Reductions and Causality (VI)

* | jean-jacques.levy@inria.fr

y A Escuela de Ciencias Informaticas
Universidad de Buenos Aires

4 * July 26,2013

http://jeanjacqueslevy.net/courses/13eci

[EI-V.vFi,r :@

t?;;:,
..“‘

Reductions and Causality (VI)

* I jean-jacques.levy@inria.fr
y A Escuela de Ciencias Informaticas

Universidad de Buenos Aires
* July 26,2013

http://jeanjacqueslevy.net/courses/13eci
@Yaﬂr @
#?y '<| b

@-J

Reductions and Causality (VI)

* | jean-jacques.levy@inria.fr
y ‘ Escuela de Ciencias Informaticas

Universidad de Buenos Aires
4 * July 26,2013

http://jeanjacqueslevy.net/courses/13eci

EI-"&FIJ @

1‘?&' :

F&N

G

Reductions and Causality (VI)

* I jean-jacques.levy@inria.fr
y A Escuela de Ciencias Informaticas

Universidad de Buenos Aires
* July 26,2013

http://jeanjacqueslevy.net/courses/13eci
@1'4?{]‘ @

#yy Ku:

Plan

e complete reductions

e sublattice of complete reductions

* more on canonical representatives
» costs of reductions + sharing

* speculative computations

e semantics with Bohm trees

Plan

e complete reductions

e sublattice of complete reductions

* more on canonical representatives
» costs of reductions + sharing

* speculative computations

* semantics with Bohm trees

Plan

e complete reductions

e sublattice of complete reductions

* more on canonical representatives
» costs of reductions + sharing

* speculative computations

e semantics with Bohm trees

Plan

e complete reductions

e sublattice of complete reductions

* more on canonical representatives
» costs of reductions + sharing

* speculative computations

* semantics with Bohm trees

ed A-calculus

CENTRE DE RECHERCHE
COMMUN
INRIA
MICROSOFT RESEARCH

ed A-calculus

CENTRE DE RECHERCHE
COMMUN
INRIA
MICROSOFT RESEARCH

ed A-calculus

CENTRE DE RECHERCHE
COMMUN
INRIA
MICROSOFT RESEARCH

ed A-calculus

CENTRE DE RECHERCHE
COMMUN
INRIA
MICROSOFT RESEARCH

Complete reductions (1/5)

 Each step contracts a full (AXXX)((AF.13)(AX.X))

single redex family f

(Af.£3)(AX.X)((Af.f3)(Ax.x))

7

(Af.f3)(Ax.x)((Ax.x)3) (AX.X)3((Af.f3)(Ax.x)) (Ax.xx)((Ax.x)3)

RNVAw

(Af.f3)(Ax.x)3 (Ax x)3(()\x x)3) 3((Af.f3)(Ax.x)) u
(Ax.x)33 . 3((Ax.x)3) (Ax.xx)3

|

Complete reductions (1/5)

» Each step contracts a full (AXXX)N(AL.F3)(AX.X))

single redex family /

(AL.F3)(AXx.X)((AL.f3)(Ax.X))

7

(Af.f3)(Ax.x)((Ax.x)3) (Ax.x)3((Af.f3)(Ax.x)) (Ax.xx)((Ax.x)3)

SN\ ST

(AF.F3)(Ax. x<: x)3IAx.<~ 3((Afj)(Ax.x))
(Ax.x)33 3((Ax.x)3) (Ax.xx)3

"N

33

Complete reductions (1/5)

 Each step contracts a full (AXXX)((AF.13)(AX.X))

single redex family ‘y

(Af.f3)(AX.X)((Af.f3)(Ax.x))

N

(Af.f3)(Ax.x)((Ax.x)3) (AX.X)3((Af.f3)(Ax.x)) (Ax.xx)((Ax.x)3)

| N\

(Af.f3)(Ax.x)3 ()\x x)3(()\x x)3) 3((Af.f3)(Ax.x))
(Ax.x)33 . 3((Ax.x)3) (Ax.xx)3

ENP%

Complete reductions (1/5)

e Each step contracts a full (AXXX)N(AL.F3)(AX.X))

single redex family /

(AL.F3) (Ax.X) (AL.£3)(AX.X))

7

(Af.f3)(Ax.x)((Ax.x)3) (Ax.x)3((Af.f3)(Ax.x)) (Ax.xx)((Ax.x)3)

TN\ ST

(AF.F3)(Ax. XQ: X)BIAX.K 3((A f./fii) (AX.x))
(Ax.x)33 . 3((Ax.x)3) (Ax.xx)3
kk l /
33

Complete reductions (2/5) Complete reductions (2/5)

* Definition [complete reductions]

(p, F) is an historical set of redexes when F is a set of
redexes in final term of p.

