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Abstract: This paper is the second in a series of two. It relies on its companion, Part 1, to
motivate the central problem addressed by the series, namely: how to synthesise labelled
transitions for reactive systems and how to prove congruence results for operational equiv-
alences and preorders defined above those transitions. The purpose of this paper is (i) to
show that the hypotheses required of functorial reactive systems from Part 1, for example
the sliding properties of IPO (idem pushout) squares, are indeed satisfied for functors of a
general form; (ii) to illustrate an example of a functorial reactive system based on Milner’s
action calculi, which satisfy the RPO (relative pushout) hypothesis required in the proofs
of congruence from Part 1.
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Synthèse de transitions étiquetées et de congruences

opérationnelles pour les systèmes réactifs, deuxième partie

Résumé : Cet article forme le second d’une série. Le lecteur est renvoyé à l’article associé
(première partie) pour un exposé de la motivation du problème auquel s’attaque cette série,
à savoir comment synthétiser des transitions étiquetées pour des systèmes réactifs et com-
ment prouver des résultats de congruence pour des équivalences et préordres opérationnels
définis sur ces transitions. Le but de cet article est, premièrement, de montrer que les hy-
pothèses de la définition des systèmes réactifs fonctoriels de première partie, par exemple
les propriétés de glissement des diagrammes d’IPO (“idem pushout”), sont bien satisfaites
pour des foncteurs d’une certaine forme générale ; deuxièmement, d’illustrer un exemple
de système réactif fonctoriel basé sur les “action calculi” de Milner, qui vérifient les hy-
pothèses de RPO (“relative pushout”) des preuves de congruence de première partie.

Mots-clés : transition étiquetée, congruence structurelle, bisimulation, action calculi,
somme amalgamée
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2 J.J. Leifer

1 Introduction

1.1 Motivation and goals

This paper is the second in a series of two. I rely on its companion [Lei02], referred to

as Part 1 throughout, to motivate the central problem addressed by the series, namely:

how to synthesise labelled transitions for reactive systems and how to prove congruence

results for operational equivalences and preorders defined above those transitions. Thus,

the present paper uses Part 1 as a base, sacrificing self-containedness in order to avoid

repetition, though the key definitions are recapitulated here in Section 2.

The purpose of this paper is to twofold:

(i) to show that the hypotheses required of functorial reactive systems from Part 1 are

indeed satisfied for functors of a general form;

(ii) to illustrate an example of a functorial reactive system, namely action graphs, which

satisfy the RPO (relative pushout) hypothesis required in the proofs of congruence

from Part 1.

Of the two, goal (i) is more critical since the techniques employed for generating the

functor and proving the relevant properties are widely applicable. The argument does not

fit neatly within standard category theory, though, and requires the use of precategories

— which have a partial composition operator, unlike the total one of categories. It seems

possible that this work could be recast by replacing precategories with bicategories. One

of the primary reasons for presenting (i) in detail is to expose this potential recasting as

a challenge to the (enriched) category theory community. This question is discussed in

detail in Subsection 3.7.

For goal (ii), I introduce action graphs (a subclass of Milner’s action calculi). The

main motivation for defining these is to show that the properties required of them in the

definition of a functorial reactive system follow smoothly from the work on goal (i). The

proof of the existence of RPOs, by contrast, requires highly combinatorial manipulations

of graph contexts and embeddings. For the sake of brevity, I omit this proof, pointing

instead to its full treatment in my Ph.D. [Lei01b].

1.2 Outline

The outline of this paper is as follows:

Section 2: This section recapitulates the key definitions from Part 1 needed in the present

paper.

INRIA
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Section 3: As mentioned above in (i) the proofs of congruence in Part 1 rest on some

hypotheses about the functor F . The most important one of these is that F allows

an IPO square upstairs to “slide” so as to leave the F-image of the square invariant.

This section eases the burden of showing that these hypotheses are satisfied by giving

an abstract way of generating a functor satisfying them from simpler data. The

section starts by assuming the existence of a well-supported precategory A, which

is like a category but lacks some arrow compositions and has extra structure for

extracting and renaming the support of an arrow. The motivation for this comes

from the raw contexts in Section 4 for which composition of two contexts is not

defined unless their node sets (supports) intersect trivially. I derive from A two

categories and a functor between them. The upstairs category is formed from A

by adding extra information to the objects, so as to make composition total. The

downstairs category is formed by quotienting away the supports. The functor F

maps arrows to their quotient equivalence classes. By reasoning abstractly, I show

that F allows IPO sliding and has all of the other properties required of functorial

reactive systems (see Definition 2.5). By instantiating these results, as in Section 4

for example, one gets “for free” a functorial reactive system provided that one starts

with a well-supported precategory, a light burden.

Section 4: This section gives a significant example of a family of functorial reactive sys-

tems. The contexts are derived from closed, shallow action graphs, those with no

nesting and no free names. Their graph structure includes forked and discarded

wiring connecting interfaces on each node and on the inside and outside of each

context. By instantiating the results of the preceding section, we construct a func-

torial reactive system with the following properties: the downstairs category does

not distinguishes the occurrences of controls, as desired when modelling agents of

a process calculus; the upstairs one does distinguish them, thus providing sufficient

RPOs.

Section 5: The section sets out the main open questions, whose solutions are critical to

the application of this work to a wide variety of process calculi.
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Figure 1: Construction of an RPO

2 Recapitulation of key definitions and theorems

This section recalls the key definitions and theorems from Part 1 needed in this paper.

The original motivation and explanation of each is not repeated, but can be found by

following each pointer into Part 1.

