Concurrency 5 = CCS (3/4)

Examples, and axiomatization

Pierre-Louis Curien (CNRS – Université Paris 7)

MPRI concurrency course 2004/2005 with :

Jean-Jacques Lévy (INRIA-Rocquencourt)
Eric Goubault (CEA)
James Leifer (INRIA - Rocq)
Catuscia Palamidessi (INRIA - Futurs)

Specification and weak bisimulation

\[
H = g \cdot H' \quad H' = p \cdot H
\]
\[
J = in \cdot S \quad S = \overline{g} \cdot U
\]
\[
U = \overline{p} \cdot F \quad F = \overline{ou} \cdot J
\]

We have : \((\nu g, h)(J \mid J \mid H) \approx K \mid K\). Their first actions are the same :

\[
(\nu g, h)(J \mid J \mid H) \mathcal{R} K \mid K \quad (\nu g, h)(S \mid J \mid H) \mathcal{R} D \mid K
\]
\[
(\nu g, h)(J \mid S \mid H) \mathcal{R} K \mid D \quad (\nu g, h)(S \mid S \mid H) \mathcal{R} D \mid D
\]

The only possible sequence of actions out of, say, \((\nu g, h)(S \mid S \mid H)\) is :

\[
(\nu g, h)(S \mid S \mid H) \xrightarrow{\tau} (\nu g, h)(S \mid U \mid H') \xrightarrow{\tau} (\nu g, h)(S \mid U \mid H') \xrightarrow{\overline{ou}} (S \mid J \mid H)
\]

Hence we complete \(\mathcal{R}\) with :

\[
(\nu g, h)(S \mid U \mid H') \mathcal{R} D \mid D \quad (\nu g, h)(S \mid F \mid H) \mathcal{R} D \mid D
\]
\[
(\nu g, h)(J \mid U \mid H') \mathcal{R} K \mid D \quad (\nu g, h)(J \mid F \mid H) \mathcal{R} K \mid D
\]
\[
(\nu g, h)(U \mid J \mid H') \mathcal{R} D \mid K \quad (\nu g, h)(F \mid J \mid H) \mathcal{R} D \mid K
\]
CCS encodings (1/4)

(Thanks to Catuscia Palamidessi for the encodings of this lecture).

Here is a specification P of (up to) n readers in parallel and (at most) one writer:

$$R = \overline{p_R} \cdot \text{read} \cdot \overline{v_R}$$
$$W = \overline{p_W} \cdot \text{write} \cdot \overline{v_W}$$

$$S_0 = p_R \cdot S_1 + p_W \cdot v_W \cdot S_0$$
$$S_k = p_R \cdot S_{k+1} + v_R \cdot S_{k-1} \quad (0 < k < n)$$
$$S_n = v_R \cdot S_{n-1}$$

in

$$(\nu p_R, v_R, p_W, v_W)(S_0 | R | \cdots | R | W | \cdots | W) \quad \text{(arbitrarily many readers and writers)}$$

If $P \xrightarrow{s} (\nu p_R, v_R, p_W, v_W)P'$, then there are two cases:

- $P' = S_i | Q$: then up to i threads of Q can perform read and no thread can perform write.

- $P' = (v_W \cdot S_0) | Q$: then no thread of Q can perform read and at most one thread can perform write.
CCS encodings (2/4)

The dining philosophers can be encoded by a closed linking (cf. previous lecture) of \(n \) copies of the following process \(\text{Phil}_{n,p,a} \) (each philosopher holds its left fork at the beginning)

\[
\begin{align*}
\text{Phil}_{n,p,a} &= \tau \cdot \text{Phil}_{h,p,a} + \tau \cdot \text{Phil}_{n,p,a} + c_L \cdot \text{Phil}_{n,a,a} \\
\text{Phil}_{n,a,p} &= \text{symmetric} \\
\text{Phil}_{n,a,a} &= \tau \cdot \text{Phil}_{n,a,a} + \tau \cdot \text{Phil}_{h,a,a} \\
\text{Phil}_{h,a,a} &= c_L \cdot \text{Phil}_{h,p,a} + c_R \cdot \text{Phil}_{h,a,p} \\
\text{Phil}_{h,p,a} &= c_L \text{Phil}_{h,a,a} + c_R \cdot \text{Phil}_{h,a,p} \\
\text{Phil}_{h,a,p} &= \text{symmetric} \\
\text{Phil}_{h,p,p} &= \text{eat} \cdot \text{Phil}_{n,p,p} \\
\text{Phil}_{n,p,p} &= c_L \cdot \text{Phil}_{n,a,p} + c_R \cdot \text{Phil}_{n,p,a}
\end{align*}
\]