¢ Definition [complete reductions]

(p, F) is an historical set of redexes when F is a set of
redexes in final term of p.

(p, F) is f-complete when it is maximum set such that
R,S € F implies (p,R) ~ (p,S)
An f-complete reduction contracts an f-complete set at each step.

(p, F) is f-complete when it is maximum set such that
R,S € F implies (p,R) ~ (p,S)

An f-complete reduction contracts an f-complete set at each step.

* Proposition [lattice of f-complete reductions]

* Proposition [lattice of f-complete reductions]
Complete reductions form a sub-lattice of the lattice of reductions.

Complete reductions form a sub-lattice of the lattice of reductions.

Proof simple use of following lemma which implies f-complete

Proof simple use of following lemma which implies f-complete
parallel moves.

parallel moves.

Complete reductions (2/5) Complete reductions (2/5)

¢ Definition [complete reductions]

(p, F) is an historical set of redexes when F is a set of
redexes in final term of p.

¢ Definition [complete reductions]

(p, F) is an historical set of redexes when F is a set of
redexes in final term of p.

(p, F) is f-complete when it is maximum set such that {(p, F) is f-complete when it is maximum set such that

R,S € F implies (p,R) ~ (p,S) R,S € F implies (p,R) ~ (p,S)

An f-complete reduction contracts an f-complete set at each step. An f-complete reduction contracts an f-complete set at each step.

* Proposition [lattice of f-complete reductions]

¢ Proposition [lattice of f-complete reductions]
Complete reductions form a sub-lattice of the lattice of reductions.

Complete reductions form a sub-lattice of the lattice of reductions.

Proof simple use of following lemma which implies f-complete

Proof simple use of following lemma which implies f-complete
parallel moves.

parallel moves.

Complete reductions (3/5)

* Notations

M N N when M —F-> N and F is the set of redexes with
name « in M.

MaxRedNames(M) when all redexes in M have maximal names.

* Lemma [complete reductions preserve max redex names]

M => N and MaxRedNames(M) implies MaxRedNames(/V)

Complete reductions (3/5)

* Notations

M — N when M —}—> N and F is the set of redexes with
name « in M.

MaxRedNames(M) when all redexes in M have maximal names.

* Lemma [complete reductions preserve max redex names]

M = N and MaxRedNames(M) implies MaxRedNames(/N)

Complete reductions (3/5)

* Notations

M = N when M —F-> N and F is the set of redexes with
name « in M.

MaxRedNames(M) when all redexes in M have maximal names.

* Lemma [complete reductions preserve max redex names]

M = N and MaxRedNames(M) implies MaxRedNames(/V)

Complete reductions (3/5)

* Notations

M — N when M —}—> N and F is the set of redexes with
name « in M.

MaxRedNames(M) when all redexes in M have maximal names.

e Lemma [complete reductions preserve max redex names]

M = N and MaxRedNames(M) implies MaxRedNames(/N)

Complete reductions (4/5)

* Definition [d-complete reductions]

(p, F) is d-complete when it is maximum set such that
(po, Ro) < (p, F) for some (po, Ro)

An d-complete reduction contracts a d-complete set at each step.

* Proposition [below canonical representative]
Let (po, Ro) be canonical representative in its family.
Let po C p. Then (po, Ro) ~ (p. R) iff (po, Ro) < (p, K).

Proof difficult.

* Proposition [f-complete = d-complete]
d-complete reductions coincide with f-complete reductions.

Complete reductions (4/5)

* Definition [d-complete reductions]

</0, .7:> is d-complete when it is maximum set such that
<p0, R0> S <p, .;E> for some <p0, R0>

An d-complete reduction contracts a d-complete set at each step.

* Proposition [below canonical representative]
Let (po, Ro) be canonical representative in its family.
Let po C p. Then (po, Ro) ~ (p. R) iff (po, Ro) < (p, R).

Proof difficult.

* Proposition [f-complete = d-complete]
d-complete reductions coincide with f-complete reductions.

