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• Each step contracts a full 
single redex family
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Complete reductions (2/5)
• Definition [complete reductions]

R , S 2 F implies h⇢,Ri ⇠ h⇢, Si
is f-complete when it is maximum set such thath⇢,Fi

An f-complete reduction contracts an f-complete set at each step.

h⇢,Fi is an historical set of redexes when F is a set of
redexes in final term of ⇢.

• Proposition [lattice of f-complete reductions]

Proof  simple use of following lemma which implies f-complete 
parallel moves.

Complete reductions form a sub-lattice of the lattice of reductions.
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Complete reductions (3/5)
• Notations

MaxRedNames(M) when all redexes in M have maximal names.

M
↵

N when M
F

N and F is the set of redexes with
name ↵ in M.

• Lemma [complete reductions preserve max redex names]
M

↵
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Complete reductions (4/5)

• Proposition [f-complete = d-complete]
d-complete reductions coincide with f-complete reductions.

An d-complete reduction contracts a d-complete set at each step.
h⇢0,R0i  h⇢,Fi for some h⇢0,R0i

is d-complete when it is maximum set such thath⇢,Fi
• Definition [d-complete reductions]

Proof  difficult.

• Proposition [below canonical representative]
Let h⇢0,R0i be canonical representative in its family.
Let ⇢0 v ⇢. Then h⇢0,R0i ⇠ h⇢,Ri i↵ h⇢0,R0i  h⇢,Ri.
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Complete reductions (5/5)

• Corollary [optimal reductions]
In complete reductions, never redex of same family is contracted twice.

• Implementation [optimal reductions]
Can we implement efficiently complete reductions ?

• Proposition [length of reduction = number of families]

Proof  application of MaxRedNames lemma.

In complete reductions, number of steps equals the number of 
contracted redex families.
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Implementation (1/5)
• Implementation [optimal reductions]

algorithm [John Lamping, 90 -- Gonthier-Abadi-JJ, 91]

• Sharing of basic values is easy:

• Problem is sharing of functions:

(�x .x + x)((�x .x)3) •+ •

(�x .x)3

•+ •

3

(�x .x3 + x4)((�x .I (x))

�x .I (x)

• 3 + • 4 ??
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Implementation (5/5)

• beautiful Lamping’s algorithm is unpractical

• highly exponential in the handling of fans node (not elementary 
recursive) [Asperti, Mairson 2000] 

• nice algorithms unsharing paths to bound variables [Wadsworth 
92, Shivers-Wand 2010]
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Permutations in call by value
• Definition [call by value]

A value remains a value if computed or substituted by a value

V ::= x | �x .M
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M{x := V }

M
cbv

M 0

MN
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M 0N
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The call-by-value reduction strategy is defined by:

• Fact [permutations in call by value]
Equivalence by permutations only permute disjoint redexes.
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Semantics
Definition A semantics of the �-calculus is any equivalence such that:

(1) M N implies M ⌘ N

(2) M ⌘ N implies C [M] ⌘ C [N]

• Thus �-interconvertibility =� is a semantics.

•  Any other interesting semantics ? 
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Böhm’s theorem
Theorem [Bohm, 68] 
Let M and N be 2 distinct normal forms. Then for any x and y ,
there exists a context C [ ] such that:

C [M] x C [N] yand

Corollary  Any (consistent) semantics of the λ-calculus cannot identify 
2 distinct normal forms.

Notice  Distinct normal forms means not η-interconvertible.

Exercice Bohm’s thm for I = �x .x and K = �x .�y .x .
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Terms without normal forms
Lemma  It is inconsistent to identify all terms without normal forms

Question  Which terms can be consistently identified ?

Proof:

Easy terms [Bohm, Jacopini] 

Take M = xa⌦, N = y⌦b

Let C [ ] = (�x .�y .[ ])K (KI )

Then C [M] a and C [N] b

where ⌦ = (�x .xx)(�x .xx)

I = ⌦ is consistent !
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Terms without normal forms

Fact:  

Definition [Wadsworth, 72] M is totally undefined i↵

for all C [ ], if C [M] nf , then C [N] nf for any N.

⌦ is totally undefined.
xa⌦ and y⌦b are not totally undefined.

Exercice:  
Find other terms totally undefined. Try with �3 = �x .xxx ,
K = �x .�y .x and Y = �f .(�x .f (xx))(�x .f (xx)).
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Terms without normal forms
Definition [Wadsworth, 72] M is in head normal form (hnf) i↵

M = �x1.�x2. ...�xm.xM1M2 ...Mn (m, n � 0)

M not in hnf i↵
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head redex

head variable

Proposition:  M totally undefined i↵ M has no hnf.
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Bohm trees (1/3)
Definition [72] The Bohm tree BT(M) of M is defined(?) as follows:

BT(M) = �x1.�x2 ...�xm.x

BT(M1) BT(M2) BT(Mn)· · ·

(1) If M has no hnf, BT(M) = ?

(2) If M �x1.�x2 ...�xm.xM1M2 ...Mn, then

Exercices Compute BT(I ), BT(K ), BT(⌦), BT(Y ), . . .

BT (L L L L L L L L L L L L L L L L L L L L L L L L L L)   where  
L = λabcdefghijklmnopqstuvwxyzr. (r (t h i s i s a f i x e d p o i n t c o m b 
i n a t o r))
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Bohm trees (2/3)
Theorem [74] Let M ⌘BT N i↵ BT(M) = BT(N). Then ⌘BT is

a (consistent) semantics of the �-calculus.

(2) BT(M) = BT(N) implies BT(C [M]) = BT(C [N]).

by completeness of inside-out reductions.

Proof: (1) M N implies BT(M) = BT(N).

by Church-Rosser.
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Bohm trees (3/3)
Facts [74] All Scott’s semantics are quotients of equality of
Bohm trees: D1,P!,T!, filter models, Jim Morris’ extensional equiv.
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