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* Definition [complete reductions]

(p, F) is an historical set of redexes when F is a set of
redexes in final term of p.
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* Notations

M N N when M —F-> N and F is the set of redexes with
name « in M.

MaxRedNames(M) when all redexes in M have maximal names.

* Lemma [complete reductions preserve max redex names]

M => N and MaxRedNames(M) implies MaxRedNames(/V)
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* Definition [d-complete reductions]

(p, F) is d-complete when it is maximum set such that
(po, Ro) < (p, F) for some (po, Ro)

An d-complete reduction contracts a d-complete set at each step.

* Proposition [below canonical representative]
Let (po, Ro) be canonical representative in its family.
Let po C p. Then (po, Ro) ~ (p. R) iff (po, Ro) < (p, K).

Proof difficult.

* Proposition [ f-complete = d-complete]
d-complete reductions coincide with f-complete reductions.
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* Proposition [ length of reduction = number of families]

In complete reductions, number of steps equals the number of
contracted redex families.

Proof application of MaxRedNames lemma.

e Corollary [optimal reductions]

In complete reductions, never redex of same family is contracted twice.

¢ Implementation [optimal reductions]
Can we implement efficiently complete reductions ?
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* Implementation [optimal reductions]
algorithm [ John Lamping, 90 -- Gonthier-Abadi-JJ, 91]

¢ Sharing of basic values is easy:

(Ax.x + x)((Ax.x)3) —> <+) — <+)

(Ax.x)3 3

¢ Problem is sharing of functions:

(Ax.x3 + x4)((Ax.I(x)) —> o3 + o4 — 7?7

/

Ax.1(x)
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* beautiful Lamping’s algorithm is unpractical

* highly exponential in the handling of fans node (not elementary
recursive) [Asperti, Mairson 2000]

* nice algorithms unsharing paths to bound variables [Wadsworth
92, Shivers-Wand 2010]

e Haskell, Coq, Caml ??
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Permutations in call by value

e Definition [call by value]

A value remains a value if computed or substituted by a value
V = x | Ax.M
The call-by-value reduction strategy is defined by:

(Ax.-M)V —> M{x := V}

M?M' N?N’
/\/IN?M/N MN?/\/IN'

e Fact [permutations in call by value]
Equivalence by permutations only permute disjoint redexes.
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Speculative reductions

* Definition [ speculative call, Boudol-Petri 2010]
V = x | Asx.M

The speculative reduction strategy is defined by:

(Ax.M)V —> M{x = V}
(Ax.M)N —> (AV? M{x := V})N

AVIM)V — M
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spec spec spec
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spec spec spec

Speculative reductions

e Definition [ speculative call, Boudol-Petri 2010]
V i= x| &x.M

The speculative reduction strategy is defined by:
(Ax.M)V —> M{x = V}
A MN —> (AV? M{x := V})N

AVIM)V — M

spec

M — M’ N— N’ M — M

spec spec spec

MN — M'N MN — MN"  AV?M — AV?M’

spec spec spec

Speculative reductions

* Definition [ speculative call, Boudol-Petri 2010]
V &= x | Asx.M

The speculative reduction strategy is defined by:

(Ax.M)V —> M{x = V}
(Ax.M)N —> (AV? M{x := V})N

AVIM)V — M

spec

M — M N — N’ M — M’

spec spec spec

MN — M'N MN — MN"  AV?M — AV?M’

spec spec spec

Speculative reductions

¢ Definition [ speculative call, Boudol-Petri 2010]
V i= x| Ax.M

The speculative reduction strategy is defined by:

(Ax.M)V —> M{x = V}
(Ax.M)N — (AV?M{x := V})N

AVIM)V — M

spec

M—> M’ N— N M —> M’

spec spec spec

MN — M'N MN — MN"  AV?M — AV?M’

spec spec spec




INg meaning to iNg meaning to
A-expressions "A-€xpressions

INg meaning to iNg meaning to
~expressions U A-expressions




Semantics

Definition A semantics of the A-calculus is any equivalence such that:

(1) M- Nimplies M =N
(2) M= N implies C[M] = C[N]

* Thus [-interconvertibility =g is a semantics.

e Any other interesting semantics ?
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BOhm’s theorem

Theorem [Bohm, 68]

Let M and N be 2 distinct normal forms. Then for any x and y,
there exists a context C[ ] such that:

CIM]=>»x and C[N]-=>y

Corollary Any (consistent) semantics of the A-calculus cannot identify
2 distinct normal forms.

