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Abstract. This paper examines the old question of the relationship between ISWIM and the 
&calculus, using the distinction between call-by-value and call-by-name. It is held that the re- 
lationship should be mediated by a standardisation theorem. :3ince this leads to difficulties, 
a new &calcu%~s is introduced whose standardisation theorem gives a good correspondence 
with ISWIM a-; given by the SECT machine, but without the Zetrec feature. Next a call-by-name 
variant of ISWSM is introduced which i:; in an analogous corresponde nce with the usual kalculus. 
The relation between call-by-value and call-by-name is then studied I)y giving simulations elf each 
lauguage by tba other and irlteryretations of each calculus in the other. These are obtained as 

ication of the continuation technique. Some emphasis is placed throughout on the 
notion of opeiiational equality (or contextual equality). If terms c;tn :3e proved equal in a calculus 
they are operationally equal in the corresponding language. UnflDrtonatel y, operational Izquality 
is not preserved by either of the simulations. 

Our intention is tee, stu 
calculus which wzs first 

H-by-value and call-by-,,,, *TM in the setting of the kmbda- 
used to explicate progranting Language Ceatures by Latn- 



the multP (cf. [9, VI). From this point of view a s can be correct wit 
rle~pcclt to the programming kmgmage. 

w example of a A-calculus 
IS [S, ‘FJ!, without the recursion o 
operational semantics which is given b 
of a cahzulus, take the AK-j% cal 

Unfortunately, the two are 
(1) Sometimes the SECD 

ma1 form or should not 
cause XSWIM does not simplify procedure bodies. 

(2) Sometimes the SECD machine never stops when, according to normal order 
reduction,, it ought to. This is because HSWIM cabs its arguments by value, 

So omc has to look for other programming language/calculus pairs. Wegner [19] 
gives a sma&,ine which gives a langu corresponding to normal order reduction 
for the ,LK$ calculus, regarding (1) (2) as bad points of the SECD machine. 

cGow;an [8] gives a call-by-value machine and a corresponding altered normal 
arder reduction sequence (where value = normal form); thus regarding (1) as a bad 
point of the SECD machine, but accepting (2). However he does not give a calls 

y-value callculus. 
Our intention is TV study programming mechanisms and so we accept the SECD 

machine and look for the corresponding calculus - call4 ;ly in the text. The notion 
of value is changed to that induced’ by the SECD m ne, and a normal order 
reduction sequence theorem is given, which establishes a good correspondence 
between & and ISWIM. In this way we hope to have shown that ISWIM is more 
than. a specification of some characterless reduction sequence. Rat 
being computationally natural, it gives rise to an interesting calculus. Its correspond- 
ence with this calculu-s ‘shows it to b& less ord.er of reduction dependent than its 
definition sbows. 

To study call-by-name, we define a call-by-name ISWIM, corresponding ;IO a certain 
modification of the SECD machine, which keeps the above notion of value, and show 
that the usual UK-/Q calculus can be regarded as the call-by-name caJculus. This 
substantiates folklore. 

In both cases the calculi are seen to be correct from tlx oint of view of the pfo- 
Faming languages. 

Fina!ly, as mentioned above, we give simulations of ca 

reta+ions of each 
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2, Te 

The set of ~-calculus terms is determined by a set of ~&zzHes x, y, z, . . . . a disjoint 
set of constc~~~ts ~4, b, . .+ and improper symbols, a, ( ,and ). 

It is defined inductively by: 
(1) Any variable is a term. 
(2) Any constant is a term. 
(3) If x is a variable and M is a term then (&CM) is a term. 
(4) If M and N are terms, so is (MN). 
A term of the form (kxM) is an abstraction; one of the fcrm (MN) is a combination. 

A term is a value iff it is not a combination. In general t%e set of variables .will be 
in&rite, although the set of constants need not be. The set of variables is called 
Vkables. Similar conventions are used throughout. ‘We will also use variables and 
ccnstants as mctavariables ranging over variables and constants respectively. 
M = AT means that M and N are identical terms. We say that _i!& is in positiorz i 
in (A& MJ (i = 1,2). 

If M is a term, it has a set W(M) of free variables ar.d a set W(M) of bound 
variables. These are detied inductively by: 

(1) FV(x) = (x}; F = FV(M) v FV(N); PV((Ax )) = FV (M)\{x,a. 

(2) BV(x) = @; BY BV (M) u Bk’ (N); I3 V ((AxM)) = .BV (Al) v (x}. 

A term is closed iff FV (M) = 0, otherwise it is open. The size lMl of a term is 
defined inductively 

I 
4 
*I = !nl = 1; j(;lxM)l = IMl+l; ((MN)1 = lMl+lNl. 

Given an infkaite list xl, . . . of distinct variables, the substitution prefix is defined 
inductively by : 

[M/x] i-t: = M; [Mix] y = y 
[M/x] a = a; 
[M/x] <NN’) = ([M/x] N [M/x] N’); 
[M/xl (AxN) = (AxN); s [M/x] (AyNj = AZ [M/x] [z/,y] N, if x # y, 

where z is the variable defined by: 
(1) If x# F_?(N) CF y$ FV(M) then z = y. 
(2) Otherwise, z is t first variable in the list x1, x29 . . . such eliat 2 & 

tion is shown in [2] where other properties of the sub- 
refk can be fouad. 

of alphabetic equivalence, is defmed inductively by: 
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or whkh list when defining the substitution prefix. 
convenient to specify these more fuhy and prove syntactic c 
result in any lloss of generality. 
Section 3, nil will be used for the em : for concatentation. 

Given a set X’,, P is the set of sequences 

iven sets 2” and Y, (X 5 Y) is the set of partia1 functions from 

-ff Y)9 Dam v) is its don.lain, that is Don cf) = (x E X1(x, y) ef, for some 
E Y’j. Exprebsions using partial functions are defined iff the ~~~~~io~~ 

e indicated arguments. They are equal (=) iB they are both undefined, or are 
0th detied and have the same value. They afe alphabeticaUy equivalent (= ,J 

under similar conditions. 

ven a relation + (usually using an infk notation), G is its tih power (n 3 0), If; 

sitive closure, and $ is ijts transitive reflexive closure. 
II , prove something by “lexicographic induction” on, say, 

indices. The ordering < used is this: (m, n> < (m’, n’) 
iffm c m’ or else m = m’ and pt < pt’. Such proofs can be replaced by nested ordinary 
inductions. 

are going to de&e IS without letrec, without any syntactic sugar and with- 
any imperative fetttures. x wil1 also be ignored. Its set of programs 

c’> f +Z 3.~ set of closed terms, in Section 2, given some infinite set of 
*qariabies and a set of constants. 