Definition 2.1 (RPO — see Definition 2.4 in Part 1) In any category C, consider

a commuting square (Figure 1(1)) consisting of g0f0 = g1f1. An RPO is a triple h0, h1, h

satisfying two properties:

commutation: h0f0 = h1f1 and hhi = gi for i = 0, 1 (Figure 1(2));

universality: for any h′0, h
′
1, h

′ satisfying h′0f0 = h′1f1 and h′h′i = gi for i = 0, 1, there exists

a unique mediating arrow k such that h′k = h and khi = h′i (Figure 1(3)). ¥

Terminology: A triple, such as h′0, h
′
1, h

′ given above, that satisfies the commutation

property, i.e. h′0f0 = h′1f1 and h′h′i = gi for i = 0, 1, is often called a candidate. Thus an

RPO triple is a candidate for which there is a unique mediating arrow from it to any other

candidate.

Definition 2.2 (IPO — see Definition 2.5 in Part 1) The commuting square in

Figure 1(1) is an IPO if the triple g0, g1, idm is an RPO. ¥

¨

§

¥

¦
m

m′

f0

f1 g0

g1 2

Proposition 2.3 (IPOs in a full subcategory — see Proposition 2.10

in Part 1) Let m,m′ be objects of C and let C′ be a full subcategory of C

satisfying the following property:

objC′ ⊇ {n ∈ objC / ∃h ∈ C(m,n) & ∃h′ ∈ C(n,m′)} .

Suppose the square in Figure 2 commutes, where fi, gi ∈ C′ for i = 0, 1. Then the square

is an IPO in C iff it is an IPO in C′. ¥
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6 J.J. Leifer

Definition 2.4 (reactive system— see Definition 2.1 in Part 1) A reactive system

consists of a category C with added structure. We let m,n range over objects. C has the

following extra components:

� a distinguished object 0 (not necessarily initial);

� a set of reaction rules called Reacts ⊆
⋃

m∈objCC(0,m)2, a relation containing pairs

of agents with common codomain;

� a subcategory D of C, whose arrows are the reactive contexts, with the property

that D1D0 ∈ D implies D1, D0 ∈ D. ¥

Notation: a, b ∈ C range over arrows with domain 0, called agents, and C,D,F ∈ C

range over arbitrary arrows (contexts).

Definition 2.5 (functorial reactive system— see Definition 3.1 in Part 1) Let C

be a reactive system. A functorial reactive system over C consists of a functor F : Ĉ C

which maps a distinguished object ε ∈ obj Ĉ to 0 (the distinguished object of C) and

which satisfies the following properties.

F lifts agents: for any a : 0 m there exists a : ε m such that F(a) = a.

F creates isos: if F(C) is an iso then C is an iso.

F creates compositions: if F(C) = C1C0, there exist C0, C1 ∈ Ĉ such that C = C1C0 and

F(Ci) = Ci for i = 0, 1. ¨

§

¥

¦
C

F′ F

C′ 3

C0

F′0 F0

C′0 4

F allows IPO sliding: for any IPO square as in Figure 3 and any

arrow F
′
0 with F(F′0) = F(F

′) there exist C0, C
′
0, F0 forming an

IPO square as in Figure 4 with

F(C0) = F(C) F(C′0) = F(C
′) F(F0) = F(F) . ¥

Notation: Uppercase teletype characters denote arrows in Ĉ and lowercase teletype

characters (a, l, . . .) denote arrows with domain ε in Ĉ. The F images of these are agents in

C. The special domain requirement of a, l, . . . is left tacit throughout: thus (∃l ∈ Ĉ. . . .)

means (∃l ∈ Ĉ. Dom l = ε & . . .).

¨
§

¥
¦

a

l F

D 5

Definition 2.6 (F has all redex-RPOs— see Definition 3.4 in Part 1)

A functorial reactive system F : Ĉ C has all redex-RPOs if any square, such

as in Figure 5, has an RPO, provided that F(D) ∈ D and that there exists

r ∈ C such that (F(l), r) ∈ Reacts. ¥

INRIA
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Proposition 2.7 (characterisation of — see Proposition 3.2 in Part 1) a

a′ iff there exist a, l, D ∈ Ĉ and r ∈ C such that a = Dl and

a′ = F(D)r F(D) ∈ D (F(l), r) ∈ Reacts

F(a) = a .

¥
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8 J.J. Leifer

3 Sliding IPO squares

3.1 Introduction and motivation

Part 1 presents a series of congruence proofs, each one for a different operational equiv-

alence. The theme throughout is the separation of “reactive system” into two categories

with a functor F between them: the domain of F , i.e. Ĉ, is a category in which RPOs

and IPOs exist; the codomain of F , i.e. C, is a category containing (i) the agents that

perform reactions and labelled transitions and (ii) the agent contexts that serve as the

labels and specify the closure condition for congruence. This separation is useful because

the category for which we prove a congruence result is typically not one in which RPOs

exist, as I show in the next section when considering categories of graph contexts. Thus

functorial reactive systems are a powerful generalisation of reactive systems.

This separation imposes a burden, though, in the form of the list of requirements given

in Definition 2.5, i.e.: F lifts agents, creates isos, creates compositions, and allows IPO

sliding. The motivation for the current section is to alleviate this burden by showing that

all of these properties follow directly if we construct Ĉ, C, and F from a precategory A in

a particular way. The assumption is that A is easier to construct than the others. (The

next section gives a concrete instance of A.)