- \(n/h \) stand for “not hungry” / “hungry”, \(a/p \) for absent / present (second and third index for first and second fork, respectively)

- under the linking, \(c_R \) (resp. \(c_L \)) is (privately) identified with the \(c_L \) (resp. \(c_R \)) of the right (resp. left) neighbour
CCS encodings (3/4)

We show, at any stage: **Fairness** ⇒ **Progress**

Fairness A hungry philosopher, or a philosopher who has just eaten, is not ignored forever.

Progress If at least one philosopher is hungry, then eventually one of the hungry philosophers will eat.

By contradiction: Suppose P is the state of the system in which one philosopher at least is hungry, and suppose that there is an infinite fair evolution $P \xrightarrow{\tau} \cdots$ that makes no progress. Then:

Step 1: Eventually, all philosophers hold at most one fork. No philosopher at any stage can be in state (h, p, p), since by fairness eventually this philosopher will eat. If at some stage a philosopher is in state (n, p, p), then by fairness this philosopher will eventually give one of his forks. No philosopher at any stage can be in state (n, p, p) unless it was already in this state in P, since the only way to enter this state is after eating. Hence all the (n, p, p) states will eventually disappear.
CCS encodings (4/4)

Step 2: Eventually, all philosophers hold exactly one fork. This is because if one philosopher had no fork, then another one would hold two (n forks for $n – 1$ philosophers).

Step 3: When this happens, our philosopher is still hungry (he cannot revert to non-hungry unless he eats), say it is in state (h, p, a), and eventually by Fairness it is his turn. The transition (h, p, p) is forbidden. Hence he gives his fork to the left neighbour. Only a hungry philosopher receives forks, hence the neighbour is in state (h, p, a), but then makes the transition (h, p, p) which is also forbidden.

Exercice 1 Show that the system can never deadlock.
Strong axiomatization (1/4)

For finitary CCS (no recursion, finite guarded sums), $P \sim Q$ iff $A_1 \vdash P = Q$, where A_1 is:

1. $\Sigma_{i \in I} \mu_i \cdot P_i = \Sigma_{i \in I} \mu_{f(i)} \cdot P_{f(i)}$ (permutation)
2. $\Sigma_{i \in I} \mu_i \cdot P_i + \mu_j \cdot P_j = \Sigma_{i \in I} \mu_i \cdot P_i$ ($j \in I$) (idempotency)
3. $P | Q = \Sigma \{ \mu \cdot (P' \mid Q) \mid P \xrightarrow{\mu} P' \} + \Sigma \{ \mu \cdot (P \mid Q') \mid Q \xrightarrow{\mu} Q' \}
 + \Sigma \{ \tau \cdot (P' \mid Q') \mid P \xrightarrow{\alpha} P' \text{ and } Q \xrightarrow{\alpha} Q' \}$ (expansion)
4. $(\nu a) (\Sigma_{i \in I} \mu_i \cdot P_i) = \Sigma_{\{ j \in I \mid \mu_j \neq a, \alpha \}} \mu_j \cdot (\nu a)P_j$

Exercice 2 Show that $A_1 \vdash (\nu b)(a \cdot (b|c) + \tau \cdot (b|\bar{b} \cdot c)) = \tau \cdot \tau \cdot c \cdot 0 + a \cdot c \cdot 0$.
Strong axiomatization (2/4)

First step: each process is provably equal to a synchronization tree (guarded sums only), using only

\[
(3) \quad P | Q = \sum \{ \mu \cdot (P' | Q) | P \xrightarrow{\mu} P' \} + \sum \{ \mu \cdot (P | Q') | Q \xrightarrow{\mu} Q' \} \\
+ \sum \{ \tau \cdot (P' | Q') | P \xrightarrow{\alpha} P' \text{ and } Q \xrightarrow{\overline{\alpha}} Q' \}
\]

\[
(4) \quad (\nu a) (\sum_{i \in I} \mu_i \cdot P_i) = \sum_{j \in I | \mu_j \neq a, \overline{a}} \mu_j \cdot (\nu a) P_j
\]

