Concurrency 4 = CCS (2/4)

Scoping, weak and strong bisimulation

Pierre-Louis Curien (CNRS – Université Paris 7)

MPRI concurrency course 2004/2005 with :
Jean-Jacques Lévy (INRIA-Rocquencourt)
Eric Goubault (CEA)
James Leifer (INRIA - Rocq)
Catuscia Palamidessi (INRIA - Futurs)

(http://pauillac.inria.fr/~leifer/teaching/mpri-concurrency-2004)

Scale and recursion (1/4)

Consider (example of Frank Valencia) (we write \(\mu \) for \(\mu \cdot 0 \)) :

\[
P_1 = (\nu x) P = (\nu x) \left((a \cdot \tau_{\alpha}) | P \right) \ldots K
\]

Applying the rules, we have (two unfoldings) :

\[
\begin{align*}
(\nu x) (a \cdot \tau_{\alpha}) &= (\nu x) (\nu y) (a \cdot \tau_{\alpha}) | (a \cdot \tau_{\alpha}) | K) \\
&\Rightarrow (\nu x) (0) (a \cdot \tau_{\alpha}) | (a \cdot \tau_{\alpha}) | K)
\end{align*}
\]

What about \(P_2 = (\nu x) K = (\nu y) (b \cdot \tau_{\alpha}) | (b \cdot \tau_{\alpha}) | K) \ldots K \) : the double enfolding yields \((\nu y) (b \cdot \tau_{\alpha}) | (b \cdot \tau_{\alpha}) | (b \cdot \tau_{\alpha}) | K) \), which is deadlocked, while the first definition of \(K \) allows to perform \(\tau_{\alpha} \) (notice the capture of \(\pi \)).

Scope and recursion (2/4)

\[
P_1 = (\nu x) P = (\nu x) \left((a \cdot \tau_{\alpha}) | K \right) \ldots K
\]

\[
P_2 = (\nu x) P = (\nu x) \left((b \cdot \tau_{\alpha}) | K \right) \ldots K
\]

There is a tension :
- These two definitions have a different behaviour.
- The identity of bounded names should be irrelevant (\(\alpha \)-conversion).

So let us rename \(a \) in the first definition :

\[
P_3 = (\nu x) P = (\nu x) \left((b \cdot \tau_{\alpha}) | K[a \leftarrow b] \right) \ldots K
\]

But what is \(K[a \leftarrow b] \) ? Well, we argue that it is not \(K \), it is a substitution or (explicit) relabelling which is delayed until \(K \) is replaced by its actual definition (cf. e.g. \(\lambda \)-calculus with term metavariables and explicit substitutions)

So, all is well, we maintain both \(\alpha \)-conversion \((P_1 = P_3) \) and the difference of behaviour \((P_1 \neq P_2) \), and the tension is resolved . . .

Scope and recursion (3/4)

In an \(\alpha \)-conversion \((\nu x) P = (\nu y) P[x \leftarrow y] \), \(y \) should be chosen free in \(P \). BUT when substitution arrives on \(K \), how do I know whether \(y \) is free in \(K \) ? For example, in

\[
P_4 = (\nu x) P = (\nu x) \left((a \cdot \tau_{\alpha}) | K \right) \ldots K
\]

\(b \) is free in \(K \), but I cannot know it from just looking at the subterm \((\nu y) (a \cdot \tau_{\alpha}) | (a \cdot \tau_{\alpha}) | K) \).

Clean solution (definitions with parameters) : maintain the list of free variables of a constant \(K \), and hence write constants always in the form \(K[\beta] \) and make sure that in a definition \(\nu x K[\beta] = P \ldots Q \) we have \(\forall \nu \beta (P) \subseteq \beta \). (cf. syntax adopted in Milner’s \(\pi \)-calculus book).