Complete reductions (4/5)

* Definition [d-complete reductions]

(p, F) is d-complete when it is maximum set such that

(po, Ro) < (p, F) for some (po, Ro)
An d-complete reduction contracts a d-complete set at each step.

* Proposition [below canonical representative]
Let (po, Ro) be canonical representative in its family.
Let po C p. Then (po, Ro) ~ (p. R) iff (po, Ro) < (p, K).

Proof difficult.

* Proposition [f-complete = d-complete]
d-complete reductions coincide with f-complete reductions.

Complete reductions (4/5)

¢ Definition [d-complete reductions]

(p, F) is d-complete when it is maximum set such that

<p0, R0> < <p, f> for some <p0, R0>
An d-complete reduction contracts a d-complete set at each step.

* Proposition [below canonical representative]
Let (po, Ro) be canonical representative in its family.
Let po C p. Then (po, Ro) ~ (p. R) iff (po, Ro) < (p, R).

Proof difficult.

* Proposition [f-complete = d-complete]
d-complete reductions coincide with f-complete reductions.

Complete reductions (5/5)

* Proposition [length of reduction = number of families]

In complete reductions, number of steps equals the number of
contracted redex families.

Proof application of MaxRedNames lemma.

e Corollary [optimal reductions]

In complete reductions, never redex of same family is contracted twice.

¢ Implementation [optimal reductions]
Can we implement efficiently complete reductions ?

Complete reductions (5/5)

* Proposition [length of reduction = number of families]

In complete reductions, number of steps equals the number of
contracted redex families.

Proof application of MaxRedNames lemma.

e Corollary [optimal reductions]
In complete reductions, never redex of same family is contracted twice.

¢ Implementation [optimal reductions]
Can we implement efficiently complete reductions ?

Complete reductions (5/5)

* Proposition [length of reduction = number of families]

In complete reductions, number of steps equals the number of
contracted redex families.

Proof application of MaxRedNames lemma.

e Corollary [optimal reductions]
In complete reductions, never redex of same family is contracted twice.

¢ Implementation [optimal reductions]
Can we implement efficiently complete reductions ?

Complete reductions (5/5)

* Proposition [length of reduction = number of families]

In complete reductions, number of steps equals the number of
contracted redex families.

Proof application of MaxRedNames lemma.

e Corollary [optimal reductions]
In complete reductions, never redex of same family is contracted twice.

¢ Implementation [optimal reductions]
Can we implement efficiently complete reductions ?

Implementation (1/5)

* Implementation [optimal reductions]
algorithm [John Lamping, 90 -- Gonthier-Abadi-JJ, 91]

¢ Sharing of basic values is easy:

(Ax.x + x)((Ax.x)3) —> <+) — <+)

(Ax.x)3 3

¢ Problem is sharing of functions:

(Ax.x3 + x4)((Ax.I(x)) —> o3 + o4 — 7?7

/

Ax.1(x)

Implementation (1/5)

¢ Implementation [optimal reductions]
algorithm [John Lamping, 90 -- Gonthier-Abadi-JJg, 91]

 Sharing of basic values is easy:

(Ax.x + x)((Ax.x)3) —> (4-) — <+)

(Ax.x)3 3

* Problem is sharing of functions:

()\X.X3—|—X4)((/\X./(X))——> 3 + o4 — ?7?

/

Ax.1(x)

Implementation (1/5)

* Implementation [optimal reductions]
algorithm [John Lamping, 90 -- Gonthier-Abadi-JJ, 91]

* Sharing of basic values is easy:

()\X-X + X)(()\X.X)3) —> (4—) — <_|_)

(Ax.x)3 3

¢ Problem is sharing of functions:

(Ax.x3 + x4)((Ax.I(x)) —> o3 + o4 — 7?7

/

Ax.1(x)

Implementation (1/5)

¢ Implementation [optimal reductions]
algorithm [John Lamping, 90 -- Gonthier-Abadi-JJg, 91]

 Sharing of basic values is easy:

(Ax.x + x)((Ax.x)3) —> (—l—) — <+)

(Ax.x)3 3

* Problem is sharing of functions:

(>\X.X3+X4)((/\X.I(X))——> 3 + o4 — ?7?

/

Ax.1(x)

Implementation (2/5)

(Ax.x3 + x4)((Ax.I(x)) —> 3 + e4 — e + o4

VAR

~/
o |+ o4 ') '\
() 3
—_ AX. —_— ...
3

Implementation (2/5)

(Ax.x3 + x4)(Ax.I(x)) —> o3 + o4 —> e + o4

o U

AX.
NS

o + o4 I(l) I(l)

} ;
—)k\ AX. —_ ...