We associate with a process \(P \) the multi-set of the sizes of all its subterms \((\nu a) Q\) and \(Q_1 | Q_2 \). This multi-set decreases at each application of rules (3)-(4).
Strong axiomatization (3/4)

Second step: If \(P = \sum_{i=1}^{m} \alpha_i \cdot P_i \) and \(Q = \sum_{j=m+1}^{n} \alpha_j \cdot P_j \), and if \(P \sim Q \), then \(P \) and \(Q \) are provably equal, using only

\[
(1) \quad \sum_{i \in I} \mu_i \cdot P_i = \sum_{i \in I} \mu_{f(i)} \cdot P_{f(i)} \quad (f \text{ permutation})
\]

\[
(2) \quad \sum_{i \in I} \mu_i \cdot P_i + \mu_j \cdot P_j = \sum_{i \in I} \mu_i \cdot P_i \quad (j \in I)
\]

Induction on size(P)+size(Q) : Let \(\equiv \) be the equivalence relation on \(\{1, \ldots, n\} \) defined by \(i \equiv j \) iff \(\alpha_i = \alpha_j \) and \(P_i \sim P_j \).

By strong bisimilarity, each \(\equiv \) equivalence class contains at least one element of \([1, m]\) and at least one element of \([m + 1, n]\). Now for each of the equivalence classes we pick one representative in \([1, m]\) and one in \([m + 1, n]\). Call them \(p_1, \ldots, p_k \) and \(q_1, \ldots, q_k \), respectively. Then we have:

\[\vdash \sum_{i=1}^{m} \alpha_i \cdot P = \sum_{l=1}^{k} \alpha_{p_l} \cdot P_{p_l} \quad \text{and} \quad \vdash \sum_{j=m+1}^{n} \alpha_j \cdot P_j = \sum_{l=1}^{k} \alpha_{q_l} \cdot P_{q_l} \]

with \(P_{p_l} \sim P_{q_l} \) for all \(l \), so we can apply induction.

(Note that the finiteness of sums is crucial.)
Weak axiomatization (1/6)

For finitary CCS, \(P \approx Q \) iff \(A_1 + A_2 \vdash P = Q \), where \(A_2 \) is:

\[
\begin{align*}
(\tau_0) & \quad P = \tau \cdot P \\
(\tau_1) & \quad \tau \cdot P + R = P + \tau \cdot P + R \\
(\tau_2) & \quad \alpha \cdot (\tau \cdot P + Q) + R = \alpha \cdot (\tau \cdot P + Q) + \alpha \cdot P + R
\end{align*}
\]

(In general, we do not have \(\vdash P + Q = \tau \cdot P + Q \).)
Weak axiomatization (2/6)

We can limit ourselves to synchronization trees (ST).

There is a notion of ST in fully standard form such that:

- each ST P is provably equal (by A_2) to a ST in fully standard form
- if P, Q are in fully standard form and $P \approx Q$, then P and Q are provably equal
Weak axiomatization (3/6)

Definition: $P = \sum_{i \in I} \mu_i \cdot P_i$ is in fully standard form if and only if

- each P_i is in fully standard form and
- $\forall \mu, P' \ (P \vdash^\mu P'$ and $P' \neq P) \Rightarrow P \vdash^\mu P'$
Weak axiomatization (4/6)

Lemma: For any ST P, if $P \xrightarrow{\mu} P'$ and $P \neq P'$, then $\vdash P = P + \mu.P'$.

