Reductions and Causality (VI)

jean-jacques.levy@inria.fr Escuela de Ciencias Informáticas Universidad de Buenos Aires July 26, 2013

http://jeanjacqueslevy.net/courses/13eci

Reductions and Causality (VI)

jean-jacques.levy@inria.fr

Escuela de Ciencias Informáticas Universidad de Buenos Aires July 26, 2013

Reductions and Causality (VI)

jean-jacques.levy@inria.fr Escuela de Ciencias Informáticas Universidad de Buenos Aires July 26, 2013

Reductions and Causality (VI)

jean-jacques.levy@inria.fr

Escuela de Ciencias Informáticas Universidad de Buenos Aires July 26, 2013

http://jeanjacqueslevy.net/courses/13eci

Plan

- complete reductions
- sublattice of complete reductions
- more on canonical representatives
- costs of reductions + sharing
- speculative computations
- semantics with Böhm trees

Plan

- complete reductions
- sublattice of complete reductions
- more on canonical representatives
- costs of reductions + sharing
- speculative computations
- semantics with Böhm trees

Plan

- complete reductions
- sublattice of complete reductions
- more on canonical representatives
- costs of reductions + sharing
- speculative computations
- semantics with Böhm trees

Plan

- complete reductions
- sublattice of complete reductions
- more on canonical representatives
- costs of reductions + sharing
- speculative computations
- semantics with Böhm trees

Labeled ****-calculus**

CENTRE DE RECHERCHE COMMUN

INRIA MICROSOFT RESEARCH

Labeled λ-calculus

Labeled ****-calculus**

Labeled ****-calculus**

CENTRE DE RECHERCHE COMMUN

Complete reductions (1/5)

Complete reductions (1/5)

Complete reductions (1/5)

Complete reductions (1/5)

Complete reductions (2/5)

• **Definition** [complete reductions]

 $\langle \rho, \mathcal{F} \rangle$ is an historical set of redexes when \mathcal{F} is a set of redexes in final term of ρ .

 $\langle
ho$, $\mathcal{F}
angle$ is **f-complete** when it is maximum set such that

 $R, S \in \mathcal{F}$ implies $\langle \rho, R \rangle \sim \langle \rho, S \rangle$ An f-complete reduction contracts an f-complete set at each step.

• **Proposition** [lattice of f-complete reductions]

Complete reductions form a sub-lattice of the lattice of reductions.

Proof simple use of following lemma which implies f-complete parallel moves.

Complete reductions (2/5)

- **Definition** [complete reductions] $\langle \rho, \mathcal{F} \rangle$ is an historical set of redexes when \mathcal{F} is a set of redexes in final term of ρ .
- $\langle
 ho, \mathcal{F}
 angle$ is **f-complete** when it is maximum set such that

 ${\it R}, {\it S} \in {\cal F}$ implies $\langle
ho, {\it R}
angle \sim \langle
ho, {\it S}
angle$

An f-complete reduction contracts an f-complete set at each step.

• Proposition [lattice of f-complete reductions]

Complete reductions form a sub-lattice of the lattice of reductions.

Proof simple use of following lemma which implies f-complete parallel moves.

Complete reductions (2/5)

• **Definition** [complete reductions]

 $\langle \rho, \mathcal{F} \rangle$ is an historical set of redexes when \mathcal{F} is a set of redexes in final term of $\rho.$

 $\langle \rho, \mathcal{F} \rangle$ is f-complete when it is maximum set such that

 $R, S \in \mathcal{F}$ implies $\langle \rho, R \rangle \sim \langle \rho, S \rangle$ An f-complete reduction contracts an f-complete set at each step.

• **Proposition** [lattice of f-complete reductions] Complete reductions form a sub-lattice of the lattice of reductions.

Proof simple use of following lemma which implies f-complete parallel moves.

Complete reductions (2/5)

• Definition [complete reductions] $\langle \rho, \mathcal{F} \rangle$ is an historical set of redexes when \mathcal{F} is a set of redexes in final term of ρ .

 $\langle
ho, \mathcal{F}
angle$ is **f-complete** when it is maximum set such that

 $R, S \in \mathcal{F}$ implies $\langle
ho, R \rangle \sim \langle
ho, S \rangle$

An f-complete reduction contracts an f-complete set at each step.

• **Proposition** [lattice of f-complete reductions] Complete reductions form a sub-lattice of the lattice of reductions.

Proof simple use of following lemma which implies f-complete parallel moves.

