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Plan

• a labeled λ-calculus 
• lattice of labeled reductions 
• labels and redex families 
• canonical representatives 
• strong normalization 
• Hyland-Wadsworth labeled calculus 
• labels and types



Labeled λ-calculus



• Give names to every redex and try make this naming consistent 
with permutation equivalence.

• Give names to some subterms:

where

• Conversion rule is:

is name of redex↵

A labeled lambda-calculus (1/3)

(�x .M)↵N Md↵e{x := Nb↵c}

M,N, ... ::= x | MN | �x .M | M↵

and(M↵)� = M↵� M↵ {x := N} = (M{x := N})↵



A labeled lambda-calculus (2/3)

N�x

x

M

↵

x

d↵e

b↵c
M

b↵c

NN



A labeled lambda-calculus (3/3)
• Labels are strings of atomic labels:

atomic labels

↵,�, ... ::= a, b, c , ... | d↵e | b↵c | ↵� | ✏

• Labels are strings of atomic labels:

a, b, c , ... atomic letters

d↵e, b↵c, ... overlined, underlined labels

↵� compound labels

✏ = b✏c = d✏e empty label



Our favorite example

• 3 redex families: red, blue, green.

(λx.xx)((λf.f3)(λx.x))

(λf.f3)(λx.x)((λf.f3)(λx.x))

(λx.xx)((λx.x)3)(λx.x)3((λf.f3)(λx.x))(λf.f3)(λx.x)((λx.x)3)

3((λf.f3)(λx.x))(λx.x)3((λx.x)3)

3((λx.x)3)

33

(λx.x)33

(λf.f3)(λx.x)3

(λx.xx)3



ia•3 families: ubick
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a
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i
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ii

ubickubickubick

ubick ubick

ubickubick
((�x .(xcxd)b)a C )p

((�x .(xcxd)b)a B)p

((�x .(xcxd)b)a A)p

(Abacc Abacd)bdaep

(Abacc Bbacd)bdaep (Bbacc Abacd)bdaep

(C bacc Abacd)bdaep
(Bbacc Bbacd)bdaep

(Abacc C bacd)bdaep

(Bbacc C bacd)bdaep

(C bacc C bacd)bdaep

(C bacc Bbacd)bdaep

Our favorite example
A = ((�f .(f k 3`)j)i (�x .xv )u)q

B = ((�x .xv )ubick 3`)jdieq

C = 3`bubickcvdubickejdieq
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((�x .(xcxd)b)a ((�f .(f k 3`)j)i (�x .xv )u)q)p

ia•3 families:
( ((�f .(f k 3`)j)i (�x .xv )u)qbacc

((�f .(f k 3`)j)i (�x .xv )u)qbacd )bdaep

( ((�x .xv )ubick 3`)jdieqbacc

((�f .(f k 3`)j)i (�x .xv )u)qbacd )bdaep( ((�f .(f k 3`)j)i (�x .xv )u)qbacc

((�x .xv )ubick 3`)jdieqbacd )bdaep

( ((�x .xv )ubick 3`)jdieqbacc

((�x .xv )ubick 3`)jdieqbacd )bdaep

(3`bubickcvdubickejdieqbacc

3`bubickcvdubickejdieqbacd)bdaep

((�x .(xcxd)b)a((�x .xv )ubick 3`)jdieq)p

( 3`bubickcvdubickejdieqbacc

((�x .xv )ubick 3`)jdieqbacd )bdaep

( 3`bubickcvdubickejdieqbacc

((�f .(f k 3`)j)i (�x .xv )u)qbacd )bdaep
( ((�f .(f k 3`)j)i (�x .xv )u)qbacc

3`bubickcvdubickejdieqbacd )bdaep

( ((�x .xv )ubick 3`)jdieqbacc

3`bubickcvdubickejdieqbacd )bdaep

((�x .(xcxd)b)a

3`bubickcvdubickejdieq)p

ubickubickubick

ubick
ubick

ubickubick

ubick



Creation of redexes (1/3)

•2 independent redexes a and u creates the new one

•3 families: a u ibucvdueqbacc

a
u

u
a

( (�f .(f c 3d)b)a ((�x .xv )u(�x .(xkx`)j)i )q )p

( ((�x .xv )u(�x .(xkx`)j)i )qbacc 3d )bdaep

( (�f .(f c 3d)b)a (�x .(xkx`)j)ibucvdueq )p

( (�x .(xkx`)j)ibucvdueqbacc 3d)bdaep



Creation of redexes (2/3)