Precategories are defined formally below. By way of motivation, though, let us look

informally at an example we have in mind when deriving F : Ĉ C from A. A precate-

gory is just like a category but has a composition operation that is partial, i.e. not always

defined. For example, consider a precategory A of “raw contexts”. For the purpose of this

example, take the objects to be natural numbers (representing the number of ports in an

interface). Take the arrows m n to be just like normal graphs but with some added

structure, namely an inner and outer interface. An arrow is thus a doughnut-shaped graph

consisting of a set of nodes (which we call the support) and an arc relation; the arcs link

nodes to one another and to the interface ports; m (ordered) interface ports sit on the

inside “hole” and n (ordered ones) on the outside. (These are simpler than the graph con-

texts that appear in the next section.) Composition consists of placing one raw context

inside the hole of another and joining together common ports. To see how this works,

consider arrows A0 : 1 2 and A1 : 2 3:

A1 =

v1 v2

A0 =

v0

INRIA
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Then their composition, which we denote A1 ⊕A0 : 1 3, is as follows:

A1 ⊕A0 =

v2

v0

v1

This example reveals why composition is partial in A. If we form A′0 from A0 by renaming

the node v0 by v2 then the supports of A′0 and A1 are not disjoint. Thus the composition

A1 ⊕A′0 is undefined since there is no clear choice for the support of the composite.

There are several possible ways of building a true category (i.e. with a total composition

relation) from the data provided by A. Two possible ways are as follows:

� We can construct a category Ĉ whose objects are pairs (m,U) where m is an object

of A (in this case a natural number) and U is a set. An arrow (m0, U0) (m1, U1)

consists of an A-arrow A : m0 m1 for which U0 ⊆ U1 and U1 \ U0 is equal to

the support of A. Thus we can incorporate A1 (given above) into many possible

arrows in Ĉ, e.g. (2,∅)
A1 (3, {v1, v2}) and (2, {w})

A1 (3, {w, v1, v2}). As a result

composition is always well-defined: if (mi, Ui)
Ai (mi+1, Ui+1) are Ĉ-arrows for i =

0, 1 then the supports of A0 and A1 are disjoint.

� We can construct a category C, whose objects are the objects ofA and whose arrows

are l-equivalence classes of A-arrows. Two A-arrows are l-equivalent iff they are

graph-isomorphic, i.e. have (potentially) different supports but look like the same

graphs. Composition for this category is also well-defined since it is always possible

when composing arrows to find representatives of each equivalence class with disjoint

supports.

One might consider a third way, i.e. to use the arrows of A but rename the supports

so as to make them disjoint when composing arrows; but this yields a bicategory, since

composition is not associative. I consider this possibility in detail in Subsection 3.7.

What is the relationship between Ĉ and C? There is a simple functor F which discards

the set component of each Ĉ-object (i.e. F : (m,U) 7→ m) and maps each arrow to its

l-equivalence class. As we see later in this section, this functor has all of the desired

properties listed earlier, e.g. F allows IPO sliding.

The rest of this section repeats the above constructions in full formality.

3.2 Properties of A

First we formally define a precategory (see [MSS00]):

RR n
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10 J.J. Leifer

Definition 3.1 (precategory) A precategory A consists of similar data to that of a

category: a collection of objects m,n, . . .; a collection of arrows A(m,m′) between objects

m and m′; an identity arrow idm ∈ A(m,m) for all m; and a partial composition operation,

which we write here as ⊕ : A(m1,m2) × A(m0,m1) ⇀ A(m0,m2) on arrows. Identity:

composition with an identity arrow is always well-defined, i.e. for all A : m0 m1, we

have that idm1
⊕ A = A = A ⊕ idm0 and both compositions are defined. Associativity: if

A2 ⊕ A1 and A1 ⊕ A0 are defined then either both A2 ⊕ (A1 ⊕ A0) and (A2 ⊕ A1) ⊕ A0 are

undefined or both are defined and equal. ¥

Next we define some special properties of a precategory. These properties form a

specification (used in Section 4) which any precategory is required to satisfy in order to

make use of the constructions and propositions of this section.

Definition 3.2 (well-supported precategory) A is a well-supported precategory iff it

is a precategory and it satisfies the following properties:

� A has a support function |·| that maps an arrow to a set such that A1 ⊕A0 is defined

iff |A1|∩|A0| = ∅ and DomA1 = CodA0. The support function satisfies additionally

two axioms:

|A1 ⊕A0| = |A1| ] |A0| (provided A1 ⊕A0 is defined) Supp-comp

|idm| = ∅ . Supp-id

� For any arrow A ∈ A(m0,m1) and any injective map ρ for which Dom ρ ⊇ |A|, there

exists an arrow ρ¦A ∈ A(m0,m1), which is called the support translation by ρ of A,

where:

ρ¦idm = idm Trans-id-r

ρ¦(A1 ⊕A0) = ρ¦A1 ⊕ ρ¦A0 Trans-comp-r

Id|A|¦A = A Trans-id-l

(ρ1 ◦ ρ0)¦A = ρ1¦(ρ0¦A) Trans-comp-l

ρ0 ¹ |A| = ρ1 ¹ |A| implies ρ0¦A = ρ1¦A Trans-res

|ρ¦A| = ρ|A| . Trans-supp

A note about Trans-comp-r: Since ρ is injective, Trans-supp implies that the

LHS is defined iff the RHS is defined. (These axioms are similar to those of Honda’s

Rooted P-Sets [Hon00], though his application concerns free names and renaming.)