Complete reductions (3/5)

Notations

 $M \xrightarrow{\alpha} N$ when $M \xrightarrow{\mathcal{F}} N$ and \mathcal{F} is the set of redexes with name α in M.

MaxRedNames(*M*) when all redexes in *M* have maximal names.

Complete reductions (3/5)

• Notations $M \stackrel{\alpha}{\Longrightarrow} N$ when $M \stackrel{\mathcal{F}}{\longrightarrow} N$ and \mathcal{F} is the set of redexes with name α in M.

MaxRedNames(*M*) when all redexes in *M* have maximal names.

- Lemma [complete reductions preserve max redex names] $M \stackrel{\alpha}{\Longrightarrow} N$ and MaxRedNames(M) implies MaxRedNames(N)
- Lemma [complete reductions preserve max redex names] $M \xrightarrow{\alpha} N$ and MaxRedNames(M) implies MaxRedNames(N)

Complete reductions (3/5)

• Notations $M \stackrel{\alpha}{\Longrightarrow} N$ when $M \stackrel{\mathcal{F}}{\longrightarrow} N$ and \mathcal{F} is the set of redexes with name α in M.

MaxRedNames(*M*) when all redexes in *M* have maximal names.

Complete reductions (3/5)

• Notations

 $M \xrightarrow{\alpha} N$ when $M \xrightarrow{\mathcal{F}} N$ and \mathcal{F} is the set of redexes with name α in M.

MaxRedNames(*M*) when all redexes in *M* have maximal names.

- Lemma [complete reductions preserve max redex names] $M \stackrel{\alpha}{\longrightarrow} N$ and MaxRedNames(M) implies MaxRedNames(N)
- Lemma [complete reductions preserve max redex names] $M \stackrel{\alpha}{\longrightarrow} N$ and MaxRedNames(M) implies MaxRedNames(N)

Complete reductions (4/5)

- **Definition** [d-complete reductions]
- $\langle \rho, \mathcal{F} \rangle$ is **d-complete** when it is maximum set such that

 $\langle
ho_{0}, {\it R}_{0}
angle \leq \langle
ho, {\cal F}
angle$ for some $\langle
ho_{0}, {\it R}_{0}
angle$

An d-complete reduction contracts a d-complete set at each step.

• Proposition [below canonical representative] Let $\langle \rho_0, R_0 \rangle$ be canonical representative in its family. Let $\rho_0 \sqsubseteq \rho$. Then $\langle \rho_0, R_0 \rangle \sim \langle \rho, R \rangle$ iff $\langle \rho_0, R_0 \rangle \leq \langle \rho, R \rangle$.

Proof difficult.

• **Proposition** [f-complete = d-complete] d-complete reductions coincide with f-complete reductions.

Complete reductions (4/5)

- **Definition** [d-complete reductions]
- $\langle \rho, \mathcal{F} \rangle$ is **d-complete** when it is maximum set such that $\langle \rho_0, R_0 \rangle < \langle \rho, \mathcal{F} \rangle$ for some $\langle \rho_0, R_0 \rangle$

 $\langle \rho_0, \kappa_0 \rangle \leq \langle \rho, \mathcal{F} \rangle$ for some $\langle \rho_0, \kappa_0 \rangle$

An d-complete reduction contracts a d-complete set at each step.

• Proposition [below canonical representative] Let $\langle \rho_0, R_0 \rangle$ be canonical representative in its family. Let $\rho_0 \sqsubseteq \rho$. Then $\langle \rho_0, R_0 \rangle \sim \langle \rho, R \rangle$ iff $\langle \rho_0, R_0 \rangle \leq \langle \rho, R \rangle$.

Proof difficult.

• **Proposition** [f-complete = d-complete] d-complete reductions coincide with f-complete reductions.

Complete reductions (4/5)

• **Definition** [d-complete reductions]

 $\langle \rho, \mathcal{F} \rangle~$ is d-complete when it is maximum set such that

 $\langle \rho_0, R_0 \rangle \leq \langle \rho, \mathcal{F} \rangle$ for some $\langle \rho_0, R_0 \rangle$ An **d-complete reduction** contracts a d-complete set at each step.

• Proposition [below canonical representative] Let $\langle \rho_0, R_0 \rangle$ be canonical representative in its family. Let $\rho_0 \sqsubseteq \rho$. Then $\langle \rho_0, R_0 \rangle \sim \langle \rho, R \rangle$ iff $\langle \rho_0, R_0 \rangle \leq \langle \rho, R \rangle$.

Proof difficult.