e. constants are A, (n 3 0), Succ, Pred, and Zero. The variables are, 
say, xp, x2, l . . . 

complete the definition of the ming language, we will specify the 

4xaluation function grams grams. This is detied relative to an 
i nstants, given by a function: 

onstants x lues. 
@ve the S-rules for Ay, azid it is for this reason that we 
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ove, set FConstants =. 
ro> and %co3lstants = {A&a 2 0) and de Coanstapply by: 

machine. It should be 

on use only the si 
machine is given by a set, 

Dumps 5 Programs. 
*smps is specified via definitions of t : sets: Closures, En-rironrne 

strings, and Stacks. 
C?osures and Environments are defmed inductive!y by: 
(I] If Xl, . ..$ x, are distinct variables am? Cl, (i = 1, n) are closures, ((x,, Cl,)1 

, n} is in Environments (n 
If E is an environment an s a term such that FV ( 

(M, E) is a closure. 
Our definition differs in a few ways from that of Landin. e main diBerence is 

that in (2) we allow M t3 be any term, rather than $I% a il-exp 
form (a, 0) will perform for us the function the corresponding constants do for 
Lan~fin and the other possibilities alliow caTI=by-name versions of the S 

e environment E’ such that E’(y) = E(y), 
(Cl e Closures). 

The function Real: Closures + rms is defined inductive!7 by: 

where 
E)) = [Real (E (x,))/x,] . . . [ 

FV (Mj = &, ) ..*, x,J. 

ow, Controlstrirgs = 
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me tran&ion fun&ion q in Dumps z Dumps is defmed by: 

(1) <a: s, E9 nil, (9, E’, C’, D’)) =* <Cl “. S’, E”, 6’, B’), 

(2) (KS9 E, x: c> ZT)) * (E ix): & E, C, II), 

(3) (S, Ep 4: 47, l?> * ((a, RI): S, E, C, D>, 

iyj (S, E$ (k&f): c, D) =z- (( ) E): S, E, C, D>*, 

(5) (((A , E’) : Cl: S, IT, up: C, II>> =3 <nil, E’{Cl/ 

(Q ((42, B’):(b, E”): S, E, up: C, D) =$ ((Constapp 

: i?, D) =+ (S, II3 IV: M: up:C, D), 

ow Load and Unload are deGned by: 

Load (M) := (nil, fl, M, nil) 

Unload ((Cl, @, nil, nil)) -CI Real (Cl). 

The evaluation f\mnction can now b 

Eval&V’) z=: AT iff Load(M) Uload (0) for some dump II. 

le,, (c~ntd.) One can now easily d&ne all partial recursive functions. As 
recursion opera.tor one should not use Y = ?J (( 7qf (xx)) (bj’(xx))), but rat 
z = ~~@xjUzWz)) (~X~(A?X.~Z))), 19]. The point is that Eva&,(YM) is always 
u~.d&ned - as can be $hown using - anld 2 is clesigned to avoid this 
difficulty as the reader will find if he tries, say, to define addition. 

In the tight of Section 6, it seems quite possible that ISWTIM with letrec can be 
slated into without Qetrec. 

As remarked above, this definition of &al, is rather too clumsy to work with 

directly and ;Ne prefer to US‘: a function eval V: Programs 5 Frograms with a simple 
reIrxtrsive definition, which uses substitution rather than closures. This has the in- 
fo.rmal definition: 

eval&) = a; evalv(ktM) = AxM 

evaI, = 
eval&N’/x] M’) (if evai, = ‘) and eval,(N) = IV’) 

Constapply (a, b) (if evalJ ) = Q and eval&V) = b) 

ally, we define the predicate Cc as value N at time t” by induction on b, 



e t in the above de will give a good Ile fcx inductive proofs. "Ilear'~ y, 
if = oc M’, then eval, as value A at ti if!f for some IV’ = a .N, iW has 
73lue M’ at time t. 

t is also clear, from this definition, thaf, if eval,( exists it is a closed value, 
hich justifies our value terminology, given the nazuralness of including open values 

+z+.r~ Jng the set of values. 
The next theorem states that evalp and Eval, are t e same functions to within 

alphabetic equivalence. 

For any program M, Eval,(lCI) = Q eval,(M). 

This theorem justifies our making (after ve have proved it) the mathematically 
convenient decision to take. the definition of eval, as the definition also of Eval,, 
rather than the oue via the SECD machine. Results asserted later for t 
will then also hold for the one using the SEC ine to ,within alphabetic equi- 
valence which is all that really matters. 

The proof of Theorem 1 requires three lemmas. 
The notions of a value closure and value environment are defined inductively by: 
(1) A closure (M, E) is a aglue closure if?!? M is an abstraction or a constant, 

and E is a value environment. 
(2) An environmenat, I& L ;z v&e environment, iff for every variable, x, in Dam {I?), 

E (xl) is a value closure. 
V&e closures correspond fairly clos::ly to Landins clr,sures. 

= Q (AxM')and.~eal ((N, E')) = d ((M, E {(AC E’)/y))) = Lz [IV/x: Al’. 

omit the straightforward proof of this lemma. 

Suppose E is a value 
value of Real ((M, E)) at time t. 

md some t ’ 2 t, <S, E, M: C, 

envrronment and (M, 

I, E’) : S, E, 6,D) where 

a doslare and Ml’ is the 
, with FV (C) 

a due t3Zosure am! 

uction on t. 
a constant. ere 



is a variable. ere 

= and t = P. 

C& E; :C,D)=+(E(Mj:S,.ZF,C,D> 

we take <M’,E’) = E(M) and b’ = I. 

p Jk&‘j is a combination. Then 

eal ((Ml, E)) Real (( 

St&use I. (ilxRf3) is the value of IV1 at time tl, A4 is the value of .IVa at time t2, M” 
is value of [N&l N3 at time t3 and t = ti +tz+ t3+ 1. 

Then by induction hypothesis there are ti 3 tt (i = 1,2) such that 

)*<S,E,M2:Ml:ap:C,D) 

*((M&E;): S, E, Ml: ap: C, 0) 

i(<M;, El): -<M& E;): S, E, ap: C, LQ 

8 the (A& Ei) are value closures. 
eFe M; = AyMi for some M;, and 

Real (<_ 5, G ((ML G>lY)>) = o: [AC&] IV3 (Lemma 1). I 

Iblow, * 

, Ei): (M& 8:): S, E, ap: C, D) ==r (nil, .Ei ((Mi, E;)/y}, 

;9 (S, E, @9 &> 



$<a, E;): (b, E;): S, Ey qx C, D) 

taking t’ = t;+ti+2 

If D k D’ where D’ does not have the form ( 
La”, then D is said to hit an error state [viz 

a 3. Suppose E is 4 value emits ent and ( E) is a closure. G8Weai (( 
/ks no value at any if’ < t, hvt et ther for all S, C, 2, Mith FV (C) s2 

C, D> hits an error state or else (S, E, M: C, D> A DC for so 

of. By induction on t. For t = 1, t result is obvious. 
nd so M, must be a cx&Gnation, (M, Mz), say. 