¥

INRIA
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3.3 Construction of Ĉ

We now turn to problem of building a genuine category from a well-supported precategory

A. The idea is to enrich the object structure with enough data so that composition is

always defined. This construction is captured in the following definition:

Definition 3.3 (track) Given a well-supported precategory A, the track of A is a

category Ĉ. An object of Ĉ is a profile: a pair (m,U) where m is an object of A and U

is a set. We let p range over profiles and adopt the firm convention that the components

of a profile p are always written (m,U) with suitable decoration, e.g. p′ = (m′, U ′) and

pi = (mi, Ui). An arrow p0
A p1 consists of an arrow A ∈ A(m0,m1) such that U0 ⊆ U1

and |A| = U1 \ U0. We always include the profiles when referring to an arrow of Ĉ since

different Ĉ-arrows can be constructed from the same A-arrow, each with different profiles.

The identities of Ĉ are defined by idp =̂ p
idm p. Composition is defined in terms of the

underlying composition in A:

p0
A0 p1

A1 p2 =̂ p0
A1⊕A0 p2 . ¥

Proposition 3.4 If Ĉ is the track of A then Ĉ is a category.

Proof

Composition is well-defined: if pi
Ai pi+1 are arrows for i = 0, 1, then |A1| ∩ |A0| =

(U2 \ U1) ∩ (U1 \ U0) = ∅, so A1 ⊕A0 is defined. Furthermore, U0 ⊆ U1 ⊆ U2 and

U2 \ U0 = (U2 \ U1) ] (U1 \ U0) = |A1| ] |A0| =Supp-comp |A1 ⊕A0| ,

so p0
A1⊕A0 p2 is an arrow of Ĉ as desired.

The identity arrows are well-defined: By Supp-id, |idm| = ∅, so for any p = (m,U),

p
idm p is an arrow of Ĉ.

Composition is associative and respects identities: Immediate because these same

properties hold in A. ¥

3.4 Operations on Ĉ

In order to motivate the following results, let us recall the intuitions about the functor F

(defined formally later): F maps p0
A p1 to an isomorphism equivalence class of A and

throws away the set data contained in the profiles p0, p1. To prove that F allows IPO

sliding, we require two things. (i) We have to understand how two Ĉ-arrows are related

when they have the same F image, i.e. F(p0
A p1) = F(p

′
0
A′ p′1). (ii) From the first piece

of information, we have to slide similarly an IPO square whose left leg is p0
A p1 to one

whose left leg is p′0
A′ p′1.

RR n
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12 J.J. Leifer

For (i), it is clear that we can perform some profile translation (defined precisely later)

on p0
A p1 to replace the set components of p0 and p1 and then perform a support transla-

tion on the resulting arrow to arrive at p′0
A′ p′1. If these two operations (profile translation

and support translation) are iso functors (and thus preserve categorical constructions) then

we can accomplish (ii).

These two operations are not in fact iso functors on the whole of Ĉ but they are on

certain convex subcategories, as defined next. Fortunately, the subcategories in question

are rich enough to be proxies for Ĉ with respect to IPO squares, as shown in the result

immediately following the definition:

Definition 3.5 (convex subcategories of Ĉ) For any sets U0 ⊆ U1, we write ĈU0,U1

for the convex subcategory of Ĉ w.r.t. U0, U1, namely the full subcategory of Ĉ formed by

taking only those profiles (m,U) for which U0 ⊆ U ⊆ U1. ¥¨

§

¥

¦
p p0

p1 p2

A0

A1 B0

B1
6

Proposition 3.6 Suppose that Figure 6 commutes in Ĉ. Then it is an

IPO in Ĉ iff it is an IPO in ĈU,U2
.

Proof For any pair of arrows p C p′ C
′

p2, we have that U ⊆ U ′ ⊆ U2,

so p′ ∈ obj ĈU,U2
(Definition 3.5) hence ĈU,U2

satisfies the hypothesis of Proposition 2.3,

whence the result follows. ¥

Now we now define precisely profile translation and establish that it is an iso functor:

Proposition 3.7 (profile translation is an iso functor) If W1 = W0 ]W and W ′
1 =

W ′
0 ]W then the following operation, called profile translation, induces an isomorphism

of categories H : ĈW0,W1
ĈW ′

0,W
′
1
,

H : (m,W0 ] V ) 7→ (m,W ′
0 ] V ) for V ⊆W

H : (p0
A p1) 7→ H(p0)

A H(p1) .

Proof

H is well-defined on arrows: Suppose that (p0
A p1) ∈ ĈW0,W1

where Ui = W0 ] Vi,

i = 0, 1 for some V0 ⊆ V1 ⊆W . Now, W ′
0 ] V0 ⊆W ′

0 ] V1 and

(W ′
0 ] V1) \ (W

′
0 ] V0) = V1 \ V0 = |A|

so (H(p0)
A H(p1)) ∈ ĈW ′

0,W
′
1
as desired.

H is a functor: Consider the action of H on identities:

H(idp) = H(p
idm p) = H(p)

idm H(p) = idH(p)

and on compositions:

H(p0
A0 p1

A1 p2) = H(p0
A1⊕A0 p2)

= H(p0)
A1⊕A0 H(p2)

= H(p0)
A1 H(p1)

A0 H(p2)
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H is an isomorphism of categories: By symmetry, the map H′ : ĈW ′
0,W

′
1

ĈW0,W1

defined by

H′ : (m,W ′
0 ] V ) 7→ (m,W0 ] V ) for V ⊆W

H′ : (p0
A p1) 7→ H′(p0)

A H′(p1) .

is also a functor and clearly inverts H, as desired. ¥

Finally we lift the support translation operation from A to Ĉ in a straightforward way.