• **Proposition** [f-complete = d-complete] d-complete reductions coincide with f-complete reductions.

Complete reductions (4/5)

• **Definition** [d-complete reductions]

 $\langle \rho, \mathcal{F} \rangle$ is **d-complete** when it is maximum set such that $\langle \rho_0, R_0 \rangle \leq \langle \rho, \mathcal{F} \rangle$ for some $\langle \rho_0, R_0 \rangle$ An **d-complete reduction** contracts a d-complete set at each step.

• Proposition [below canonical representative] Let $\langle \rho_0, R_0 \rangle$ be canonical representative in its family. Let $\rho_0 \sqsubseteq \rho$. Then $\langle \rho_0, R_0 \rangle \sim \langle \rho, R \rangle$ iff $\langle \rho_0, R_0 \rangle \leq \langle \rho, R \rangle$.

Proof difficult.

• **Proposition** [f-complete = d-complete] d-complete reductions coincide with f-complete reductions.

Complete reductions (5/5)

• Proposition [length of reduction = number of families]

In complete reductions, number of steps equals the number of contracted redex families.

Proof application of MaxRedNames lemma.

• **Corollary** [optimal reductions]

In complete reductions, never redex of same family is contracted twice.

• Implementation [optimal reductions]

Can we implement efficiently complete reductions ?

Complete reductions (5/5)

• **Proposition** [length of reduction = number of families] In complete reductions, number of steps equals the number of contracted redex families.

Proof application of MaxRedNames lemma.

- **Corollary** [optimal reductions] In complete reductions, never redex of same family is contracted twice.
- Implementation [optimal reductions] Can we implement efficiently complete reductions ?

Complete reductions (5/5)

• **Proposition** [length of reduction = number of families] In complete reductions, number of steps equals the number of contracted redex families.

Proof application of MaxRedNames lemma.

• Corollary [optimal reductions]

In complete reductions, never redex of same family is contracted twice.

• Implementation [optimal reductions]

Can we implement efficiently complete reductions ?

Complete reductions (5/5)

• Proposition [length of reduction = number of families] In complete reductions, number of steps equals the number of contracted redex families.

Proof application of MaxRedNames lemma.

- **Corollary** [optimal reductions] In complete reductions, never redex of same family is contracted twice.
- Implementation [optimal reductions] Can we implement efficiently complete reductions ?

Implementation (1/5)

- Implementation [optimal reductions] algorithm [John Lamping, 90 -- Gonthier-Abadi-JJ, 91]
- Sharing of basic values is easy:

$$(\lambda x.x+x)((\lambda x.x)3) \longrightarrow (+ \bullet + \bullet) \longrightarrow (+ \bullet)$$

 $(\lambda x.x)3 \longrightarrow (+ \bullet) \longrightarrow (+ \bullet)$

• Problem is sharing of functions:

Implementation (1/5)

- Implementation [optimal reductions] algorithm [John Lamping, 90 -- Gonthier-Abadi-JJ, 91]
- Sharing of basic values is easy:

$$(\lambda x.x+x)((\lambda x.x)3) \longrightarrow (+ \bullet) \longrightarrow (+ \bullet) \longrightarrow (+ \bullet) \longrightarrow (\lambda x.x)3 \longrightarrow (+ \bullet) \longrightarrow (+ \bullet$$

• Problem is sharing of functions:

$$(\lambda x.x3 + x4)((\lambda x.I(x)) \longrightarrow \bullet 3 + \bullet 4 \longrightarrow ??$$

$$\begin{pmatrix} & & \\$$

Implementation (1/5)

- Implementation [optimal reductions] algorithm [John Lamping, 90 -- Gonthier-Abadi-JJ, 91]
- Sharing of basic values is easy:

$$(\lambda x.x+x)((\lambda x.x)3) \longrightarrow (+ \bullet + \bullet) \longrightarrow (+ \bullet)$$

 $(\lambda x.x)3 \longrightarrow (+ \bullet) \longrightarrow (+ \bullet)$

• Problem is sharing of functions:

Implementation (1/5)

- Implementation [optimal reductions] algorithm [John Lamping, 90 -- Gonthier-Abadi-JJ, 91]
- Sharing of basic values is easy:

$$(\lambda x.x+x)((\lambda x.x)3) \longrightarrow (+ \bullet + \bullet) \longrightarrow (+ \bullet + \bullet)$$

 $(\lambda x.x)3 \longrightarrow (+ \bullet + \bullet) \longrightarrow (+ \bullet + \bullet)$