•2 independent redexes a and u creates the new one

•3 families: a i jdieqbacc

a

a

i

i

( (�f .(f c 3d)b)a ((�x .(�y .xk)j)i I )q )p

( ((�x .(�y .xk)j)i I )qbacc 3d)bdaep

( (�f .(f c 3d)b)a(�y .I bick)jdieq )p

((�y .I bick)jdieqbacc 3d)bdaep



Creation of redexes (3/3)

•infinite number of families

((�x .(xcxd)b)a �)p � = ((�x .(xgxh)f )e

(�↵1�↵0
1)�1 = (�bacc�bacd)bdaep

(�↵2�↵0
2)�2 = (�bebacccg�bebaccch)f debaccebdaep

(�↵3�↵0
3)�3 = (�bebebacccgcg�bebebacccgch)f debebacccgef debaccebdaep

(�↵n+1�↵0
n+1)�n+1 = (�be↵ncg�be↵nch)f de↵ne�n



Permutation equivalence (1/7)

• Definition [created redexes] Let h⇢,Ri be historical redex.

We say that ρ creates R when @R 0, R 2 R 0/⇢.

• Proposition [residuals of labeled redexes]

• Proposition [created labeled redexes]

S 2 R/⇢ implies name(R) = name(S)

If S creates R , then name(S) is strictly contained in name(R).



 Proof (cont’d)   Created redexes contains names of creator

Permutation equivalence (2/7)

creates
↵

(�x . · · · (x� N) · · · )↵ (�y .M)� · · · ((�y .M)�b↵c� N 0) · · ·

�b↵c�

creates
↵ �d↵e�

creates
↵

((�x . x�)↵ (�y .M)�)� N (�y .M)�b↵c�d↵e�N

�b↵c�d↵e�

((�x .(�y .M)�)↵N)� P (�y .M 0)�d↵e�P



Permutation equivalence (3/7)

• Labeled parallel moves lemma+ [74]

M

N P

Q

F G

G/F F/G

H

G/H

H/G

• Parallel moves lemma++ [The Cube Lemma]
still holds.

If M
F

N and M
G

P , then N
G/F

Q and P
F/G

Q
for some Q.

• Labeled laws
If M N, then M↵ N↵

(M↵)� = M↵�M↵ {x := N} = (M{x := N})↵



Permutation equivalence (4/7)
• Labels do not break Church-Rosser, nor residuals

• Labels refine λ-calculus: 
- any unlabeled reduction can be performed in the labeled calculus 

- but two cofinal unlabeled reductions may no longer be cofinal 

Take  I (I3) with I = �x .x .

((�x .xc)b ((�x .x f )e 3g )d)a

((�x .xc)b 3gbecf deed)a((�x .x f )e 3g )dbbccdbea



Permutation equivalence (5/7)

• Theorem [labeled permutation equivalence, 76]

Proof Let ⇢ ' �. Then obvious because of labeled parallel moves lemma.

Conversely, we apply standardization thm and following lemma.

• Lemma [uniqueness of pure labeled standard 
reductions]

Proof ...

• Definition [pure labeled calculus]
Pure labeled terms are labeled terms where all subterms have
non empty labels.

Let ⇢ and � be coinitial pure labeled reductions.
Then ⇢ ' � i↵ ⇢ and � are labeled cofinal.



Permutation equivalence (6/7)
Proof  [uniqueness of labeled standard]

Take first step when they diverge. Call M that term.
We make structural induction on M. Say ⇢ is more to the left.
If first step of ⇢ contracts an internal redex, we use induction.
If first step of ⇢ contracts an external redex, then:

st
st

Let ⇢ and � be 2 distinct coinitial pure labeled standard reductions.

M = ((�x .P)↵ Q)�

Pd↵e�{x := Qb↵c}

Nd↵e� 6= ((�x .A)↵B)�



Permutation equivalence (7/7)

• Corollary [lattice of labeled reductions]
Labeled reduction graphs are upwards semi lattices for any pure 
labeling.

• Corollary [labeled prefix ordering]

• Exercice  Try on (�x .x)((�y .(�x .x)a)b) or (�x .xx)(�x .xx)

Let ⇢ : M N and � : M P be coinitial pure labeled reductions.
Then ⇢ v � i↵ N P .