This definition induces a functor on convex subcategories of Ĉ

Proposition 3.8 (support translation is an iso functor) Given W0 ⊆ W1 and an

injection ρ with Dom ρ ⊇ W1, the following operation, called support translation, induces

an isomorphism of categories ρ¦(·) : ĈW0,W1
ĈρW0,ρW1

,

ρ¦(m,U) =̂ (m, ρU)

ρ¦(p0
A p1) =̂ ρ¦p0

ρ¦A
ρ¦p1 ,

where ρ¦A is the support translation by ρ of A in A.

Proof

ρ¦(·) is well-defined on arrows: Suppose that (p0
A p1) ∈ ĈW0,W1

. Then W0 ⊆ U0 ⊆

U1 ⊆W1 ⊆ Dom ρ. Thus ρU0 ⊆ ρU1 and

ρU1 \ ρU0 =ρ injective ρ(U1 \ U0) = ρ|A| =Trans-supp |ρ¦A| ,

so ρ¦(·) maps an arrow to an arrow.

ρ¦(·) is a functor: By Trans-id-r and Trans-comp-r, ρ¦(·) preserves identities and

compositions, so is a functor.

ρ¦(·) is an iso functor: Note that ρ has an inverse ρ−1 : Im ρ½ Dom ρ. Furthermore,

ρ−1¦(·) : ĈρW0,ρW1
ĈW0,W1

is a functor for the same reasons (given above) that ρ¦(·) is. By Trans-comp-

l and Trans-id-l, the functors ρ¦(·) and ρ−1¦(·) invert each other, so ρ¦(·) is an

isomorphism of categories, as required. ¥

3.5 Construction of C

We now turn to the construction of C, which was described informally in Subsection 3.1.

Recall that the arrows of C are equivalence classes of arrows of A. In this subsection we

make precise the underlying equivalence relation and the construction of C and verify that

C is a well-defined category.
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14 J.J. Leifer

Definition 3.9 (l-equivalence for A) Given two arrows A,A′ : m0 m1 inA, we say

that they are l-equivalent, written A l A′, iff there exists a bijection ρ : |A| ½³ |A′| such

that ρ¦A = A′. By Trans-id-l and Trans-comp-l, l is an equivalence relation. ¥

Now the construction of C is straightforward:

Definition 3.10 (support quotient) Given a well-supported precategory A, the sup-

port quotient of A is a category C. The objects of C are the objects of A. The arrows

m0 m1 of C are l-equivalence classes of arrows in A:

C(m0,m1) =̂ {[A]l / A ∈ A(m0,m1)} .

Identities: idm ∈ C(m,m) =̂ [idm]l. Composition: if A1 ⊕ A0 is defined in A then

[A1]l[A0]l =̂ [A1 ⊕A0]l. ¥

This definition yields a well-defined category:

Proposition 3.11 If C is the support quotient of A then C is a category.

Proof

Composition is total: Consider any two arrows in C such as [Ai]l : mi mi+1 for

i = 0, 1. Let W be a fresh set in bijection with |A1|, as witnessed by ρ : |A1| ½³W .

Then ρ¦A1 ⊕A0 is defined since |ρ¦A1| ∩ |A0| =Trans-supp W ∩ |A0| = ∅; thus

[A1]l[A0]l = [ρ¦A1]l[A0]l = [ρ¦A1 ⊕A0]l ,

as desired.

Composition is well-defined: Let [Ai]l = [A′i]l for i = 0, 1 with both A1 ⊕A0 and A′1 ⊕

A′0 defined. Claim: [A1]l[A0]l = [A′1]l[A
′
0]l. By hypothesis, there exist bijections

ρi : |Ai| ½³ |A′i| such that A′i = ρi¦Ai for i = 0, 1. Since |A1| ∩ |A0| = ∅ and

|A′1| ∩ |A
′
0| = ∅, we can define ρ =̂ ρ0 ] ρ1, a union of bijections with disjoint

domains and disjoint codomains. Now,

ρ¦(A1 ⊕A0) =Trans-comp-r ρ¦A1 ⊕ ρ¦A0 =Trans-res ρ1¦A1 ⊕ ρ0¦A0 = A′1 ⊕A′0

so

[A1]l[A0]l = [A1 ⊕A0]l = [A′1 ⊕A′0]l = [A′1]l[A
′
0]l ,

as desired.

Composition is associative: Follows from the associativity of the underlying composi-

tion in A.

Composition respects identities: Follows from the fact that composition respects

identities in A. ¥

INRIA
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3.6 Construction of F

In this final subsection we define a functor F from Ĉ (the track of A) to C (the support

quotient of A). We then verify that F has all the required properties, i.e.: F lifts agents,

creates isos, creates compositions, and allows IPO sliding. For the first we verify a stronger

property defined below, namely F lifts arrows by their domain. The reason for this choice

is that there is no postulated distinguished object in A or C corresponding to the 0

of a functorial reactive system (see Definition 2.5), which is required when defining the

property “F lifts agents”. However, the stronger property “F lifts arrows by their domain”

is well-defined.

Definition 3.12 (support-quotienting functor) Let A be a well-supported precat-

egory and Ĉ and C be as in Definition 3.3 and Definition 3.10. Then we define a map

F : Ĉ C called the support-quotienting functor :

F : (m,U) 7→ m

F : (p0
A p1) 7→ F(p0)

[A]l
F(p1) . ¥

Lemma 3.13 F is a functor.

Proof Observe the action on identities:

F(idp) = F(p
idm p) = [idm]l = idm

and on compositions:

F(p0
A0 p1

A1 p2) = F(p0
A1⊕A0 p2)

= [A1 ⊕A0]l

= [A1]l[A0]l

= F(p1
A1 p2)F(p0

A0 p1) ¥

Now we prove all the easy properties of F :

Theorem 3.14 Let F : Ĉ C be the support-quotienting functor constructed from A.