Then 

C, D) =sr <S, E, 

If Red ((Ma, esult follows by applying 
the induction hypothesis to 

Otherwise, suppose M;’ is >) at time t2 < (E-Q. Bj 

Lemma 1, 

(S,E,M,:M,:ap:C,D)~ (( 

where t; >/ t2, (M;, Ei) is a value closure, and = a M-y. If t; > 
(t- 1) we are finis’hed and so we may suppose 

If Real ((Ml, E?) has no value at any time < (t - 3. y $4) the result follows by 

1: ap: 
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Supposing othemise and letting E$ =-= Ei (( 
no value at any time G 0-t; -ti -2), the result follovrrs from the Hnductisn hype- 

sis. Otherwise, if it has a value at a time, that value must be to within alpha- 
ic equiivalence the value of Real E)) (as in the proof of Lemma 2), which 

erefore b a value at time taftt+tS+2 G t&i+t-(t-&-+2)+2 = t con- 

are constants and Constapply (A#;, 
lue a time t1 t_ t2 +2 < (t:i + t; +2) < t, contradicting the 

3. For all other possibilities for M; and A& an error stop occurs. 

* 

Suppose evaly&) = M”. Then, at some time t, M” is the 
t. By Lemma 2, 

<d, 0, M, rail) 2~ (( .o E’), 0, nil, nil>, 

where ReaS ((M’, 13’)) = Q M”. So v(M) = a MY 
Suppcq on the other hand, that M has no value at any time. Then by Lemma 3, 

either nil, Izr, M, nil) hits an error state or else for every t there is a D such that 

nil) & D. In either case EvaI, is also not defined, con&ding the 

le & cakulus is obtained by simply restricting the /3 rul in the AK-/%5 cal- 
culus induced by Constapply. Explicitly the XV calculus has fol. Aac of the form 
M = N where and N ar% arms. Given a function Constapply, its rules are as 
follows: 

(y $ W(M)). (a-rule) 

N is a, value). 

3. (tr&) = Consta ly (a, @ iif this is 
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= N is provable by the above :Ges. 

is provable by the above ruks without u&lg II3. 

Goodman develops what seems to be the corresponding call-by-value 
ry logic. 

irst we develop some elementary theory for the jly calculus. 

. If& E-M==Nund t is cz value then Rv t- [L/x] M = [L/x] N. 

f. By induction on the number of steps in the proof of M = AL The proof 
splats into cases according to the last rule used in the proof of Ad = N, amd is similar 
to the proof of Theorem 3 in 8 3.E of [2]. 

The supposition that L is a value is necessary. For example, if L = (LXXX) (~wY), 
= (Ax (LXX)) (x) and &V = @xx) then ;ly t- ..M = A$ by a /?-reduction, but it is 

not the case that ;1, t- [L/x] M k [L/x] N, as can be seen fr0.n the Church-Rosser 
theorem (to be proved) as [L/x] M can r&,tce only to an a!-equivalent term and 

/x] N = N is in RY norma? form (i. e. has .no calLby-value /3=redex or Sredex 
see below)) and is not a-equivalent to [L/x] M. So free variables should be thought 

of as rang&, over values 2nd not arbitrary terms; in a mock1 one would expect 
that they would be nterpreted as being universally quantified QXX a restrkted 
domain. 

kor~m 2. (Church- osser theorem). If & I- Ml 2 MI (i = 2,3) theta fcr some W4, 
jlv k Ati3 t M4 ii = 2,3). 

The mat.? tool is the parallel reduction relation, 2 l, aefme 
easily shown that & I- iI Z N iff there are i&, . . . . N, such that M = Nl, Ai I- 
& 3 ,ATi+I (1 < i < (n- 1)) and N, = J AL Then using Lemma 5, a strslight- 
forward case analysk proves that if 2 I&&l I(E’ = 1,2) tllen for some M4, A&, 

3 1M4, M3 > 1Afs Iand M4 = Q Then the theorsm. follows by a simple 
uction. This is the method of Tait . T’le details are both routine and omitted. 

no call-by+ralue /3-redex and no 6-rederL9 where such 

as the property of 
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Similarly if an ;rl ~rule is added the theorem fails as the rule does not preserve 
property of being a value and so propriate version of 

d. A counterexample to the Chu 
= (ky) (AX ((;lXXXj (Axxx)) x), 

Next comes our analogue of the Curry stanL&isation thee 
,order reducticn sequence and tics in with Eval,. To this end, definitions of left 
re&actioa, paraIM reduction and standard reduction sequences (s.r. sequences) 
are neetled, Our proof will avoid expkit mention of rledexes. 

ft retiuction, --Q is the least relation between terms such thal: 

It. (AA (when N is a value). 

2. (&) -+ Constapply (a, b) (when defined). 
V 

* If M 3 32’ then 
* V 

) + (h?M’>, when N is a v&e. 
V 

e that 7 is a partial fun&i nd if M 7 K then M is not a v&e. 

then N is gotten from by reducing the leftmost redex, not in the scope 

’ 7 N’, then there is an N such t 

We omit the proof, which is quite straightforward. 
define paralfel reduction, we use a little formal system, whose formulae have 

the form k JV, where and N are terms and whose rules are: 

(if N is a va.lue) 

2. (ab) a l Constapply (a, b) 

. 

(when defined) 



3s reduction size PM an 
s reduction size pM’+ ‘)&f 1. 

s reduction size 1. 

P. The proof has reduction size 0. 

e proof has t duction size as 11he proof 

If the proof of A4 2 1 ’ has reduction size PM and ou’ 
size pN9 the proof has reduction size JJ~+J++ 

Note that if a proof of M 2 JY has reduction size 0 then M = N. 

3. AJ? I- M 2 N iff there are Ml, . . . . A& su that M = b y l ** 
3 lMn=J?’ 

omit the quite straightforwa proofs of these lemmas. 
i Standard reduction sequences (s. sequences) are defined indudively by: 

1. Any variable, x, or constant, a, is a s.r. sequence, 

2. If Nz, . . . . Nk is a s. r. sequence and Ni -+ N2 then N19 *.., A& is a s, r. sequence. 

3. If N1, . . . . Nk is a s-r. sequence, so is &N,), e ,., (AxVk). 

4. If 19 ***9 and N1, . . . . uences, so is’ (A& N1), ...y ( 

(M., Nk)* 

Nk is a S.T. sequence und MI = a Nr , ;:&en there is a S.L sequence 

= =Nk. 