Implementation (2/5)

(Ax.x3 + x4)((MAx.I(x)) —> 3 + e4 — e + o4

o UL

e 1) Q)

U |

Implementation (2/5)

(Ax.x3 + x4)(Ax.I(x)) —> o3 + o4 —> e + o4

e U

AX.
NS

o + o4 I(l) l(l)

—> \)\X- —_— ...

Implementation (3/5) Implementation (3/5)

Al Vs A A
gD 0o
S B
application A-abstraction application A-abstraction
Implementation (3/5) Implementation (3/5)
agil Al

Q
an
Q
o
N

application A-abstraction application A-abstraction

Implementation (4/5)

rules

Implementation (4/5) T
W

A
|

l‘)

=

rules

D

Implementation (4/5)
I

~

rules

Implementation (4/5) i

1

rules

Implementation (5/5)

* beautiful Lamping’s algorithm is unpractical

* highly exponential in the handling of fans node (not elementary
recursive) [Asperti, Mairson 2000]

* nice algorithms unsharing paths to bound variables [Wadsworth
92, Shivers-Wand 2010]

e Haskell, Coq, Caml ??

Implementation (5/5)

* beautiful Lamping’s algorithm is unpractical

* highly exponential in the handling of fans node (not elementary
recursive) [Asperti, Mairson 2000]

* nice algorithms unsharing paths to bound variables [Wadsworth
92, Shivers-Wand 2010]

* Haskell, Coq, Caml ??

Implementation (5/5)

* beautiful Lamping’s algorithm is unpractical

* highly exponential in the handling of fans node (not elementary
recursive) [Asperti, Mairson 2000]

* nice algorithms unsharing paths to bound variables [Wadsworth
92, Shivers-Wand 2010]

* Haskell, Coq, Caml ??

Implementation (5/5)

* beautiful Lamping’s algorithm is unpractical

* highly exponential in the handling of fans node (not elementary
recursive) [Asperti, Mairson 2000]

* nice algorithms unsharing paths to bound variables [Wadsworth
92, Shivers-Wand 2010]

» Haskell, Coq, Caml ??

veculative veculative
- computations - computations

heculative heculative
computations - computations

Permutations in call by value

e Definition [call by value]

A value remains a value if computed or substituted by a value
V = x | Ax.M
The call-by-value reduction strategy is defined by:

(Ax.-M)V —> M{x := V}

M?M' N?N’
/\/IN?M/N MN?/\/IN'

e Fact [permutations in call by value]
Equivalence by permutations only permute disjoint redexes.

Permutations in call by value

¢ Definition [call by value]

A value remains a value if computed or substituted by a value

V = x| Ax.M
The call-by-value reduction strategy is defined by:

(Ax.M)V —> M{x := V}

M—;)/\//’ N—;’)N’
/VINTbV)/\//’N MN?/\/IN’

* Fact [permutations in call by value]
Equivalence by permutations only permute disjoint redexes.

Permutations in call by value

¢ Definition [call by value]

A value remains a value if computed or substituted by a value
V &= x | Ax.M
The call-by-value reduction strategy is defined by:

(Ax.-M)V —> M{x := V}

M?M’ N?N'
/\/IN?M/N MN?/\/IN’

e Fact [permutations in call by value]
Equivalence by permutations only permute disjoint redexes.

Permutations in call by value

¢ Definition [call by value]

A value remains a value if computed or substituted by a value

V = x| Ax.M
The call-by-value reduction strategy is defined by:

(Ax.M)V —> M{x := V}

M—;)/\/l/ N—;’)N/
/VINTbV)/\//’N MN?MN’

* Fact [permutations in call by value]
Equivalence by permutations only permute disjoint redexes.