And now, relabelling can be omitted from syntax, i.e. left implicit, since, e.g. \(K[\alpha \leftarrow \beta] = K[\alpha \leftarrow \beta] \).
Scope and recursion (4/4)

A “real” example: Consider the following linking operation:
\[P \triangleleft Q = (\nu i', z', d')(P[i, z, d \rightarrow i', z', d']|Q[\text{inc}, \text{zero}, \text{dec} \leftarrow i', z', d']) \]

In particular
\[C(\text{inc}, \text{zero}, \text{dec}, z, d) \sim C(\text{inc}, \text{zero}, \text{dec}, z, d) = (\nu i', z', d')(C(\text{inc}, \text{zero}, \text{dec}, z, d'))(C(i', z', d', z, d)) \]

A (unbounded) counter:
\[C = \text{inc} \cdot (C \triangleleft C) + \text{dec} \cdot D \quad D = \overline{D} \cdot C + \tau \cdot B \quad B = \text{inc} \cdot (C \triangleleft B) + \text{zero} \cdot B \]

An example of execution:
\[B \overset{\text{zero}}{\rightarrow} B \overset{\text{inc}}{\rightarrow} (C \triangleleft B) \overset{\text{inc}}{\rightarrow} ((C \triangleleft C) \triangleleft B) \overset{\text{dec}}{\rightarrow} ((D \triangleleft C) \triangleleft B) \]
\[\vdash ((C \triangleleft D) \triangleleft B) \overset{\text{dec}}{\rightarrow} ((D \triangleleft D) \triangleleft B) \vdash ((D \triangleleft C) \triangleleft B) \]
\[\vdash ((B \triangleleft B) \triangleleft B) \overset{\text{inc}}{\rightarrow} ((C \triangleleft B) \triangleleft B) \ldots \]

Exercice 1 Show that there is no derivation \(B \overset{\tau^* \text{inc} \tau^* \text{dec} \tau^* \text{dec}}{\rightarrow} \).

Bisimilarity is not trace equivalence

As automata \(P = a \cdot (b + c) \) and \(Q = a \cdot b + a \cdot c \) recognize the same language \(\{ab, ac\} \) of traces.

As processes, they are not bisimilar \((Q \text{ does not even simulate } P) \). \(P \) keeps the choice after performing \(a, Q \) not.

Think of \(a \) as inserting 40 cents, \(b \) as getting tea and \(c \) as getting coffee. Imagine a vending machine with a slot for \(a \) and two buttons for \(b \) and \(c \). The machine allows you to press \(b \) (resp. \(c \)) only if action \(b \) (resp. \(c \)) can be performed. As a customer you will prefer \(P \).

Variations on bisimilarity (1/3)

A bisimulation up to \(\sim \) is a relation \(R \) such that for all \(P, Q \):

\[PRQ \Rightarrow \forall i. P_i \overset{R}{\Rightarrow} i \exists Q'_i \overset{R}{\Rightarrow} i' \quad \text{and} \quad P_i \overset{\tau}{\Rightarrow} i \quad \text{and} \quad Q'_i \overset{\tau}{\Rightarrow} i' \quad \text{and} \quad P_i \overset{R}{\Rightarrow} i \sim R \sim i' \]

If \(R \) is strong bisimulation up to \(\sim \), then \(R \sqsubseteq \sim \).

Exercice 3 Prove it.

Hence, to show \(P \sim Q \), it is enough to find a bisimulation up to \(\sim \) such that \(P \mathrel{R} Q \).

Structural equivalence

Exercice 2 Show that structural equivalence \(\equiv \) is included in (strong) bisimulation \(\sim \).
Variations on bisimilarity (2/3)

As an example, take

\[
\begin{align*}
\text{Sem} &= \text{P} \cdot \text{Sem}' \\
\text{Sem}' &= \nu \cdot \text{Sem}
\end{align*}
\]

Then a (strong) bisimulation up-to witnessing that \((\text{Sem}|\text{Sem}|\text{Sem}) \sim \text{Sem}^\dagger\) is, say :

\[
\{ ((\text{Sem}|\text{Sem}|\text{Sem}), \text{Sem}^\dagger) \}
\]

Weak† = Weak⋆.