Again, the proof is both strai and omitted l 
e are aiming t 9 prove: 

> N ijjf there is a S.I. sequence 
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S&m,? 1. x = y. By induction hypothesis, there is a pro 
of reduction size < pM, +n (x, Mh)p~ whxe Lz = a[.N’/iJ 

klleace t&e is a proof of [N/x] M 3 1 [Lz/ Mi of reduction size 

f p&-n (x, ;)(p&q+~(~,M9PN)+=~ =PM +fl(x, 

c PM -6~yt (x, [M$~A] Mi) PN = pnf +n (& Ml) PN* 

Finally, 

= Q [[N/x] M;/x] M; 

= a [LZ/xl M1:* 

so we am take I5 = [&/xl M;. 

!,‘uhl~ase 2. x # y. Let z be the variable such that either y 4 FY(N) and : = y or, 

othexwise x $ .FV l;iM1) and z = y or, otherwise, z is the first variable in the list 
xir *x2, . . . such that z $ FV(N) u PV(MJ. One easily sees from the induction 
hty~~tfresls that far some Lo, [z/y] Ml 2 iL,-, has a proof of reduction size pM,, 
whers Lo z= Q [$y] Mi* Therefore, by anothe: application of the induction hypothesis, 
for some Ll, [IV/x] [z/y] Jt 1 k 1L1 has a proof of reduction size < pM, +n (x, L,) pN 
where La = J-~‘/X] [dYl Mi- 

PJext, by the induction hypothesis, for some L2 there is a proof of [N/x] Mz 3 1Lz 
of redg.ction size < p_M2 +n (x, Mi) pN where L2 = &W/x] M& 

:ltting all this togetbr, we find that (AZ [N/x] [z/y] MJ ([IV/x] MJ > 1[L2/z] La 
has a proof of reduction size 
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se is concluded. 
onstapply (a, b), and since W(W) = 8, the conclu- 

proceed by induction on the structure of 

variable or constant R 

mmediate with L = N’ = [W/x] x as then n (x, = 11. 

othesis, there are for some L1 proofs of 

4 reduction size 

G n(x,M&~~ for i = 42. 

1e conclusion is immediate, taking If; = (L, L,). 

Svbcase 4. M = C-AVM,). If y = x the conclusion is immediate. Otherwise, with z 
1, subcase 2, there is by induction hypothesis, a proof FJr some El of 

CWl L%Yl Ml 2 41 = JWI [Y/Z1 Ml 
ot" reductiol-i ssze 

Q n t-r, M;) pIv, = n (x, 
The conclusio follows, taking E = (AZ&). 

IQ. Here M = (JyM,), M' = (AyM;) and Ml 2 L has a proof of reduction 
size pM. If y = x, the conclusion is immediate. O.herwise the proof is like 111, 
subcase 4. 
113. Here M’ = (Ml II&), M’ = (A4 M;), and ik& 3 ; has a proof of reduction 
size pMt foT i = 1,2. So, by induction hypotheGs, t:dere are proofs for some Li of 

[N/,x-j 3 IL1 = .cN’/x] Al; 

of reduction size 

G pMr+n (x, M;)pN (i = 1,2)- 

‘Faking L = (L, L,), we find a proof of 

= JN’/x] X’ 
of reduction size 

is co 

eontbina tion 



4D G. D, PLOTKIN 

f reduction size pMr (c: = 1, 

mma 4, for some L, there is a proof of [ 

G p&&-f+ (x9 3PM, < PM* 
1x1 Mi = N (and SO L = IV). 

$ N (by induction 

inition, and otherwis 
is immediate. 

’ has a prouf of reduction size pM, where is a combination- 

’ is an abstraction, then for some abstractions L, L’, M $ L and 2 1L’ has 

a proof of reduction size (PM and L’ = JW. 

y induction on the reduction size, pM, of the proof of M 2 ,M’. If the 
plied in this proof is I2 we are tished, othewise it must be 11, then much 

as in the proof of Lemma 5, we Gnd an N, L” such that M 7 IV, N 2 tL” has 

ae proof of reduction size <: pM and L’ = ,$I’. If IV is an abstraction, wc are finished.. 

herwise, by induction othesis, there are L, L’ such that N $ L, L 3 1L’ has. 

3 proof of reduction size (PM and L’ = dlL” = JW’, concludin&he proof. 

2, JW’ 7 M”‘, then there are K, ’ swh that iW L K 2 JK’ = 
V 

c induction on (pM, Ill41 j where pM is the reduction size of 
3 JM’ and divided into cases ;Pccording to the last rule used in 

is cabe is trivial 



ere for some co stants a and b. ; = a and illi = 6. 

Constapply (a, 

and we can take K 

‘r’ I#-.-.~). 

K1, K; such that 

emmas 6 and 7 there 

By induction hypothe$s are Kz, K.; s that 



I$y induction hypothesis, there is a s.r. sequence Ni .*. NL such that 
and Nit= &M;. The result follows with I\Jr 
I13. ‘Ihcre are two subr*ses; either A&, .-- 

or else there are s.r. sequences K1 . . . Kk 
CL, &), . . . . (Ll &), . . . . [LI J&J. In the fkst s 
Case 11, using Lemma 8 and then Lemma 
second subcase, the proof is similar to t 
hmothesis twkx. 

3, Clearly if there is a s.r. s!equence Nni . . . . Nk such that M = AT1 
l- M 2 N. Conversely, suppose hV k M > N, then by Lemma 3, 

LI such that M = L1 2 1 ..* 3 iLI = JV. We proceed by induction on I, 
If I = 1, we are finished. Otherwise, there is a s.r. sequence Kz . . . & such 

La = K1andBk=,L,=g N. As M 2 ,dy, , the result follows at once from Lemma S. 

ne cxtn now define a normal order reduction sequence and show that this reaches 
a (call-b;tr-value) normal form, iff one exis S, just as in [2]. It is more relevant, how- 
ever, to note this corollary: 

. J’iw any term M, 2 v I- M b N fir some value N lff M 

‘3 early if M =$ N’ for some value N’ then Av I- M 3 N’. In the 

recticn : 2pose ;lV 1% M 2 N for a va!ue N. By the Standardisation 
there is :e s,r. sequent : Ni . . . . Nk such t’zat = N1 and Nk = N’. Let 
first vak. in the seql..lence. Then M z N’ as 

V 
require 

: I other di- 

Theorem 
N’ be the 

. 