• Problem is sharing of functions:

Implementation (2/5)

Implementation (2/5)

Implementation (2/5)

Implementation (2/5)

Implementation (3/5)

application

λ-abstraction

Implementation (3/5)

application

λ-abstraction

Implementation (3/5)

application

λ-abstraction

Implementation (3/5)

application

λ-abstraction

Implementation (4/5)

rules

Implementation (4/5)

rules

Implementation (4/5)

Implementation (4/5)

rules

Implementation (5/5)

- beautiful Lamping's algorithm is unpractical
- highly exponential in the handling of fans node (not elementary recursive) [Asperti, Mairson 2000]
- nice algorithms unsharing paths to bound variables [Wadsworth
 92, Shivers-Wand 2010]
- Haskell, Coq, Caml ??

Implementation (5/5)

- beautiful Lamping's algorithm is unpractical
- highly exponential in the handling of fans node (not elementary recursive) [Asperti, Mairson 2000]
- nice algorithms unsharing paths to bound variables [Wadsworth 92, Shivers-Wand 2010]
- Haskell, Coq, Caml ??

Implementation (5/5)

- beautiful Lamping's algorithm is unpractical
- highly exponential in the handling of fans node (not elementary recursive) [Asperti, Mairson 2000]
- nice algorithms unsharing paths to bound variables [Wadsworth
 92, Shivers-Wand 2010]
- Haskell, Coq, Caml ??

Implementation (5/5)

- beautiful Lamping's algorithm is unpractical
- highly exponential in the handling of fans node (not elementary recursive) [Asperti, Mairson 2000]
- nice algorithms unsharing paths to bound variables [Wadsworth
 92, Shivers-Wand 2010]
- Haskell, Coq, Caml ??

Speculative computations

CENTRE DE RECHERCHE COMMUN INRIA MICROSOFT RESEARCH

Speculative computations

Speculative computations

peculative computations

CENTRE DE RECHERCHE COMMUN

INRIA

MICROSOFT RESEARCH

Permutations in call by value

• **Definition** [call by value]

A value remains a value if computed or substituted by a value

$$V ::= x \mid \lambda x.M$$

The call-by-value reduction strategy is defined by:

$$(\lambda x.M)V \longrightarrow M\{x := V\}$$

$$\frac{M \xrightarrow[cbv]{cbv}}{MN \xrightarrow[cbv]{cbv}} M' N \qquad \qquad \frac{N \xrightarrow[cbv]{cbv}}{MN \xrightarrow[cbv]{cbv}} N'$$

• Fact [permutations in call by value] Equivalence by permutations only permute disjoint redexes.

Permutations in call by value

• **Definition** [call by value]

A value remains a value if computed or substituted by a value

$$V ::= x \mid \lambda x.M$$

The call-by-value reduction strategy is defined by:

$$(\lambda x.M)V \longrightarrow_{cbv} M\{x := V\}$$

• Fact [permutations in call by value]

Equivalence by permutations only permute disjoint redexes.

Permutations in call by value

• **Definition** [call by value]

A value remains a value if computed or substituted by a value

 $V ::= x \mid \lambda x.M$

The call-by-value reduction strategy is defined by:

$$(\lambda x.M)V \longrightarrow M\{x := V\}$$

$$\frac{M \xrightarrow[cbv]{cbv}}{MN \xrightarrow[cbv]{cbv}} M' N \qquad \qquad \frac{N \xrightarrow[cbv]{cbv}}{MN \xrightarrow[cbv]{cbv}} MN'$$

• Fact [permutations in call by value] Equivalence by permutations only permute disjoint redexes.

Permutations in call by value

• **Definition** [call by value]

A value remains a value if computed or substituted by a value

$$V ::= x \mid \lambda x.M$$

The call-by-value reduction strategy is defined by:

$$(\lambda x.M)V \longrightarrow M\{x := V\}$$

$$\frac{M \longrightarrow M'}{MN \longrightarrow M'N} \qquad \qquad \frac{N \longrightarrow N'}{MN \longrightarrow MN'}$$

• Fact [permutations in call by value] Equivalence by permutations only permute disjoint redexes.