Notice Distinct normal forms means not n-interconvertible.

Exercice Bohm's thm for | = Ax.x and K = Ax.\y.x.
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Terms without normal forms

Lemma It is inconsistent to identify all terms without normal forms

Proof: Take M = xaQ, N = yQb  where Q = (Ax.xx)(Ax.xx)
Let C[] = (Ax Ay [)K(KI)
Then C[M] <> a and C[N]—=> b

Question Which terms can be consistently identified ?

Easy terms [Bohm, Jacopini] /[ = Q is consistent !
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Terms without normal forms

Definition [Wadsworth, 72] M is totally undefined iff

for all C[], if C[M] = nf, then C[N] = nf for any N.

Fact: Q is totally undefined.
xaf) and y€2b are not totally undefined.

Exercice:

Find other terms totally undefined. Try with Az = Ax.xxx,
K = Ax.Ay.x and Y = Af.(Ax.f(xx))(Ax.f(xx)).

Terms without normal forms

Definition [Wadsworth, 72] M is totally undefined iff

for all C[], if C[M] = nf, then C[N] = nf for any N.

Fact: Q is totally undefined.
xaS) and yQ2b are not totally undefined.

Exercice:

Find other terms totally undefined. Try with Az = Ax.xxx,
K = Ax.Ay.x and Y = Af.(Ax.f(xx))(Ax.f(xx)).

Terms without normal forms

Definition [Wadsworth, 72] M is totally undefined iff

for all C[], if C[M] = nf, then C[N] = nf for any N.

Fact: Q is totally undefined.
xaf) and y$2b are not totally undefined.

Exercice:

Find other terms totally undefined. Try with Az = Ax.xxx,
K = Ax.Ay.x and Y = Af.(Ax.f(xx))(Ax.f(xx)).

Terms without normal forms

Definition [Wadsworth, 72] M is totally undefined iff

for all C[], if C[M] = nf, then C[N] = nf for any N.

Fact: Q is totally undefined.
xaS) and yQ2b are not totally undefined.

Exercice:

Find other terms totally undefined. Try with Az = Ax.xxx,
K = Ax.Ay.x and Y = Af.(Ax.f(xx))(Ax.f(xx)).



Terms without normal forms

Definition [Wadsworth, 72] M isin head normal form (hnf) iff
MI)\Xl.)\Xz....)\Xm.XMle...M,, (m,nZ 0)

M not in hnf iff head variable

M = Axy.Axa. ... AxXpm-.(Ax.P)QMy My ... M, (m, n > 0)
R_ head redex

Proposition: M totally undefined iff M has no hnf.
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Bohm trees (1/3)

Definition [ 72] The Bohm tree BT(M) of M is defined(?) as follows:
(1) If M has no hnf, BT(M) =

(2) M= Ax1.Ax2 ... Ay xMy My ... M, then
BT(M) = Ax1.Axz ... Axp.X

AT

BT(Ml) BT(M,) --- BT(M,)

Exercices Compute BT(/), BT(K), BT(Q2), BT(Y), ...
BT(LLLLLLLLLLLLLLLLLLLLLLLLLL) where

L = Aabcdefghijkimnopgstuvwxyzr. (r(thisisafixedpointcomb
inator))
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Theorem [74] Let M =gt N iff BT(M) = BT(N). Then =gt is

a (consistent) semantics of the A-calculus.

Proof: (1) M —> N implies BT(M) = BT(N).
by Church-Rosser.

(2) BT(M) = BT(N) implies BT(C[M]) = BT(C[N]).
by completeness of inside-out reductions.
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Facts [74] All Scott’'s semantics are quotients of equality of

Bohm trees: D, Pw, T, filter models, Jim Morris' extensional equiv.
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