Speculative reductions

* Definition [speculative call, Boudol-Petri 2010]
V = x | Asx.M

The speculative reduction strategy is defined by:

(Ax.M)V —> M{x = V}
(Ax.M)N —> (AV? M{x := V})N

AVIM)V — M

spec

M— M N — N’ M — M’

spec spec spec

MN — M'N MN — MN" AV?M — AV?M'

spec spec spec

Speculative reductions

e Definition [speculative call, Boudol-Petri 2010]
V i= x| &x.M

The speculative reduction strategy is defined by:
(Ax.M)V —> M{x = V}
A MN —> (AV? M{x := V})N

AVIM)V — M

spec

M — M’ N— N’ M — M

spec spec spec

MN — M'N MN — MN" AV?M — AV?M’

spec spec spec

Speculative reductions

* Definition [speculative call, Boudol-Petri 2010]
V &= x | Asx.M

The speculative reduction strategy is defined by:

(Ax.M)V —> M{x = V}
(Ax.M)N —> (AV? M{x := V})N

AVIM)V — M

spec

M — M N — N’ M — M’

spec spec spec

MN — M'N MN — MN" AV?M — AV?M’

spec spec spec

Speculative reductions

¢ Definition [speculative call, Boudol-Petri 2010]
V i= x| Ax.M

The speculative reduction strategy is defined by:

(Ax.M)V —> M{x = V}
(Ax.M)N — (AV?M{x := V})N

AVIM)V — M

spec

M—> M’ N— N M —> M’

spec spec spec

MN — M'N MN — MN" AV?M — AV?M’

spec spec spec

INg meaning to iNg meaning to
A-expressions "A-€xpressions

INg meaning to iNg meaning to
~expressions U A-expressions

Semantics

Definition A semantics of the A-calculus is any equivalence such that:

(1) M- Nimplies M =N
(2) M= N implies C[M] = C[N]

* Thus [-interconvertibility =g is a semantics.

e Any other interesting semantics ?

Semantics

Definition A semantics of the A-calculus is any equivalence such that:

(1) M- Nimplies M =N
(2) M = N implies C[M] = C[N]

* Thus [-interconvertibility =g is a semantics.

* Any other interesting semantics ?

Semantics

Definition A semantics of the A-calculus is any equivalence such that:
(1) M- Nimplies M =N
(2) M= N implies C[M] = C[N]

* Thus [-interconvertibility =g is a semantics.

e Any other interesting semantics ?

Semantics

Definition A semantics of the A-calculus is any equivalence such that:
(1) M= Nimplies M =N
(2) M = N implies C[M] = C[N]

* Thus [-interconvertibility =g is a semantics.

* Any other interesting semantics ?

BOhm’s theorem

Theorem [Bohm, 68]

Let M and N be 2 distinct normal forms. Then for any x and y,
there exists a context C[] such that:

CIM]=>»x and C[N]-=>y

Corollary Any (consistent) semantics of the A-calculus cannot identify
2 distinct normal forms.

Notice Distinct normal forms means not n-interconvertible.

Exercice Bohm's thm for | = Ax.x and K = Ax.\y.x.

Bohm’s theorem

Theorem [Bohm, 68]

Let M and N be 2 distinct normal forms. Then for any x and y,
there exists a context C[| such that:

CIM] <> x and C[N] 2>y

Corollary Any (consistent) semantics of the A-calculus cannot identify
2 distinct normal forms.

Notice Distinct normal forms means not n-interconvertible.

Exercice Bohm's thm for | = Ax.x and K = Ax.\y.x.

BOhm’s theorem

Theorem [Bohm, 68]

Let M and N be 2 distinct normal forms. Then for any x and y,
there exists a context C[] such that:

CIM]=>»x and C[N]-=>y

Corollary Any (consistent) semantics of the A-calculus cannot identify
2 distinct normal forms.

Notice Distinct normal forms means not n-interconvertible.

Exercice Bohm's thm for | = Ax.x and K = Ax.\y.x.

Bohm’s theorem

Theorem [Bohm, 68]

Let M and N be 2 distinct normal forms. Then for any x and y,
there exists a context C[| such that:

CIM] <> x and C[N] 2>y

Corollary Any (consistent) semantics of the A-calculus cannot identify
2 distinct normal forms.

Notice Distinct normal forms means not n-interconvertible.

Exercice Bohm's thm for | = Ax.x and K = Ax.\y.x.

Terms without normal forms

Lemma It is inconsistent to identify all terms without normal forms

Proof: Take M = xaQ, N = yQb where Q = (Ax.xx)(Ax.xx)
Let C[] = (Ax Ay [)K(KI)
Then C[M] <> a and C[N]—=> b

Question Which terms can be consistently identified ?

Easy terms [Bohm, Jacopini] /[= Q is consistent !

Terms without normal forms

Lemma It is inconsistent to identify all terms without normal forms

Proof: Take M = xaQ2, N = yQb where Q = (Ax.xx)(Ax.xx)
Let C[] = (AxAy.[)K(KI)
Then C[M] <> a and C[N] > b

Question Which terms can be consistently identified ?