Speculative reductions

• Definition [speculative call, Boudol-Petri 2010] $V ::= x \mid \lambda x.M$

The speculative reduction strategy is defined by:

$$(\lambda x.M)V \xrightarrow{}_{\text{spec}} M\{x := V\}$$

$$(\lambda x.M)N \xrightarrow{}_{\text{spec}} (\lambda V? M\{x := V\})N$$

$$(\lambda V? M)V \xrightarrow{}_{\text{spec}} M$$

$$\frac{M \xrightarrow{}_{\text{spec}} M'}{MN \xrightarrow{}_{\text{spec}} M'N} \qquad \frac{N \xrightarrow{}_{\text{spec}} N'}{MN \xrightarrow{}_{\text{spec}} MN'} \qquad \frac{M \xrightarrow{}_{\text{spec}} M'}{\lambda V?M \xrightarrow{}_{\text{spec}} \lambda V?M'}$$

Speculative reductions

• Definition [speculative call, Boudol-Petri 2010] $V ::= x \ | \ \lambda x.M$

The speculative reduction strategy is defined by:

$$(\lambda x.M)V \xrightarrow{\text{spec}} M\{x := V\}$$
$$(\lambda x.M)N \xrightarrow{\text{spec}} (\lambda V?M\{x := V\})N$$
$$(\lambda V?M)V \xrightarrow{\text{spec}} M$$

 $\frac{M \longrightarrow M'}{MN \longrightarrow M'N} \qquad \frac{N \longrightarrow N'}{MN \longrightarrow MN'} \qquad \frac{M \longrightarrow M'}{\lambda V?M \longrightarrow \lambda V?M'}$

Speculative reductions

• Definition [speculative call, Boudol-Petri 2010] $V ::= x \ | \ \lambda x.M$

The speculative reduction strategy is defined by:

$$(\lambda x.M)V \xrightarrow{\text{spec}} M\{x := V\}$$

$$(\lambda x.M)N \xrightarrow{\text{spec}} (\lambda V?M\{x := V\})N$$

$$(\lambda V?M)V \xrightarrow{\text{spec}} M$$

$$\frac{M \xrightarrow{\text{spec}} M'}{MN \xrightarrow{\text{spec}} M'N} \qquad \frac{N \xrightarrow{\text{spec}} N'}{MN \xrightarrow{\text{spec}} MN'} \qquad \frac{M \xrightarrow{\text{spec}} M'}{\lambda V?M \xrightarrow{\text{spec}} \lambda V?M'}$$

Speculative reductions

• Definition [speculative call, Boudol-Petri 2010] $V ::= x \ | \ \lambda x.M$

The speculative reduction strategy is defined by:

$$(\lambda x.M)V \xrightarrow{\text{spec}} M\{x := V\}$$
$$(\lambda x.M)N \xrightarrow{\text{spec}} (\lambda V?M\{x := V\})N$$
$$(\lambda V?M)V \xrightarrow{\text{spec}} M$$

$$\frac{M \xrightarrow{\text{spec}} M'}{MN \xrightarrow{\text{spec}} M'N} \qquad \frac{N \xrightarrow{\text{spec}} N'}{MN \xrightarrow{\text{spec}} MN'} \qquad \frac{M \xrightarrow{\text{spec}} M'}{\lambda V?M \xrightarrow{\text{spec}} \lambda V?M'}$$

Assigning meaning to λ-expressions

Assigning meaning to λ-expressions

Assigning meaning to λ-expressions

Assigning meaning to λ-expressions

CENTRE DE RECHERCHE COMMUN

CENTRE DE RECHERCHE COMMUN

INRIA MICROSOFT RESEARCH

Semantics

Definition A semantics of the λ -calculus is any equivalence such that:

- (1) $M \xrightarrow{\star} N$ implies $M \equiv N$
- (2) $M \equiv N$ implies $C[M] \equiv C[N]$
- Thus β -interconvertibility $=_{\beta}$ is a semantics.
- Any other interesting semantics ?

Semantics

Definition A semantics of the λ -calculus is any equivalence such that:

- (1) $M \xrightarrow{\star} N$ implies $M \equiv N$
- (2) $M \equiv N$ implies $C[M] \equiv C[N]$
- Thus β -interconvertibility $=_{\beta}$ is a semantics.
- Any other interesting semantics ?

Semantics

Definition A semantics of the λ -calculus is any equivalence such that:

- (1) $M \xrightarrow{\star} N$ implies $M \equiv N$
- (2) $M \equiv N$ implies $C[M] \equiv C[N]$
- Thus β -interconvertibility $=_{\beta}$ is a semantics.
- Any other interesting semantics ?

Semantics

Definition A semantics of the λ -calculus is any equivalence such that:

- (1) $M \xrightarrow{\star} N$ implies $M \equiv N$
- (2) $M \equiv N$ implies $C[M] \equiv C[N]$
- Thus β -interconvertibility $=_{\beta}$ is a semantics.
- Any other interesting semantics ?