Variations on bisimilarity (3/3)

For any LTS, one can change \(\sim\) to \(\sim^\star\) (words of actions), setting

\[
P \sim Q \text{ if } \begin{cases}
s = \mu_1 \ldots \nu_n \text{ and} \\
(\exists P_1, \ldots, P_n \ (P_n = Q \text{ and } P \sim P_1 \ldots \sim P_n))
\end{cases}
\]

This yields a new LTS, call it LTS∗ (the path LTS) . Then the notions of LTS and of LTS∗ bisimulation coincide.

From strong to weak bisimulation (1/2)

Take the LTS of CCS, with \(\sim = L \cup T \cup \{\tau\}\), call it Strong. The bisimulation for this system is called strong bisimulation.

Take Strong∗ (its path LTS).

Consider the following LTS, call it Weak†, with the same set of actions as Strong∗ :

\[
P \setsto{\tau} Q \text{ if and only if } (\exists t \ P \setsto{\tau} Q \text{ and } \hat{s} = \hat{t})
\]

where the function \(s \mapsto \hat{s}\) is defined as follows :

\[
\hat{\nu} = \nu \quad \hat{\tau} = \epsilon \quad \hat{\alpha} = \alpha \quad \hat{s\mu} = \hat{s}\hat{\mu}
\]

The idea is that weak bisimulation is bisimulation with possibly \(\tau\) actions interspersed.

Let Weak be the LTS on Act whose transitions are \(P \setsto{\tau} Q\), that is :

\[
P \setsto{\tau} Q \text{ if and only if } P \setsto{\tau} Q \quad P \setsto{\tau} Q \text{ if and only if } P \setsto{\nu_1 \ldots \nu_n} Q
\]

Then one has Weak† = Weak∗.

From strong to weak bisimulation (2/2)

None of the three equivalent definition of weak bisimulation (Weak, Weak†, Weak∗) is practical. The following is a fourth, equivalent, and more tractable version :

A weak bisimulation is a relation \(R\) such that

\[
P R Q \Rightarrow \forall P', P''. \ (P' \setsto{\tau} P'' \Rightarrow \exists Q' Q'' \ (Q' \setsto{\tau} Q'' \text{ and } P' R Q'))\] and conversely

Two processes are weakly bisimilar if (notation \(P \approx Q\)) if there exists a weak bisimulation \(R\) such that \(P R Q\).
Bisimulation is a congruence (1/6)

We define \approx^* inductively by the following rules:

\[
\begin{align*}
 P & \approx Q & P \approx^* Q & \quad P \approx^* Q &Q \approx^* R \\
 P \approx^* Q & & Q \approx^* P & & P \approx^* R
\end{align*}
\]

\[
\forall i \in I, P_i \approx^* Q_i, \quad \Sigma_{i \in I} \mu_i \cdot P_i \approx^* \Sigma_{i \in I} \mu_i \cdot Q_i, \quad P_1 | P_2 \approx^* Q_1 | Q_2, \quad \nu \cdot P \approx^* (\nu a)Q
\]

Clearly $\approx \subseteq \approx^*$ and \approx^* is a congruence, by construction. It is enough to show that \approx^* is a bisimulation (since then $\approx = \approx^*$ is a congruence).

Bisimulation is a congruence (2/6)

Proof by rule induction. We look at case $P_1 | P_2 \approx Q_1 | Q_2$:

1. **(backward) decomposition phase**: if $P_1|P_2 \not\approx P'$, then $P' = P'_1|P'_2$ and three cases may occur, corresponding to the three rules for parallel composition in the labelled operational semantics. We only consider the synchronisation case. If $P_1 \not\approx P'_1$ and $P_2 \not\approx P'_2$, then

2. **by induction** there exists Q'_1 such that $Q_1 \not\approx Q'_1$ and $P'_1 \not\approx Q'_1$, and there exists Q'_2 such that $Q_2 \not\approx Q'_2$ and $P'_2 \not\approx Q'_2$.