Then:

� F lifts arrows by their domain: if F(p0) = Dom [A]l then there exists p0
B p1 such

that F(p0
B p1) = [A]l.

� F creates isos: if F(p0
A p1) is an iso then p0

A p1 is an iso.

� F creates compositions: if

F(p′0
B p′2) = [A1]l[A0]l
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16 J.J. Leifer

then there exist Ĉ-arrows p′i
Bi p′i+1 with

F(p′i
Bi p′i+1) = [Ai]l for i = 0, 1 (1)

p′0
B p′2 = p′0

B0 p′1
B1 p′2 (2)

Proof

F lifts arrows by their domain: Suppose [A]l : (m0, n0) (m1, n1), thus

A : (m0, n0) (m1, n1) in A. Let W be a fresh set in bijection with |A|, as

witnessed by ρ : |A| ½³ W . Then p0
ρ¦A

p1 is an arrow in Ĉ, where U1 =̂ U0 ]W .

Furthermore F(p0
ρ¦A

p1) = [A]l as desired.

F creates isos: Suppose F(p0
A p1) is an iso, i.e. there exists an A-arrow A′ : m1 m0

such that:

[A′]l[A]l = idm0 = [idm0 ]l

[A]l[A
′]l = idm1 = [idm1 ]l

Without loss of generality, assume that |A| ∩ |A′| = ∅. Then A′ ⊕ A l idm0 and

A ⊕ A′ l idm1 . By Supp-id and Trans-id-r, A′ ⊕ A = idm0 and A ⊕ A′ = idm1 . By

Supp-comp, |A| = |A′| = ∅. Thus U1 = U0 and p1
A′ p0 is a Ĉ-arrow. Moreover,

p0
A p1

A′ p0 = p0
A′⊕A p0 = p0

idm0 p0 = idp0

and symmetrically. Thus p0
A p1 is an iso in Ĉ as desired.

F creates compositions: Without loss of generality, assume that |A1|∩ |A0| = ∅. Then

there exist p0, p1, p2 such that pi
Ai pi+1 are arrows in Ĉ for i = 0, 1. By the

definition of F , there exists a bijection ρ : |A1| ] |A0| ½³ |B| such that ρ¦(A1 ⊕

A0) = B; moreover m0 = m′
0 and m2 = m′

2. Let Bi =̂ ρ¦Ai for i = 0, 1. Let

(m′
1, U

′
1) =̂ (m1, U

′
0 ] |B0|), thus defining p′1. We claim that p′i

Bi p′i+1 are arrows in

Ĉ for i = 0, 1; there are three things that we need to check:

U ′0 ⊆ U ′0 ] |B0| ⊆ U ′0 ] |B| = U ′2

U ′1 \ U
′
0 = |B0|

U ′2 \ U
′
1 = (U ′0 ] |B|) \ (U

′
0 ] |B0|) = |B| \ |B0| = |B1| .

Now, B1 ⊕B0 = B by Trans-comp-r, from which (2) follows. Also, by Trans-res,

Bi l Ai for i = 0, 1, from which (1) follows.

¥
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An aside on the condition “F creates compositions”: This looks tantalisingly close

to the Conduché fibration property [Con72, Joh99, BF00], especially if one says that two

decompositions in Ĉ are equivalent if one is the result of a support translation of the other.

Perhaps there is some 2-category version of the Conduché property which works exactly

if one thinks of Ĉ as a 2-category with support translations as 2-cells. Let us now return

to the main flow of the argument.

Finally, we prove the key property, namely that F allows IPO sliding. The proof

follows the outline given in Subsection 3.4. We start with two Ĉ-arrows with the same

image under F , namely F(p
A1 p1) = F(p′

A′1 p′1). The first arrow is the left leg of an

IPO square in Ĉ. This square is also an IPO in ĈU,U2
, the convex subcategory w.r.t. U,U2

(Definition 3.5), where U ⊆ U2 are the sets in, respectively, the upper-left and lower-right

profiles of the square. We isomorphically transform this subcategory by profile translation

and then support translation, gaining a new square that has three properties: it has the

same image under F as the original; its left leg is p′
A′1 p′1; it is an IPO in a convex

subcategory, so is an IPO in Ĉ.

Before looking at the technical details, it is useful to consider a concrete case of sliding.

Because we have not formally defined the graph contexts referred to at the beginning of

this section, it is impossible to be precise about which commuting squares are IPOs and

which are not. Nonetheless, the activity of “sliding” is relevant for all commuting squares,

whether or not they are IPOs.

Let us consider a category of graph contexts formed as the track (Definition 3.3) of

the precategory or raw contexts informally defined in Subsection 3.1. The arrows of this

category are just like the raw contexts (doughnut-shaped graphs with an inner and outer

interface) but with profiles (Definition 3.3) rather than just natural numbers as objects.

Consider the square in Figure 7(1). Its left leg has the same F image as the left leg

of the square in Figure 7(3): the two graph contexts look essentially the same, the only

difference being the supports. With a profile translation, we can replace the singleton set

{u} in the top-left corner of Figure 7(1) with a fresh 2-element set {u′′0, u
′′
1}, as shown in

Figure 7(2). The freshness is essential to prevent clashes with the other nodes present in

the square, namely v0, v1. Now, if ρ is defined as follows:

ρ : vi 7→ v′i i = 1, 2

ρ : u′′i 7→ u′i i = 1, 2

then the support translation by ρ of Figure 7(2) yields Figure 7(3), as desired. Since

the passage from Figure 7(1) to Figure 7(2) and then to Figure 7(3) was effected by iso

functors, all the universal properties of Figure 7(1) (e.g. being an IPO) hold of Figure 7(3)

too.