The ne.xt theorem, ‘i5y tying Eval, in with 3, allows us to see the connections 
V 

between & and Eva&,. 

5 N, (for close 
V 

and a value N). 

has value ?Y at time b. is a constant or a 



on the (unique) E sue 

2md there is a sequent 

L,-+,) (for a’ = 1, 

= KTs, and, fur!ker, [LJx] K;, 
V 

en by the induction hypothesis 

EvaI, = (Ax&), EvalV(L = Lnl and w),qiinjx-jj K;,J = nv. 1 

If, on the other hand, &, is a Constant, so is L,,, n = nl, and N = Constapply 
K,, L,). Then, by the induction hypothesis, 

EvalV(K,) = K,, Eval,(L,) = L,, and so = N, 

concluding the proof. 
Thus our clipped version of the programming I is indeed deter- 

Yained by a standard reduction sequence as outlined in t intrc~ductisn. As a corollary 
we will give some weaker relations between ;lV and IS no: involving the concept 
of a s.r. sequence 

. I. Th;t ..*e is a value N such that AT, I= ) is de$‘red, for 

2. Suppose 5X’onstants v T&Constants dts mentioned above. With 
each closed M w associate two partial binary (say) xtims fM andg,, in 5%Cm- 

stants2 4 C)3-Consrants by: 

: = c ljjf EvalV(Mab) = c, j%r arjy %L43nsfanP c, 

md = c vf a, k- = c, for any ~$43mstmt c, 
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@nversely, using the Church-Rosser theorem, Corollary II and Theorem 4 9 
we see that: 

g,(a, 6 = c implies ;ly I- M& = c implies & t- b 2 c implies 

Ev&(Mab) = c, 

concluding the proof. 
me second part of the Corollary says that & and Evalv assign the same functions 

op basic constants (to basic const;znts> to closed terms. If, as seems reasonable, one 
regards I IM[. as being given by such assignments rather than Eval,, then ive 
shim that it is completely determined by aV without any reference eo s, T n;equences. 

‘yTe.Kt we consider in what sense those equations provable in v are true (for Eval,). 
y’l7: asc;ume that the constants are divided up into basic functional ones. 

Zlearly if M’ = _N is true, then M and N are equal in any context, that is, with 
aut obvious notation, for any context C [ ], C [M] = C [NJ is true. Also, if M =N 

both M and N are closed either EvaI, and Eval&?) are both unde- 
e they are both defined and one is a given basic constant ifP the other is. 

‘$& are going to take these necessary co:nditions as being also sufficient; the 
emphasis on basic constants seems appropriate, for one would want, for example, 
&;tx succ x) to equal succ. The notion of context can safely be kept informal, C [ ] 
can be regarded as a term with 3 “'hole", C [IV] is the term obtained by tiling the 
hole with N. Note that & t- =: N implies 1, t- C [M] = C [N]. 

MN - JV ifI’ for any context C [ ] such that C [M] and C [NJ are closed, 
vat&’ [*Ml) and Ev&K’ [NJ) art:, either both undefined, or else are both defined 

and one is a given basic constant i.B the ot 
One can check that = v is indeed the largest relation satisfying the above conditions, 

and is an equivalence relation. Further, if J’W % V N, for closed terms M and N, 
then with the notation of (Zorollary 2.2 fM = gN. 

==Nand C[ and are closed. 
, is def?.ned, and so is a 

etined by Corollarjr 2.1. 



at homologous positions. Then, if ’ correspond and 
and IV’ correspond or else, for some IV, 7 NandiVan 

en immediate. 
a similar way, one can show t ilxx (AyXy) 5z &XX. This is an instance of 

G_ Fill restricted form of q-re u&ion which it would be interesting to add to &,_ 

31 this section we proceed at a raiher rapid rat6 through results for call-byoname 
uite analogous to those of the previous section. 
The language of our call-by-name calculus is that of IS Since simple lamb& 

calculus based proS;ernming langu ges, such as PAL [ 10],’ CEDANKEN F _ 

etc. all use calls-by-value, we feel free to d&ne Eval, directly, in analogy to tlze re- 
cursive definition of Eval,. It is an interesting exercise to dehne an appro:priate 
version of the SECD machine, and prove the result analogous to Theorerl 3.1. 

-4ssuming a Constapply as given, Eva], has this informal def%iti.on: 

Eval,(a) = a; 

Eval,(MIV) = Eval,([N/J 

) = Constapply (a, b) (if EvaIN = a and Eval,(IV:~ = b). 

We leave to the reader the formal definition of Eval, via a definition of “ 
(call-by-name) value N at time t”. Clearly, if it exists, Eva&&M) is a value. 

Our ;CN calculus is just the appropriate X-86 cakulus. Explicitly., its formulas 
have the form = IV, where and N are ter,ms. 

(a-reduction). 

3. (a@ = Constapply (a, b) (if this is detied) (S-reduction). 

es., 
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From c:2), we know that if ilrJr I- 
&fly term I,, and SO the free variables can be interpreted universally quantified; 
we &;a k~~ow that the Church-Rosser theorems holds. 

of the standardisation theorem, 

: r&&n,, ;’ of left reduction i 

a constant or variable and N -+ N’ then (A4N) + (MN’). 

reduction is a partial function. 1; it4 2 N then 1M L not a value. 

tandarcd reduction sequences (s.r. sequences) are defined inductively by: 

1. A v&able or a constant is a s.r. sequence. 

2. If N& . . . . NR is a s.r. sequence and Nr + Nz then NI, . . . . Nk is a S.S. sequence. 

_.i. If N l, . . . . N’ is a s.r. sequence, so is ;xNJ, *.., (AxAl’,). 

. . . . M, and NI, ,.., Nk are s.r. sequences, so is (M, NI), . . . . (M, NJ, .,.., 

. 

(!Pandardisation theorem). AN I- M ‘3 N t&$f there is a s.r. sequence N19 ..*, 
== Ni and Nk == JV. 

e omit the proof. As rema-ked by Morris 1191, Z can bc- obtained by modifying 
the proof in Curry [2] to consider the b-rules too. It can als6 be obtained by analogy 
with our method for A,. 

proofs of altJ following theorems and remarks are omii ed. They are a&ogous 

to those of the corresponding ones in the previous sectic: n. 