3. Hence **(forward phase)** we have $Q_1 | Q_2 \not\approx Q'_1 | Q'_2$ and $P'_1 | P'_2 \not\approx Q'_1 | Q'_2$.

Bisimulation is a congruence (3/6)

\approx is also a congruence (for our choice of language with guarded sums).

Same proof technique: define \approx^*. For the forward phase, we use the following properties, which are true:

\[
\begin{align*}
 (P \not\approx P') & \Rightarrow (\nu a)P \not\approx (\nu a)Q' \\
 (Q_1 \not\approx Q'_1) & \Rightarrow (Q_1 | Q_2 \not\approx Q'_1 | Q_2) \\
 (Q_1 \not\approx Q'_1 \text{ and } Q_2 \not\approx Q'_2) & \Rightarrow (Q_1 | Q_2 \not\approx Q'_1 | Q'_2)
\end{align*}
\]

Bisimulation is a congruence (4/6)

Consider CCS with prefix and sums instead of guarded sums, i.e., replace $\Sigma_{i \in I} \mu_i \cdot P_i$ by two constructs $\Sigma_{i \in I} P_i$ and $a \cdot P$, with rules:

\[
\begin{align*}
 P_i \not\approx P'_i & \Rightarrow \Sigma_{i \in I} P_i \not\approx P'_i \\
 \mu \cdot P \not\approx P
\end{align*}
\]

Then strong bisimulation is a congruence, and weak bisimulation is not a congruence.

The problem does not arise because more processes (like $P + (Q|R)$) are allowed.
Bisimulation is a congruence (5/6)

What goes wrong is the sum rule? For the forward phase, we would need the property:

\[(Q_1 \lessgtr Q'_1) \Rightarrow (Q_1 + Q_2 \lessgtr Q'_1)\]

which does not hold (take \(\mu = \tau\) and \(Q'_1 = Q_1\)).

Counter-example: \(\tau \cdot a \cdot 0 + b \cdot 0 \not\approx a \cdot 0 + b \cdot 0\)

Bisimulation is a congruence (6/6)

We have left out recursion, but even so we have:

Proposition: For any process \(S\) (possibly with recursive definitions) with free variables in \(\vec{K}\):

\[\forall \vec{Q}, \vec{Q}' (\vec{Q} \approx \vec{Q}' \Rightarrow S[\vec{K} \leftarrow \vec{Q}] \approx S[\vec{K} \leftarrow \vec{Q}'])\]

The proof is by induction on the size of \(S\). The non-recursion cases follow by congruence. For the recursive definition case \(S = \text{let} \vec{L} = \vec{P} \vdots \text{L}_j\), the trick is to unfold:

\[
S[\vec{K} \leftarrow \vec{Q}] \overset{\text{def}}{=} \text{let} \vec{L} = \vec{P}[\vec{K} \leftarrow \vec{Q}] \vdots \text{L}_j \\
\approx \text{P}_j[\vec{K} \leftarrow \vec{Q}][\vec{L} \leftarrow \text{let} \vec{L} = \vec{P} \vdots \text{L}_j] \\
\overset{\text{ind}}{=} \text{P}_j[\vec{K} \leftarrow \vec{Q}'][\vec{L} \leftarrow \text{let} \vec{L} = \vec{P} \vdots \text{L}_j] \\
\approx \overset{\text{ind}}{S[\vec{K} \leftarrow \vec{Q}']}\]

Counter-example: \(\tau \cdot a \cdot 0 + b \cdot 0 \not\approx a \cdot 0 + b \cdot 0\)