Then, given $P = \Sigma_{i \in I} \mu_i \cdot P_i$, first convert each P_i to a fully standard form P'_i. Next, consider all (ν_j, P''_j) such that $P' = \Sigma_{i \in I} \mu_i \cdot P'_i \xrightarrow{\nu_j} P''_j$. Then

$$\vdash P = \Sigma_{i \in I} \mu_i \cdot P'_i = \Sigma_{i \in I} \mu_i \cdot P'_i + \Sigma_j \nu_j \cdot P''_j = Q'$$

and Q' is in fully standard form:

- Each P''_j, being a subterm of some P'_i, is in fully standard form.
- Suppose $Q' \xrightarrow{\nu} Q''$, passing through P''_j:
 1. $\nu = \nu_{j_0} = \alpha$ and $P''_{j_0} \xrightarrow{\tau} Q''$. Then

$$\vdash P' \xrightarrow{\nu_{j_0}} P''_{j_0} \text{ and } P''_{j_0} \xrightarrow{\tau} Q'' \Rightarrow P' \xrightarrow{\nu} Q''$$

 2. $\nu_{j_0} = \tau$ and $P''_{j_0} \xrightarrow{\nu} P''$. Then we get also $P' \xrightarrow{\nu} Q''$.

Then by definition of Q' we have $\nu = \nu_{j_1}$ and $Q'' = P''_{j_1}$ for some j_1.

Weak axiomatization (5/6)

Proof of the lemma (by induction on size(P)):

1. $P \xrightarrow{\mu} P'$. Then $P = P_1 + \mu \cdot P'$ and $\vdash P = P + \mu \cdot P'$ by idempotency.

2. $P \xrightarrow{\tau} P'' \xrightarrow{\mu} P'$ and $P' \neq P''$. Then $P = P_1 + \tau \cdot P''$, and hence $\vdash P = P + P''$ by (τ_1). By induction we have $\vdash P'' = P'' + \mu \cdot P'$, so we conclude:

$$\vdash P = P + P'' = P + (P'' + \mu \cdot P') = (P + P'') + \mu \cdot P' = P + \mu \cdot P'$$

3. $\mu = \alpha$, $P \xrightarrow{\alpha} P'' \xrightarrow{\tau} P'$, and $P' \neq P''$. Then $P = P_1 + \alpha \cdot P''$, and by induction $\vdash P'' = P'' + \tau \cdot P'$. Hence, by ($\tau_2$):

$$\vdash P = P_1 + \alpha \cdot P'' = P_1 + \alpha \cdot (P'' + \tau \cdot P')$$
$$= P_1 + \alpha \cdot (P'' + \tau \cdot P') + \alpha \cdot P' = P + \alpha \cdot P'$$
Weak axiomatization (6/6)

If $P = \Sigma_{i \in I} \mu_i \cdot P_i$ and $Q = \Sigma_{j \in J} \nu_j \cdot Q_j$ are in fully standard form and $P \approx Q$, then we have “almost” $P \sim Q$.

Indeed, for every $P \overset{\mu_i}{\rightarrow} P_i$ there exists Q' such that $Q' \approx P_i$ and $Q \overset{\mu_i}{\rightarrow} Q'$, and hence $Q \overset{\mu_i}{\rightarrow} Q'$, the only possible exception being when $\mu_i = \tau$ and $Q' = Q$.

We prove $\vdash P = Q$ by induction on $\text{size}(P) + \text{size}(Q)$. If the exceptional case does not apply, we proceed as for strong bisimulation and apply induction. Otherwise:

$$\exists i_0 \ (\mu_{i_0} = \tau \text{ and } P_{i_0} \approx Q \text{ and } \neg \exists j \ (\mu_j = \tau \text{ and } Q_j \approx P_{i_0}))$$

Now, we have:

$$(Q \approx \Sigma_{i \in I} \mu_i \cdot P_i \text{ and } \neg \exists j \ (\mu_j = \tau \text{ and } Q_j \approx P_{i_0})) \Rightarrow Q \approx \Sigma_{i \in I \setminus \{i_0\}} \mu_i \cdot P_i$$

Hence by induction $\vdash P_{i_0} = Q$ and $\vdash Q = \Sigma_{i \in I \setminus \{i_0\}} \mu_i \cdot P_i$, and we conclude with (τ_1) and $\boxed{\text{(}\tau_0\text{)}}$:

$$\vdash Q = \tau \cdot Q = Q + \tau.Q = \Sigma_{i \in I \setminus \{i_0\}} \mu_i \cdot P_i + \tau.P_{i_0} = P$$