Böhm's theorem

Theorem [Bohm, 68]

Let *M* and *N* be 2 distinct normal forms. Then for any x and y, there exists a context C[] such that:

 $C[M] \xrightarrow{\star} x$ and $C[N] \xrightarrow{\star} y$

Corollary Any (consistent) semantics of the λ -calculus cannot identify 2 distinct normal forms.

Notice Distinct normal forms means not η -interconvertible.

```
Exercice Bohm's thm for I = \lambda x.x and K = \lambda x.\lambda y.x.
```

Böhm's theorem

Theorem [Bohm, 68]

Let *M* and *N* be 2 distinct normal forms. Then for any x and y, there exists a context C[] such that:

 $C[M] \xrightarrow{\star} x$ and $C[N] \xrightarrow{\star} y$

Corollary Any (consistent) semantics of the λ -calculus cannot identify 2 distinct normal forms.

Notice Distinct normal forms means not η -interconvertible.

Exercice Bohm's thm for $I = \lambda x.x$ and $K = \lambda x.\lambda y.x$.

Böhm's theorem

Theorem [Bohm, 68]

Let *M* and *N* be 2 distinct normal forms. Then for any x and y, there exists a context C[] such that:

 $C[M] \xrightarrow{\star} x$ and $C[N] \xrightarrow{\star} y$

Corollary Any (consistent) semantics of the λ -calculus cannot identify 2 distinct normal forms.

Notice Distinct normal forms means not η -interconvertible.

Exercice Bohm's thm for $I = \lambda x.x$ and $K = \lambda x.\lambda y.x$.

Böhm's theorem

Theorem [Bohm, 68]

Let *M* and *N* be 2 distinct normal forms. Then for any x and y, there exists a context C[] such that:

 $C[M] \xrightarrow{\star} x$ and $C[N] \xrightarrow{\star} y$

Corollary Any (consistent) semantics of the λ -calculus cannot identify 2 distinct normal forms.

Notice Distinct normal forms means not η -interconvertible.

Exercice Bohm's thm for $I = \lambda x.x$ and $K = \lambda x.\lambda y.x$.

Terms without normal forms

Lemma It is inconsistent to identify all terms without normal forms

Proof: Take
$$M = xa\Omega$$
, $N = y\Omega b$ where $\Omega = (\lambda x.xx)(\lambda x.xx)$
Let $C[] = (\lambda x.\lambda y.[])K(KI)$
Then $C[M] \xrightarrow{\star} a$ and $C[N] \xrightarrow{\star} b$

Question Which terms can be consistently identified ?

Easy terms [Bohm, Jacopini] $I = \Omega$ is consistent !

Terms without normal forms

Lemma It is inconsistent to identify all terms without normal forms

Proof: Take
$$M = xa\Omega$$
, $N = y\Omega b$ where $\Omega = (\lambda x.xx)(\lambda x.xx)$
Let $C[] = (\lambda x.\lambda y.[])K(KI)$
Then $C[M] \xrightarrow{\bullet} a$ and $C[N] \xrightarrow{\bullet} b$

Question Which terms can be consistently identified ?

Easy terms [Bohm, Jacopini] $I = \Omega$ is consistent !

Terms without normal forms

Lemma It is inconsistent to identify all terms without normal forms Proof: Take $M = xa\Omega$, $N = y\Omega b$ where $\Omega = (\lambda x.xx)(\lambda x.xx)$ Let $C[] = (\lambda x.\lambda y.[])K(KI)$ Then $C[M] \stackrel{*}{\longrightarrow} a$ and $C[N] \stackrel{*}{\longrightarrow} b$

Question Which terms can be consistently identified ?

Easy terms [Bohm, Jacopini] $I = \Omega$ is consistent !

Terms without normal forms

Lemma It is inconsistent to identify all terms without normal forms Proof: Take $M = xa\Omega$, $N = y\Omega b$ where $\Omega = (\lambda x.xx)(\lambda x.xx)$ Let $C[] = (\lambda x.\lambda y.[])K(KI)$ Then $C[M] \xrightarrow{\star} a$ and $C[N] \xrightarrow{\star} b$

Question Which terms can be consistently identified ?

Easy terms [Bohm, Jacopini] $I = \Omega$ is consistent !

Terms without normal forms

Definition [Wadsworth, 72] *M* is totally undefined iff

for all C[], if $C[M] \xrightarrow{*} nf$, then $C[N] \xrightarrow{*} nf$ for any N.