2 N for some tdue N iff M 

me now that t es. 



cb& EvalN( 
where C 

both defin 
tant or both are 

n, although consistent, AN is y no means complete. we say a close 
rder zero iff it has no call-by-name value then if .A! are order zero 

terms, M - N & It is also true that ti (X (Ayxy)) ~25 NA;IcxM, and a more general 
form of q-reduction is valid. 

our object here is to show that call-by-value can be simulated by call-by-name, 
vice versa. It is known that some aspects of call-by-name can be iriy easily 

simulated by call-by-value; for example the call-by-n&k-e c itional can he sim- 
ulated by the call-by-value and the term 2, mention reviously, provides 
a good recursion operator, owever these “protecting by a A” techniques do 
not seem extendable to a complete simulation and it is rtunate that the technique 
of continuations is available. These have been used to p de denotationall semantics 
for languages wihh call-by-value [IS], to give definitional interpreters whose tiefined 

ages are independent of the order of evaluation of the defining language [ 10,E 
to show that a deietion implementation strategy does not reduce the possible 

ons [3]. It turns out that this work easify provides us with a simu%ion of *. 

calt-b:jf-value by call-by-name. Some modification is required for a simulation in 
the other direction, which is based on a definitional r!terpreter, of 4 
for a call-by-name language [13]. 

: begin with a simulation of call-by-value by call-by-name. Given a call-by-value 
age with its Constap 
: variables are these o 

say, a;nd whose list of vziables for the su 



Let 2 be the c&-by-value language under consideration, 2 be the call-by-name 
on,e and 2” b,e the call-by-value language whose constants, variables, variable 
hst and Constappdy are those of 2’. On occasion use cf the 2’s as superscripts or 
prefkes will avoid nmbigiuty. 

An a&diary function, Y sending values to values is defined by: 

.Y(a) := a;V(x) = x; Y [MI) = (AXE). 

We intend tcb prove the following three theorems: 

orem I. (IndZference). EvaI*@ @xx)) = Eva&J:%? (lxx)), jbr arty program M. 

(Sime;ilation). Y (Eval,(M)) = Evz&(a @xx)), for any program I!& 

eorem 3. (Translation)If A; t- M = N then A:” I- ii? = N and then AN I- a = R. 
The second but not the first implication is reversible. 

Notice that the simulation maps used for programs, that is closed terms, in Theo- 
rem 2 are daerent from that used for terms in general. 

The first theorem is just a reworking of the “defining-~anguage-order-of-evaluation- 
independent” definitional interpreter. The second is, essentially, due to Fischer, 
rnlodified by an application of Theorem 1. The following corollary, shows that EvalN 
gives ail the functions (on basic constants) Evaly does. 

I. If fz is ‘the ftmction assigned a closed term M as in Corollary 4.2.2 and 
LY 

4 
,N the function resigned IV = Axky (Mxy (;lxx))as in Corollary 5.2.2 then f$f$' 
c’Assuming the Iconstants are divided info basic and functional ones.) 

f $(a, 6) = c iff EvalN(Na8j = c 

iff Eval&ab @xx)) = c (by ~Lemma 1 below) 

iff Y (Eval.(Mab)) = c (by Theorem 2) 

iff ff (a9 b) = c. 

Notice that since Constapply, # Constapplyy, our simullations are not interpre- 
t ation indel ~endent . t would be interesting to find genc;ral conditions 3n Constapplyy 

kh would allow an interpretation independent simulation. 
rtunately, although operational inequality is preservlzd, equality is not : 

2, 1. For any terms, Al, N, i$ .@ x N# thkQn 
r anp clodsed terms M, AT, if .a1 RS .1’sI then M x 

3, Neither of the converses of .I or 2 hold. 
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are defined, one is a basic constant and the other is not, or else they are b :tined 
constants. IVow there is a context D [ ] such that C [M] I = -- 
1 = D [N], where P = (lxx). Then it foilows that ii?‘ NN Nfi 

m 2 to the terms C[M] and C[N]. 
2. Suppose M # *N. If one of Eval,(M), Eval,(N) is defined an 

then, by ‘3 corem 2, the same applies to Evai&@ and EvaI, and 
otherw~s.3 .dh are defined and, as we have ;Ixx (@I) NN Nfi and similarly for NP we 

Q?Y?E lhrtve &?I N N N&l as otherwise we would have a a: Nfi contradicting 1. 
3. _ ?e M = AyAxx (yx), N = AyAxx (y (Axxz)). Then M k: vN but @.. $ NHI and 

so we also have M #+ *fl, concluding the proof. 

e reader examines some examples of programs Ma and the sequence; MO F 

7Mt;?...and&I=Na2N1*... he will tid that the TV+‘s consist of a sequence 

of ‘c~Aninistrative” reductions followed by a “&>roper” reduction corresponding 
to a 7 followed by more administrative reductions and so on. The term I does not 
figure in any reductions until an N, has been reached corresponding to an M, which 
is a value. So we will define an infix operation : such that M: K is the result of per- 
forming all the administrative reductions on ii?K, and so &?K $ M:K as is shown 
by Lemma 2 below. With the help of Lemma 1 it can be see.Lr that the result, N,, 
of the proper reduction &:I z Nj corresponding to MO 7 Ml is itself the result 

of some administrative reductions on Ji?, I and so in general we will expect that 
ifH~M’thenM:P, $ M’:K, as shown in Lemma 3 below. One now has a good 
picture of the sequence NO 7 Nl + . . . in terms of MO 7 Ml + . . . and this, together 
with some information cn error stops, given by Lemma 4 below, gives a proof of 
gheorem 2. Since all the 2’s are also 7’s we also have one of Theorem 1. 

Lemma 1. [Y (N)/x] &f = [N/x] M (if N is a value and x 4 {x, a, /3}). 

Proof. By induction on the size of M. 
Case 1. If M is a constant a, then 

--- 
[Y(N)/xl fi = [Y (Nj/x] (Axxa) = (Axxa) = [N/x] a 

Case 2. M = x. 
L. S. = [‘I” (AQ/x] Axxx = AxxY (N) (x & FV (N)) 

= ii7 = [‘q&- 
M = y. Trivial. 

cme 3. is a 

s. = 
= 

combination, (M, A$). 
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C,zre 4. jM is an abstraction, (&MI). When y = x, the result is immediate. Other- 
wise, 

I,. S. = [Y (Nj]x] @xx (Ay&)) 
= dx: (AZ ([!P (IV&] [z/y3 RI)) (X # x, 2% $ W(N), and, with the 

usual conditions on 2) 
= dx (AZ ([?P (N)&] [z/uJ MI)) (by induction hypot he&) 

= ~(~~-B?jzF (by induction hypothesis) 
_I_- 

= b enflzl MYI 116; 

= m/x] AYMlp concluding the proof. 