Redex families



Labels and history (1/4)

σ

'

⇢

R S

h⇢,Ri ⇠ h�, Sih⇢,Ri  h�, Si

σ'

⇢

⌧

R

S

S 2 R/⇢

name(R) = name(S)



Labels and history (2/4)
• Proposition [same history → same name]

• The opposite direction is clearly not true for any labeling

(For instance, take all labels equal)

• But it is true when all labels are distinct atomic letters in the 
initial term. 

• Definition [all labels distinct letters]
INIT(M) = True when all labels in M are distinct letters.

In the labeled λ-calculus, for any labeling, we have:

h⇢,Ri ⇠ h�, Si implies name(R) = name(S)



Labels and history (3/4)

σ

'

⇢

R S

h⇢,Ri ⇠ h�, Si

name(R) = name(S)

σ⇢

R S

INIT(M) = True



Labels and history (4/4)

• Corollary [decidability of family relation]

The family relation is decidable (although complexity is  
proportional to length of standard reduction).

• Theorem [same history = same name, 76]

When                and reductions 𝜌 and σ start from M :INIT(M)

h⇢,Ri ⇠ h�, Si i↵ name(R) = name(S)



Finite developments



Parallel steps revisited (1/3)

• parallel steps were defined with inside-out strategy 
 [a la Martin-Löf]

• can we take any order as reduction strategy ?

in M is any reduction contracting only residuals of F .
• Definition  A reduction relative to a set F of redexes

F is any maximal relative reduction of F .A development of



Parallel steps revisited (2/3)

• Theorem [Finite Developments, Curry, 50]

Let F be set of redexes in M.

(1) there are no infinite relative reductions of F ,
(2) they all finish on same term N
(3) Let R be redex in M. Residuals of R by all finite

developments of F are the same.

• Similar to parallel moves lemma, but we considered particular 
   inside-out reduction strategy.



Parallel steps revisited (3/3)

• Notation’ [parallel reduction steps]

Let F be set of redexes in M. We write M
F

N

if a development of F connects M to N.

• This notation is consistent with previous results

• Corollaries of FD thm are also parallel moves + cube lemmas



Finite and infinite reductions (1/3)

• Definition  A reduction relative to a set F of redex families is
any reduction contracting redexes in families of F .

F is any maximal relative reduction.A development of

• Theorem [Finite Developments+, 76]
Let F be a finite set of redex families.

(1) there are no infinite reductions relative to F ,
(2) they all finish on same term N
(3) All developments are equivalent by permutations.



Finite and infinite reductions (2/3)

• Corollary  An infinite reduction contracts an infinite set of 
redex families.

• Corollary The first-order typed λ-calculus strongly terminates.

 Proof   In first-order typed λ-calculus:

(1) residuals R 0 = (�x .M 0)N 0 of R = (�x .M)N keep the
same type of the function part

(2) new redexes have lower type of their function part



Finite and infinite reductions (3/3)

(�x . · · · xN · · · )(�y .M) · · · (�y .M)N � · · ·
� � � �

creates

(�x .�y .M)NP (�y .M �)P

� � �

�
�

creates

creates

� �
� ! �

(�x .x)(�y .M)N (�y .M)N

 Proof (cont’d)   Created redexes have lower type



Inside-out reductions
• Definition: The following reduction is inside-out

⇢ : M = M0
R1

M1
R2

M2 · · ·
Rn

Mn = N

i↵ for all i and j , i < j , then Rj is not residual
along ⇢ of some R 0

j inside Ri in Mi�1.

• Theorem [Inside-out completeness, 74]

Let M N. Then M P and N P for some P .io

⇢

�io
inside-out+'



Exercices



Exercices
• Show 

io
io

io io io io

io



Strong normalization



Strong normalization (1/3)

• Another labeled λ-calculus was considered to study Scott  
D-infinity model [Hyland-Wadsworth, 74]

• D-infinity projection functions on each subterm (n is any integer):

• Conversion rule is:

is degree of redex

M,N, ... ::= xn | (MN)n | (�x .M)n

((�x .M)n+1N)p M{x := N[n]}[n][p]
n + 1

xn {x := M} = M[n]

whereU[m][n] = U[p] p = min{m, n}



Strong normalization (2/3)

• Proposition  Hyland-Wadsworth calculus is derivable
from labeled calculus by simple homomorphism on labels.

 Proof  Assign an integer to any atomic letter and take:

h(↵�) = min{h(↵), h(�)}

h(d↵e) = h(b↵c) = h(↵)� 1

• Proposition  Hyland-Wadsworth calculus strongly normalizes.

• Corollary  When only a finite set of redex degrees is contracted,  
there is strong normalization.