Easy terms [Bohm, Jacopini] [= Q is consistent !

Terms without normal forms

Lemma It is inconsistent to identify all terms without normal forms

Proof: Take M = xaQ, N = yQb where Q = (Ax.xx)(Ax.xx)
Let C[] = (A Ay [)K(KI)
Then C[M] <> a and C[N]—=> b

Question Which terms can be consistently identified ?

Easy terms [Bohm, Jacopini] /[= Q is consistent !

Terms without normal forms

Lemma It is inconsistent to identify all terms without normal forms

Proof: Take M = xaQ, N = yQb where Q = (Ax.xx)(Ax.xx)
Let C[] = (Ax.Ay.[)K(KI)
Then C[M] <> a and C[N] > b

Question Which terms can be consistently identified ?

Easy terms [Bohm, Jacopini] [= Q is consistent !

Terms without normal forms

Definition [Wadsworth, 72] M is totally undefined iff

for all C[], if C[M] = nf, then C[N] = nf for any N.

Fact: Q is totally undefined.
xaf) and y€2b are not totally undefined.

Exercice:

Find other terms totally undefined. Try with Az = Ax.xxx,
K = Ax.Ay.x and Y = Af.(Ax.f(xx))(Ax.f(xx)).

Terms without normal forms

Definition [Wadsworth, 72] M is totally undefined iff

for all C[], if C[M] = nf, then C[N] = nf for any N.

Fact: Q is totally undefined.
xaS) and yQ2b are not totally undefined.

Exercice:

Find other terms totally undefined. Try with Az = Ax.xxx,
K = Ax.Ay.x and Y = Af.(Ax.f(xx))(Ax.f(xx)).

Terms without normal forms

Definition [Wadsworth, 72] M is totally undefined iff

for all C[], if C[M] = nf, then C[N] = nf for any N.

Fact: Q is totally undefined.
xaf) and y$2b are not totally undefined.

Exercice:

Find other terms totally undefined. Try with Az = Ax.xxx,
K = Ax.Ay.x and Y = Af.(Ax.f(xx))(Ax.f(xx)).

Terms without normal forms

Definition [Wadsworth, 72] M is totally undefined iff

for all C[], if C[M] = nf, then C[N] = nf for any N.

Fact: Q is totally undefined.
xaS) and yQ2b are not totally undefined.

Exercice:

Find other terms totally undefined. Try with Az = Ax.xxx,
K = Ax.Ay.x and Y = Af.(Ax.f(xx))(Ax.f(xx)).

Terms without normal forms

Definition [Wadsworth, 72] M isin head normal form (hnf) iff
MI)\Xl.)\Xz....)\Xm.XMle...M,, (m,nZ 0)

M not in hnf iff head variable

M = Axy.Axa. ... AxXpm-.(Ax.P)QMy My ... M, (m, n > 0)
R_ head redex

Proposition: M totally undefined iff M has no hnf.

Terms without normal forms

Definition [Wadsworth, 72] M is in head normal form (hnf) iff
M = A1 Axz. ... XX xMy My ... M, (m, n > 0)

M not in hnf iff head variable

M:)\X1.>\X2....)\Xm.(AX.P!QMlMQ...Mn (m,nZO)
R head redex

Proposition: M totally undefined iff M has no hnf.

Terms without normal forms

Definition [Wadsworth, 72] M isin head normal form (hnf) iff
MI)\Xl.)\X2....)\Xm.XMlM2...M,, (m,nZ 0)

M not in hnf iff head variable

M = Ax1.Axa. ... AxXpm-(Ax.P)QMy My ... M, (m, n > 0)
R_ head redex

Proposition: M totally undefined iff M has no hnf.

Terms without normal forms

Definition [Wadsworth, 72] M is in head normal form (hnf) iff
M = A1 Axz. ... XX xMy My ... M, (m, n > 0)

M not in hnf iff head variable

M:)\Xl.)\XQ....)\Xm.()\X.P!QMlMQ...Mn (m,nZO)
R head redex

Proposition: M totally undefined iff M has no hnf.