Next we define the convenient infix operation, : , in .@-Closed Terms x P-Terms 
4 P-Terms, 

N:K= AW(N) (N is a closed value) 
MN: K = M: (nolk (@q9K)) (M is not a value) 
MXK = N: (A/.W((M)j?K) (M, but not N, is a value) 
MN;K= Yf(M)Y(IV)K (M and N are values). . 

In xhe following, results asserted for +. are intended to be asserted for both 
Tand ;. In the former w we mean A!“. 

hznma 2. If K is a closed value theta #‘K $ M: K, for any term M, (u, p, x $ FV (IQ)= 

By induction on the size of M and cases on the definition of :. 
1. M lis a value. 

2. M s= (Ibl, M,). 
Sihwse 1. Mt is not a value. 

UK = (~xi@#&32(Aj3aj9~))) K 

-+ m~~2(waP~crpK)) 
z Ml : (Izdci@2(A/3aj?K)) (by induction hypothr:sis) 
= &!:K 

&&case 2 Ml is a value and Mz is not. 

1 : (AafV2(A/?aj3K)) = (Aa 

4 @‘(AfiP(M,) j?K) 2 M: K (by induction hypothesis). 

~U&ZBZ .3. Mt and lMz are values. 
-I- 
3 (as i bcase 2) 
2 



. 

y induction on the six of and by cases according to the definition of + 
V* 

and onstapply (a, b) 
= ubK + ConstappEy& b) K = 

(by induction hypothesis) 
= L, say. 

= L, say. 

If Nl is not. a value, L = N:K. Otherwise, 

L~.&f2(Aj3'Y(Nl)K) = L', say. 

is not a value, L = N:K. wise, 

Y(N2) K = N: 

is not a value an 
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2. For any term Nt (a (AxN)) E Sticks,. 
3. If iW e Stic&, (MN) E Sticks,, for any term N. 
4. If N i SticksN, then UN E Sticks,. 

Clearly, if the two languages have the same constants, variables and Co&apply 
them Stick+ G Sticksy. 

JQ P 
a If ME Stick+ then M:K E Sticksff s Sticksv . 

By induction on the size of M and cases according to the de.finition of Sticksv. 

I. (ah): K = abK E Sticks,[ConstappIy&, b) not defined). 

2. Like case 1. 

3. i& E Sticks;, (AxMJ A& : K = lV2 : (A/W ( M,) j!3K) E St!ck~~ (by induction hy- 
pothesis). 

4. Ml E Sticks:, (M,, M2) : K = Ml : (kxM2(3L/~a/X)) E Sticks, Y induction hY- 
pothesis) 

2 

) is defined and is N, say. By Theorem 4.4, M $ N. SO by Lemmas 23 

A@xx) -tl. ii?:(&) 

5 57:(1xX) 

-+ Y(N) {as N is a value) 

= !P (Ev& (M)). 

Therefore, in this case 

Ev al&Z (A xx)) = Eva$“(M (AXX)i 

= !P (EvaI,(M 

bY eorems 4.2 and 5.Z. 

2. Eva&M) is not defin y Theorem 4.4, either M z NE Stick& ar else 
there is an infinite series Ml, 

n the 

case, we have 
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straightforward proof that $ l- > IV implies. 

s immediately by the Church- 

= N. It is then c ear that LN t- 
~92ly suppose ‘;zN t ii? = N. Note that M and fl have this property: 

.& is a subterm and L1 is a value so are L2 m . . Ln. Any call-by-name redex 
in 5% arm with this property is also a call-by-value one, and if L has the property 

a&# l- I; 3 _L’, then L’ also has the prqerty. Ilows flJrn these remarks 

Fblally, if &if = ((1x.x) (3Lxxx)) y and N = ( ?xx y) @xxx) @xxx)) then $” 

l- ->’ = fl but $ I+ M = N. Note that M E JY.’ 
eted our treatment of the simulation of call-by-v2 ue by call-by-name, 

we lass next to the simulation 01 call-by-name by call-by-value* So suppose we are 
given a call-by-name language ,P, with some Constapply,. (Consider that call-by-value 
‘language &? whose constants are those of ,,Q, whose variables are those of P, plus x 
and (Y, whose variable-list is that of __Q and whose Co&apply7 will be given later 
via 2 function M I+ M from L? terms to 2’ terms which also helps to specify 
the simulation map. It% convenient to let ,&?‘I be the language which, apart from 
its being call-by-name, is identical to ,_Q’. We will use the E’s as superscripts or 

refixes as before. We will only consider the case where the constants of 2 are 
iviir,led into basic and. functional classes. This allows a simple samulation map. 
The map M I-+ M is d&tied recursively by : - 

FIere, 
T hen,, 

,x=X 

a_ = Ax (x (ilap (aI))) 
& = 3,x (xb) 

(a E Qoastants) 
(6 E 56constants) 

and below, I is the term (Ixx). 
Constapply&, b) = ,,,Constapply,(a, b), and it is also convenient to 
map Q, from E-values to P-terms b,v: 

(x) =L= (x1); @ (a) = Aaa (aI); 

e .intend to prove these t 



As before, it foIIows that Evalv sives all the functions 
the simuktim is not perfect: 

This is sinlilar to that of Corollary 2. As a counterxa e one =n take 
= and N = Lxx (Ayxy). 

bmit the ppaofs of the first few lemmas, as they are quite similar to te proofs 
of the correspomiing lemmas for the previous simulation. 

(IN not R value) 

(N Q t*alue) 

(iaT ltot a Vizlth?) 

now follow just as Thecd3ms 1 and 2 did. 
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w) will be used, smbiguousIy, to abbretiate 
ITI(3~~S 

where is an &term an 

1.x-x 
Il. a - htx (lap (aI)) 2. CL 2 (ilaa (dj) 
211. 6 N Axxb 2.bSb 

Vl. MN iw 2. Av AR? rv lV1 
(RXM) y (ilxx(AxM’)) 

-- __ - 
(2 (6axM’) 

. 



‘We omit the proof, which is a simple induction on the size of M. 

10. 1. l-f M - M’ and N - hr’ = aM’ then M = aN. 

i!. rf M 2 M’ and N 2 IV’ = =M then M = ,+X 

aof. ‘We die&x sets (&, gn(rz 2 0) by: 

%I() = {x} ; 9cn4q = (IaaL’KJL N L’ for some L and K, G %Y,} (n b 0). 
ca an = 3(:n u {[I/X] KnlKn E 5&} (n 2 0). 

We use .&,, KA {etc. to vary over 3c, and Ifi etc. to vary over S& Then K’, = =Knr 
implies n = n’ and [1&-j K, is in gm+“. 