RR n
�
4395



18 J.J. Leifer

v1

v0

v1

(2, {u})

(2, {v0, v1, u}) (0, {v0, v1, u})

(4, {v0, u})

v0

7(1) A commuting square before sliding

v1

v0

v1

(2, {u′′0 , u
′′
1})

(2, {v0, v1, u
′′
0 , u

′′
1}) (0, {v0, v1, u

′′
0 , u

′′
1})

(4, {v0, u
′′
0 , u

′′
1})

v0

7(2) First we apply profile translation . . .

v′
0 v′

1

v′
0

v′
1

(4, {v′0, u
′
0, u

′
1})(2, {u′0, u

′
1})

(2, {v′0, v
′
1, u

′
0, u

′
1}) (0, {v′0, v

′
1, u

′
0, u

′
1})

7(3) . . . and then support translation by ρ

Figure 7: Sliding
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¨

§

¥

¦
p p0

p1 p2

A0

A1 B0

B1
8

Theorem 3.15 (F allows IPO sliding) Let F : Ĉ C be the

support-quotienting functor constructed from A. Then F allows IPO slid-

ing (Definition 2.5).

Proof Consider any IPO square in Ĉ, as in Figure 8, and any arrow p′
A′1 p′1 with

F(p′
A′1 p′1) = F(p

A1 p1); thus A′1 = α¦A1 for some bijection α : |A1| |A′1| and U ′1 =

U ′ ] α|A1|. ¨

§

¥

¦

H(p) H(p0)

H(p1) H(p2)

A0

A1 B0

B1
9

By Proposition 3.6, Figure 8 is an IPO in ĈU,U2
. Let U ′′ be a

fresh set in bijection with U ′, as witnessed by µ : U ′′ ½³ U ′. Let

U ′′2 =̂ U ′′](U2\U). Then U2\U = U ′′2 \U
′′ so by Proposition 3.7, there

is a profile translation H : ĈU,U2
ĈU ′′,U ′′2

which is an iso functor and

whose action on profiles is:

H : (m,U ] V ) 7→ (m,U ′′ ] V ) for V ⊆ U2 \ U

and whose action on arrows leaves the underlying A-arrow component unchanged. Since

isomorphisms of categories preserve universal constructions, Figure 9 is an IPO in ĈU ′′,U ′′2

and has the same image under F as Figure 8 does. ¨

§

¥

¦

ρ¦H(p) ρ¦H(p0)

ρ¦H(p1) ρ¦H(p2)

ρ¦A0

ρ¦A1 ρ¦B0

ρ¦B1 10

Let W be a fresh set in bijection with |B1|, as witnessed

by β : |B1| ½³ W . Let ρ =̂ µ ] α ] β, a union of bijections

with mutually disjoint domains and codomains. Also Dom ρ =

U ′′ ] |A1| ] |B1| = U ′′2 . Because ρ is bijective, Proposition 3.8 im-

plies that there is a support translation ρ¦(·) : ĈU ′′,U ′′2
ĈρU ′′,ρU ′′2

which is an iso functor. Iso functors preserve universal constructions, so Figure 10 is a

IPO in ĈρU ′′,ρU ′′2
and has the same image under F . By Proposition 3.6, this square is an

IPO in Ĉ. Moreover,

ρ¦(H(p)
A1 H(p1)) = µ¦H(p)

α¦A1 (µ ] α)¦H(p1) = p′
A′1 p′1

as desired. ¥

3.7 Replacing precategories with bicategories

As explained in Section 1, one of the main motivations for presenting the sliding arguments

of this section is to advertise them to the (enriched) category theory community. The

reason is that precategories are probably not optimal: it would be worthwhile to rework

these arguments, replacing precategories with something more “natural” from enriched

category theory, e.g. bicategories. Such a change might have side-effects on the results of

Part 1 as well, which are discussed later in this subsection.

Recall from Subsection 3.1 that the composition operation ⊕ of A is partial, not total,

since it requires the supports of the operands to be disjoint: A1 ⊕ A0 is defined iff |A1| ∩
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|A0| = ∅ and DomA1 = CodA0 (Definition 3.2). Composition can be made total by

forcing the supports of the operands to be disjoint, i.e. defining a new composition ◦ for

which

A1 ◦A0 = (ι1¦A1) ⊕ (ι0¦A0)

where ιj : |Aj | |A1| + |A0| is the j-th injection into the coproduct of the supports in

Set (the category of sets and functions), for j = 0, 1. This new definition of composition

is total. It is not strictly associative, nor does it have strict identities — which is exactly

the kind of situation that bicategories cater for! Let the 2-cells from A : m n to

A′ : m n be the support translations ρ : |A| |A′| such that ρ¦A = A′. All of

these 2-cells are isos. Moreover, there are 2-cells mediating between the compositions

A2 ◦ (A1 ◦ A0) and (A2 ◦ A1) ◦ A0 as generated from the underlying isos in Set between

the coproducts |A2|+(|A1|+ |A0|) and (|A2|+ |A1|)+ |A0|. It remains to be checked that

all the bicategory coherence requirements are satisfied, but it seems likely since here they

rely on the underlying properties of a coproduct, which is a universal construction.

Having indicated how to derive a bicategory from A, it may be possible to go a step

further, namely to dispense with A and Ĉ altogether and to postulate the existence of a

bicategory B whose 2-cells are all isos. Since the 2-cells are isos, the property “the 1-cells

A,A′ have a 2-cell between them” is an equivalence relation on the 1-cells of B. We can

thereby construct the “support quotient” (cf. Definition 3.10) of B by quotienting out the

2-cells, thus obtaining a category E. This quotienting is an enriched functor G : B E.

