a fixed structure M, then we obtain so called Jt-logre. For
cxample, R-iogic is appro
Hilbert spaces. For N the structure of natural numbers, N-logic is usually
called w-logic. Tt jg appropriate to the study of, say,

Euclidean rings, since a
Euclidean ring 15 a nng M with a function 4 : R

— N satisfying the usual
first-order axioms. As long as M is infinite, R-logic is stronger than
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fail fo
-ﬁrst order logic. For example, the Compactness Theorem must

R-logic.

:. . 5.3. Weak second-order logic

build ti ite int
Weak second-order logic 1s an attempt to build the notion of finite

i m a natural way. Let L be a given first-order language. Let x,y,z b
- logle y.

' * whic.
the variables of L. From L we form a new two-sorted ianguage Lt e
. hi ivenn a stru
has variables a,b,¢ and a membership symbol €. Given a

P =(M,...} for L we expand it to a structure HF(I?) for L*. called th

structure of hereditarily finite sets on %, as follows. Let
HF (M) =0
HF, . (M) = {all finite subsets of M UHF,{M)},

HF(M}= |J HF,(M).

d-orde
Then HF() =M, HF(M), (MU HF(M)))._ In weﬁk szc;zi;ewest
logic (more accurately called weak fimte-type logic) we allow ey
: tables a, b, ¢ ov
I * to mterpret the set variab \
e formulas of L* and t vart ”
l;35r1yons‘?, familiar with the development of intuitive set tn;)é)(rﬂ}en), sayé .
f i an

i i define the natural numbers in )
will realize that we can 7 L and
notions of finite sequence i HE(M). In fact, HF(IN) 152 e;c;mlso i (Ca
Chapter A.7 on admissible sets, 1 particular, 3.1 and 2.16), o e
define functions by recursion. In particular, all of the sentences o Section

i be wea

hct d-order are easily seen to 7

which we called weak secon ot
in thi Weak second-order logic \

order 1n this precise sense. o emene Y
| -1 but is much more natura ! ‘
same strength as w-logic, . 7 7 i

algebra, since one can work directly with integers, finite set

sequences, efc.

4. Infinitary logic o _ o
’ Weak second-grder logic attempts to absorb the notion of finite into

' re elega
semantics (meaning) of the logic. It has turneq out tp glve ;11 m(;n mﬁgni
theory, however, to absorb 1t into syntax of the logic by allowing :

formulas, like
Yx[x=0v2x=0v- -]
i o i
The iogic L... aliows the additional formation rule: if ®is a countable s

isjunction
of formulas then A @ (the conjunction of @) and V @ (the dlSjunCiin .
@) are formulas. This logic 1s discussed 1n several of the chapters
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part of the book. The notation L... 15 explained by the fact that countable
(< @) conjunctions and disjunctions are permitted but only finite (< w)
strings of quantifiers. One can think of the logic L., as €xXpressing those
notions which are first-order modulo a countable amount of information.
The Lowenheim-Skolem Theorem holdsfer L, but not the Compactness
Theorem. To get a Completeness Theorem, for countavle theories T of
L..., one must add an infimitary rule of proof.

It is easy to transiate weak second-order logic mto L., but not
vice-versa. In particular, in weak second-order logic there are relations
which are implicktly, but not explicity definable, something that cannot
happen m first-order logic or L., by Beth’s Theorem. If one 1ooks for the
smallest Jogic containing weak sccond-order togic i which all implicitiy
definable relations are explicitly definable, then one 15 led to the study of
admissible fragments L, of L.... as studied n Chapter A.7.

5.5. Logic with new quantifiers

It is easy to see that all finitary propositional connectives are definable
from the ones 1n first order logic, 1n fact from v and —_ Mostowski long
ago raised the possibility of adding new quantifiers to first-order logic.
Thus, let Q be a new symbo! and allow the formation rule: if e(x}is a
formuia, so s Qx ¢ (x). There are many possible interpretations of Q. For
example, we could define I = Qx @ (x) iff there are infinitely many x such
that M= ¢ (x). This logic, called L.(Q,), 1s essentially equivalent to w-logic
and weak second-order logic.

If we define M= Qxe(x) iff there are uncountable many x such that
M= @ (x) then we obtain logic with the quantifier “there exists uncountably
many”. This logic, unlike all the others mentioned earlier, has a Complete-
ness Theorem and Compactness Theorem entirely analogous to that of
ordinary first-order logic, (as iong as the set L of symbols 1s finite or
countable). Few people would claim that the notion of uncountable 15 a
logical, rather than mathematical, notion, but the Completeness Theorem
of KEIsLER [1970] for this logic does give one pause. The notions of “many”
and “most” seem almost logical and various precise mathematical notiong
like “measure 17, “second category”, “infinitely many”’, and “uncountably
many” use the intuitive notions for motivation. The Compieteness
Theorem of Keisler for “there exists uncountably many” shows that this
notion provides a mathematicallly precise mode! for one informal concept
of “many” Written out in English, using “many” and “few” for “uncount-
able” and “not uncountabie” respectively, Kersler's basie axioms are:

(1) For all y there are few x such that x =y,
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| (2) If @{x)— y(x) for all x, and if many x satisfy ¢ then many x satisly

..!p

A "(3) If many x satisfy (@ {x)v (x)), then either many x satisfy ¢ or many
' x satisfy

(4) If there are only a few x for which Ay ¢(x, y), and if for each x there

o are only a few y such that ¢(x, y), then there are only a few y for which
CAxe(xy).

Notice that “there are many x’’ is not a consequence of the axioms Slltjllce
the axioms hold in all structures, fimte, gountable, Qr uncountable.
Sometimes, iate at night, one can aimost imagine some other world where;
such axioms are considered laws of thought in the same way that we accep
the laws of first-order logic. But now we are en_termg the reaim of science
fiction, or mathematical fiction, so we had better stop.

5.6. Abstract model theory _
Recent years have witnessed the foundation of a new branch of model

theory. Abstract model theory steps back and surveys the wnolefsgesct::g
of logics and the relationships between them. A logic consists 0 itar
and a semantics which fit together mcely,_ln the sense tnal;elem; navz
syntactic operations (like renaming symbols) are performa c|e an Dave
their desired meaning. Glancing at the above examples should give
feeling for a more precise defimtion (see Barwise |1974]). o L@y a

Of the above exampies, weak second-order logic, L“"“’, an _(N ; o
satisfy the Lowenhein-Skolem Theorem (Theorem 2.5 with —Q I; out
not the Compactuess Theorem. On the other hand, L{Q), where means
uncountable, satisfies the Compactness Th_eorem but Eot )
Lowenheim-Skoiem Theorem. This is explained by one of the frs . Zr;n
still most striking, results of abstract model theory. A proof can be foun
Barwisk [1974] where other references are also given.

5.7. TueoreM (Lindstrém). First-order logic 15 the only logic closed um::r
A, T, 3 which satisfies the Compactness Theorem. and - the

Léwenheim—Skolem Theorem.
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