In the: following, Y is some constant, or has the form Aaa (a1) or AxL; where 

L1 - L; for some _C,, and L’ will be some term such that L - L’ for some L. 
A term is of tackle A if it has the for,n kX 
A term is of t&e B if it has the form ilx VL’x. 
A term is of type C if it has the form AxL’A&,, with m >. 0. 
A term is of t.vpe D if it has the form AxVL’Km, with m > 0. 
A term is of type E if it has the form I&, V, with m > 0. 
It is not hard to show that if M - M’ then M’ is of type A iff the last rule used 

in the proof ck:rf M - M’ was one of III, 1111 or IV1 ; of type B iff it was one of VI, 
VII or VIII; and of one of types C, D or E if%’ it was V. 

Let (a), be the statement that if M - M’, N - N’ have proofs of total size (= non 
of steps) n then :.f M’ = aN’, M = ,A? 

Let (b), bc the s ratement that if M 2 M’, N 2 N’ have proofs of total size n then 
if &f’ = $7, M == J7. 

Let (cl’, be the statement that if M - M’, .N - N’ have proofs of combined size tt 
then if M’/Jn = rq’(1; ,for some &, 1; E 9’, then M = JV and & = ,Ji. . 

We will prove xhat if (c), then (a),, that if (a), and (c),,, for all PYL < n then (&, 
and if (a)m and (b), and (c), for all nt < n then (c)~. The Lemma is then immediate. 

(i) Suppose (c)!, ani ‘that M -* M’, N - N’ have proofs of total size f2 and N’ 
= JV’. Then (c), applies with M’l& = (M’x) and (N’JI;) = (N’x). 

(ii) Suppose (a),, aad (c)~ for all m c n, M iq M’, and N 2 N’ have proofs o:f 
total size n, and &F = EN’. We divide the groof into cases according to the last 
rule used. in the proof of M 2 .M’. 
II2. Here M = ,.z and 44’ = Racr (al) for some a. The last rule use 
of N’ 2 N’ clearly cannot be III11 or IV2. If it is X then we must 
and N’ := (1IJ”; 3) where the last rule in the proof of .N - N7’ was V as N’ is an 

the positions in M’ and. K’ of a shows that this is 
the result is immediate. 
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uppose (a),,, and (b),,, and (c),,, for all m c it, M - M’, N - N’ have proofs 
of clcm kined size n an$ M’l& = JV’11;: for some &, 1: in some gn. 

Fiz* me assume that neither M - M’ nor N - N’ follows from X. 
zpp +ae, M’[& = M’J, and N’lli = N’; &. If N - N’ follows from 1, the result 

is ia,_ *ediate. If N’ is of type A, then M’l, = JL V, with a V as above. This is a con- 
tradaction as 1n = J is impossible. The same objection rules out type E. 

I$.?;’ is of type l?, then M’I, = ,JL’Ii which is impossible as M’ is a value. This 

also rules out type D. Lastly, if N’ is of type C then M’J~~ = JJ1,$] K, = .Ui+,,, for 
some li+m and then In = Ji+nz a contradiction, as WI > 0. 

a,‘he case WI& =‘ M' l &_ and N’(& = N’1; is similar. 
Suppose M’I&, = M’; In and N’Iln = N’; I,,. If either M - M’ or N - N’ follows 

he result is immediate; otherwise, the proof splits into cases according to 
the type of M’. 
A. Here A/’ = RlcxV for some V, as above, and M - M’ follows by one of 111, 
1111 CE’ IV1 and M’I, = In V. 

If N” is of type A we see that N - N’ follows from whichever of 111, II11 or IV1, 
M - W does and the result is immediate, possibly using (a),-,. 

fN’isoftypeBwehaveI,V= J’L’I~ for suitable V’, L’, contradicting the fact 
t Ifi, is a value. 
f N’ is of typf ’ C we have Ii V = aL’Inl+,, for some lm+n which is impossible. 

if N’ is of type D. the argument is the same as for type B. 
If N’ is of type E, we get 1’ V = ,$ifm V’ for some lifrn, V’ which is a contradiction 

as fi8 :> 0. 
B. Here M’ = ;IxVL’x and M’; In = VL’I,. The proof divides according to the 
type of N’. 

A. By symmetry from the case AB above. 
B. Here N N N’ fellows from whichever of VI, VII, VI I p:roves M’ -8 M’ and 

the result is imrnediare using either (a),,-, or (b)n-2. 
C. Here VL’P, = r%‘Ik+n for c:+ble L’, lA_tn, a clear contradiction. 
D. Here WI, = J’L’!k+,,, for suitable V’, L’, IA+n, a contradiction as ~yt 3 0. 

ere VL’I, = ,JL+,, V’, for suit’able lk+n, a contradiction. 

C, D, E. If N - N’ does not fol1o.w~ from Y, the yresult follows i5y symmetry. 
thenvise, M = ( &, and the last step in the proof of M - ’ has the form: 

and similarly for N. 

It only remtins to consider the ;>ossibility that one of M ..., M’ or Ik’ - N’ .follow!; 
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fkom X. Suppose, w.1.o.g. that M N M’ does and so 
If N’l.T, = IW ; In the result follows by the induction 
(WI:) then In = ,JR# and ’ = JV. Therefore 
induction hypothesis, M = J’K So the remaini 
== N’ ; 8’. hpection of the various types rules t 
that N - N’ follows by X which is handled by the induction hypothesis, concluding 
the proof. 

- M” and IV’ is obtained from ’ by contracting one fl- or 
&redex. Then fw some L either M - L = JV’ or else N - L = =N’, where N is ~b- 
tainedfrom M by llcontracting or;le jl-redex9 or Sredex. The ;;c%me statement holds with - 
reptaced by 2. 

‘We omit the proof which is a straightforward inductpon on the number of steps 
in zhe proof of 

It is straightforward to prove that A$ t- II& = N implies 

= N from which it foflow~ immediately that $’ I- $@ = IV1 and $ t- 

I- M = ,N and then that Ag’ I- &I = EI. 

Conversely suppose &V JZ” I- AU = EL Then there is a term 2 such that dg’ I- 

l-Ml’~T,andJ~ I-,NIZ As M 2 MI, by Lemma 1.1 there is a term MI 

such that 1f )_ M 2 Ml and MI 2 M; = $?! for some term MI. Similarly, there 

are terms M2 and iM; such that A$ t- N 2 It& and MI! 2 Mi = J. l&y Lemma 10, 

= ,&. Therefore 2: I- M = N concluding the proof. 
rather more lcomplex simulation of call-by-name by call-by-value works in the 

nerali case where the constants are not divided up into basic and functional ones. 
results from the following mappis g M I-B @ 

the analogues of and 5. 
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