Bohm trees (1/3)

Definition [72] The Bohm tree BT(M) of M is defined(?) as follows:
(1) If M has no hnf, BT(M) =

(2) M= Ax1.Ax2 ... Ay xMy My ... M, then
BT(M) = Ax1.Axz ... Axp.X

AT

BT(Ml) BT(M,) --- BT(M,)

Exercices Compute BT(/), BT(K), BT(Q2), BT(Y), ...
BT(LLLLLLLLLLLLLLLLLLLLLLLLLL) where

L = Aabcdefghijkimnopgstuvwxyzr. (r(thisisafixedpointcomb
inator))

Bohm trees (1/3)

Definition [72] The Bohm tree BT(M) of M is defined(?) as follows:
(1) If M has no hnf, BT(M) =

(2) If M —=> AX1AXD .. XXy XMy My ... M, then

BT(M) = Ax1.Ax2 ... Axm.X

AT

BT(My) BT(M,) --- BT(M,)

Exercices Compute BT(/), BT(K), BT(Q2), BT(Y), ...
BT(LLLLLLLLLLLLLLLLLLLLLLLLLL) where

L = Aabcdefghijkimnopgstuvwxyzr. (r (thisisafixedpointcomb
inator))

Bohm trees (1/3)

Definition [72] The Bohm tree BT(M) of M is defined(?) as follows:
(1) If M has no hnf, BT(M) =

(2) M= Ax1. %2 ... Ay xMy My ... M, then

AT

BT(Ml) BT(My) --- BT(M,)

BT(M) = Axp.Axz ... Axpm.X

Exercices Compute BT(/), BT(K), BT(Q2), BT(Y), ...
BT(LLLLLLLLLLLLLLLLLLLLLLLLLL) where

L = Nabcdefghijkimnopgstuvwxyzr. (r(thisisafixedpointcomb
inator))

Bohm trees (1/3)

Definition [72] The Bohm tree BT(M) of M is defined(?) as follows:
(1) If M has no hnf, BT(M) =

(2) If M —=> AX1.AXo .. XXy XMy My ... M, then

BT(M) =)\Xl.)\Xz)\Xm

SN T~

BT(My) BT(M,) --- BT(M,)

Exercices Compute BT(/), BT(K), BT(Q2), BT(Y), ...
BT(LLLLLLLLLLLLLLLLLLLLLLLLLL) where

L = Aabcdefghijkimnopgstuvwxyzr. (r (thisisafixedpointcomb
inator))

Bohm trees (2/3)

Theorem [74] Let M =gt N iff BT(M) = BT(N). Then =gt is

a (consistent) semantics of the A-calculus.

Proof: (1) M —> N implies BT(M) = BT(N).
by Church-Rosser.

(2) BT(M) = BT(N) implies BT(C[M]) = BT(C[N]).
by completeness of inside-out reductions.

Bohm trees (2/3)

Theorem [74] Let M =gt N iff BT(M) = BT(N). Then =gt is

a (consistent) semantics of the A-calculus.

Proof: (1) M —=> N implies BT(M) = BT(N).
by Church-Rosser.

(2) BT(M)=BT(N) implies BT(C[M]) = BT(C[N]).
by completeness of inside-out reductions.

Bohm trees (2/3)

Theorem [74] Let M =gt N iff BT(M) = BT(N). Then =gt is

a (consistent) semantics of the A-calculus.

Proof: (1) M = N implies BT(M) = BT(N).
by Church-Rosser.

(2) BT(M) = BT(N) implies BT(C[M]) = BT(C[N]).
by completeness of inside-out reductions.

Bohm trees (2/3)

Theorem [74] Let M =gt N iff BT(M) = BT(N). Then =gt is

a (consistent) semantics of the A-calculus.

Proof: (1) M = N implies BT(M) = BT(N).
by Church-Rosser.

(2) BT(M)=BT(N) implies BT(C[M]) = BT(C[N]).
by completeness of inside-out reductions.

Bohm trees (3/3)

Facts [74] All Scott’'s semantics are quotients of equality of

Bohm trees: D, Pw, T, filter models, Jim Morris' extensional equiv.

Bohm trees (3/3)

Facts [74] All Scott's semantics are quotients of equality of

Bohm trees: D, Pw, T¥, filter models, Jim Morris’ extensional equiv.

Bohm trees (3/3)

Facts [74] All Scott’'s semantics are quotients of equality of
Bohm trees: D, Pw, T, filter models, Jim Morris' extensional equiv.

Bohm trees (3/3)

Facts [74] All Scott’s semantics are quotients of equality of
Bohm trees: D, Pw, T¥, filter models, Jim Morris' extensional equiv.