Fact: Ω is totally undefined. $xa\Omega$ and $y\Omega b$ are not totally undefined.

Exercice:

Find other terms totally undefined. Try with $\Delta_3 = \lambda x.xxx$, $\mathcal{K} = \lambda x.\lambda y.x$ and $Y = \lambda f.(\lambda x.f(xx))(\lambda x.f(xx))$.

Terms without normal forms

Definition [Wadsworth, 72] M is totally undefined iff for all C[], if $C[M] \xrightarrow{\star} nf$, then $C[N] \xrightarrow{\star} nf$ for any N.

Fact: Ω is totally undefined. $xa\Omega$ and $y\Omega b$ are not totally undefined.

Exercice:

Find other terms totally undefined. Try with $\Delta_3 = \lambda x.xxx$, $K = \lambda x.\lambda y.x$ and $Y = \lambda f.(\lambda x.f(xx))(\lambda x.f(xx))$.

Terms without normal forms

Definition [Wadsworth, 72] M is totally undefined iff for all C[], if $C[M] \xrightarrow{\star} nf$, then $C[N] \xrightarrow{\star} nf$ for any N.

Fact: Ω is totally undefined. $xa\Omega$ and $y\Omega b$ are not totally undefined.

Exercice:

Find other terms totally undefined. Try with $\Delta_3 = \lambda x.xxx$, $K = \lambda x.\lambda y.x$ and $Y = \lambda f.(\lambda x.f(xx))(\lambda x.f(xx))$.

Terms without normal forms

Definition [Wadsworth, 72] M is totally undefined iff for all C[], if $C[M] \xrightarrow{\star} nf$, then $C[N] \xrightarrow{\star} nf$ for any N.

Fact: Ω is totally undefined. $xa\Omega$ and $y\Omega b$ are not totally undefined.

Exercice:

Find other terms totally undefined. Try with $\Delta_3 = \lambda x.xxx$, $K = \lambda x.\lambda y.x$ and $Y = \lambda f.(\lambda x.f(xx))(\lambda x.f(xx))$.

Terms without normal forms

Definition [Wadsworth, 72] M is in head normal form (hnf) iff $M = \lambda x_1 . \lambda x_2 ... \lambda x_m .x M_1 M_2 ... M_n$ ($m, n \ge 0$) M not in hnf iff $M = \lambda x_1 . \lambda x_2 ... \lambda x_m .(\lambda x. P) Q M_1 M_2 ... M_n$ ($m, n \ge 0$) head redex

Proposition: *M* totally undefined iff *M* has no hnf.

Terms without normal forms

Definition [Wadsworth, 72] M is in head normal form (hnf) iff $M = \lambda x_1 . \lambda x_2 \lambda x_m . x M_1 M_2 ... M_n$ ($m, n \ge 0$) M not in hnf iff $M = \lambda x_1 . \lambda x_2 \lambda x_m . (\lambda x. P) Q M_1 M_2 ... M_n$ ($m, n \ge 0$) head redex

Proposition: *M* totally undefined iff *M* has no hnf.

Terms without normal forms

Definition [Wadsworth, 72] M is in head normal form (hnf) iff $M = \lambda x_1 . \lambda x_2 ... \lambda x_m .x M_1 M_2 ... M_n$ ($m, n \ge 0$) M not in hnf iff $M = \lambda x_1 . \lambda x_2 ... \lambda x_m .(\lambda x. P) Q M_1 M_2 ... M_n$ ($m, n \ge 0$) head redex Terms without normal forms

Proposition: *M* totally undefined iff *M* has no hnf.

Proposition: *M* totally undefined iff *M* has no hnf.

Bohm trees (1/3)

Definition [72] The Bohm tree BT(M) of M is defined(?) as follows:

- (1) If *M* has no hnf, $BT(M) = \bot$
- (2) If $M \xrightarrow{\star} \lambda x_1 . \lambda x_2 ... \lambda x_m . x M_1 M_2 ... M_n$, then

Exercices Compute BT(I), BT(K), $BT(\Omega)$, BT(Y), ... BT(LLLLLLLLLLLLLLLLLLLLLL) where $L = \lambda abcdefghijklmnopqstuvwxyzr. (r (thisisafixedpointcomb$ in a tor))

Bohm trees (1/3)

Definition [72] The Bohm tree BT(M) of M is defined(?) as follows:

- (1) If *M* has no hnf, $BT(M) = \bot$
- (2) If $M \xrightarrow{\star} \lambda x_1 . \lambda x_2 ... \lambda x_m . x M_1 M_2 ... M_n$, then

Exercices Compute BT(I), BT(K), $BT(\Omega)$, BT(Y), ... BT(LLLLLLLLLLLLLLLLLLLLLL) where $L = \lambda abcdefghijklmnopqstuvwxyzr. (r (thisisafixedpointcomb$ in a tor))

Bohm trees (1/3)

Definition [72] The Bohm tree BT(M) of M is defined(?) as follows:

- (1) If *M* has no hnf, $BT(M) = \bot$
- (2) If $M \xrightarrow{\star} \lambda x_1 . \lambda x_2 ... \lambda x_m . x M_1 M_2 ... M_n$, then

Exercices Compute BT(I), BT(K), $BT(\Omega)$, BT(Y), ... BT(LLLLLLLLLLLLLLLLLLLLLL) where $L = \lambda abcdefghijklmnopqstuvwxyzr. (r (this is a fixed point comb$ in a tor))

Bohm trees (1/3)

Definition [72] The Bohm tree BT(M) of M is defined(?) as follows:

- (1) If M has no hnf, $\mathsf{BT}(M) = \bot$
- (2) If $M \xrightarrow{\star} \lambda x_1 . \lambda x_2 ... \lambda x_m . x M_1 M_2 ... M_n$, then

$$\mathsf{BT}(M) = \lambda x_1 . \lambda x_2 ... \lambda x_m . x$$

$$\mathsf{BT}(M_1) \quad \mathsf{BT}(M_2) \quad \cdots \quad \mathsf{BT}(M_n)$$

Exercices Compute BT(*I*), BT(*K*), BT(Ω), BT(*Y*), ... BT (*LLLLLLLLLLLLLLLLLLLLLLLL*) where *L* = λabcdefghijklmnopqstuvwxyzr. (r (thisisafixedpointcomb inator))

Bohm trees (2/3)

Theorem [74] Let $M \equiv_{BT} N$ iff BT(M) = BT(N). Then \equiv_{BT} is a (consistent) semantics of the λ -calculus.

Proof: (1) $M \xrightarrow{\bullet} N$ implies BT(M) = BT(N). by Church-Rosser.

BT(M) = BT(N) implies BT(C[M]) = BT(C[N]).
 by completeness of inside-out reductions.

Bohm trees (2/3)

Theorem [74] Let $M \equiv_{BT} N$ iff BT(M) = BT(N). Then \equiv_{BT} is a (consistent) semantics of the λ -calculus.

Proof: (1) $M \xrightarrow{\bullet} N$ implies BT(M) = BT(N). by Church-Rosser.

BT(M) = BT(N) implies BT(C[M]) = BT(C[N]).
 by completeness of inside-out reductions.

Bohm trees (2/3)

Theorem [74] Let $M \equiv_{BT} N$ iff BT(M) = BT(N). Then \equiv_{BT} is a (consistent) semantics of the λ -calculus.

Proof: (1) $M \xrightarrow{\bullet} N$ implies BT(M) = BT(N). by Church-Rosser.

BT(M) = BT(N) implies BT(C[M]) = BT(C[N]).
 by completeness of inside-out reductions.

Bohm trees (2/3)

Theorem [74] Let $M \equiv_{BT} N$ iff BT(M) = BT(N). Then \equiv_{BT} is a (consistent) semantics of the λ -calculus.

Proof: (1) $M \xrightarrow{\bullet} N$ implies BT(M) = BT(N). by Church-Rosser.

BT(M) = BT(N) implies BT(C[M]) = BT(C[N]).
 by completeness of inside-out reductions.

Bohm trees (3/3)

Facts [74] All Scott's semantics are quotients of equality of Bohm trees: D_{∞} , $P\omega$, T^{ω} , filter models, Jim Morris' extensional equiv.

Bohm trees (3/3)

Facts [74] All Scott's semantics are quotients of equality of Bohm trees: D_{∞} , $P\omega$, T^{ω} , filter models, Jim Morris' extensional equiv.

Bohm trees (3/3)

Facts [74] All Scott's semantics are quotients of equality of Bohm trees: D_{∞} , $P\omega$, T^{ω} , filter models, Jim Morris' extensional equiv.

Bohm trees (3/3)

Facts [74] All Scott's semantics are quotients of equality of Bohm trees: D_{∞} , $P\omega$, T^{ω} , filter models, Jim Morris' extensional equiv.