Before looking at the advantages gained by giving this functor a central role, let us

consider the price to be paid. First, the congruence results of Part 1 depend on the

existence of RPOs in the “upstairs” category Ĉ of a functorial reactive system F : Ĉ C.

The domain of the functor G is instead a bicategory, thus necessitating a bicategorical

version of RPOs, which we might call 2-RPOs. One possible definition for 2-RPOs (of

which Peter Sewell has made a preliminary study) is to replace in Definition 2.1 each

commuting square and triangle by the relevant 2-cell, and their juxtaposition by horizontal

and vertical 2-cell compositions. This change would have knock-on effects in the proofs

of congruence which would have to be rewritten accordingly. Also, the existence proofs of

RPOs for concrete systems would have to be redone to provide 2-RPOs. Neither change

seems daunting. The potential reward of using bicategories is the ability to simplify the

collection of axioms postulated about F in the definition of a functorial reactive system

(Definition 2.5). The goal would be to give a neater collection involving G which might be

verified for many cases based directly on general categorical reasoning about quotienting

bicategories by their 2-cells.

Finally, note that the strategy of bringing in enriched categorical machinery is directly

opposite to Milner’s in [Mil01]. He discards Ĉ (the track of A) and works directly with a

precategoryA: he then calculates RPOs inA, slides IPO inA, etc. His approach demands
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that he be vigilant, since he is required to verify that compositions he encounters in A

are well-defined. Nonetheless, this extra care seems bearable: for most compositions, a

trivial inspection of the operands suffices. It is therefore a challenge to category theorists

to provide a collection of theorems for smoothly manipulating bicategories (for example)

in which the effort needed to apply these results is less than the effort needed to work in

the setting of precategories.
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4 Action graph contexts

4.1 Introduction

As promised in the previous section, the present one gives a substantial example of a

precategory A-Ixt of raw contexts based on action calculi. (The “Ixt” is for “insertion

context”, a terminology explained in Subsection 4.6.) The need to handle graphs was

the original motivation for functorial reactive systems: as we will see in Subsection 4.3,

RPOs do not always exist for C-Ixt, the support quotient (Definition 3.10) of A-Ixt, so

it is necessary to consider an upstairs category which does possess sufficient RPOs and a

functor down to C-Ixt.

The precategory A-Ixt has all the extra structure required of A, namely a sup-

port function and a support translation operation, so is a well-supported precategory

(Definition 3.2). By direct instantiation of the results of the previous section, we can

construct three things: the track of A-Ixt, which we call Ĉ-Ixt; the support quotient of

A-Ixt, which we call C-Ixt; and a functor F : Ĉ-Ixt C-Ixt. These are related in the

following table to their counterparts from the Section 3:

well-supported precategory: A A-Ixt

track: Ĉ Ĉ-Ixt

support-quotienting functor: ↓ F ↓ F

support quotient: C C-Ixt

Thus by Theorem 3.14 and Theorem 3.15, F lifts arrows by their domain, creates isos,

creates compositions, and allows IPO sliding. Furthermore A-Ixt has a distinguished ob-

ject 0, hence there are distinguished objects 0 and ε of C-Ixt and Ĉ-Ixt, with F(ε) = 0,

whence F lifts agents. Thus, any choice of reaction rules Reacts for C-Ixt and reac-

tive context subcategory D of C-Ixt (Definition 2.4) yields a functorial reactive system

(Definition 2.5).

The main hurdle then in using the congruence results of the section “Further congru-

ence results” in Part 1 is proving that F has all redex-RPOs (Definition 2.6). It turns out

that this property fails for some choices of reaction rules, but that it does hold for a rich

class of them.

As promised in Section 3 of Part 1, the category C-Ixt of graph contexts (the

codomain of F) does not admit enough RPOs for subtle reasons. Examples are shown

in Subsection 4.3. The cause is the lack of sufficient intensional information as to which

node in contexts C0 or C1, say, corresponds to a node in the composite C0C1. It is ex-

actly Ĉ-Ixt, the domain of F , that contains just enough structure to track how the nodes

of two contexts are related to the nodes of their composition. By the definition of “F
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has all redex-RPOs”, the proof obligation is to show that sufficient RPOs exist in Ĉ-Ixt

(Theorem 4.16). The proof of their existence is not done in the present paper, but is

contained in full in [Lei01b].

The development of action calculi presented in this section intersects with that of

[CLM00]; however the latter makes no use of functorial reactive systems, a key contribution

of the present paper. Note as well that there are some differences in naming: in this paper

I write Ĉ-Ixt and C-Ixt; in [CLM00], these are denoted PIns0 and ACxt0 respectively.

4.2 Action calculi reviewed

I review a restricted class of the action calculi which were presented in [Mil96]. The rest

of this section and the next make no specific use of the algebra of action calculi shown

here since all of the work is done directly on graphs. Nonetheless, the design decisions

taken when defining graphs are guided by the algebraic presentation of action calculi, so

the latter provide valuable motivation.

A closed, shallow action calculus is a strict monoidal category whose objects are

natural numbers k,m, n, o . . ., and whose arrows are called action graphs and written

a : (k, o), b : (m,n). (I avoid the usual arrow notation a : k o, reserving it for the

context arrows of reactive systems.) The tensor product of these two action graphs is

a⊗ b : (k+m, o+n); the composition of a : (k, o) and b : (o,m) is a·b : (k,m); the identity

action graph of arity (m,m) is im. The order of composition is not conventional in category

theory: it connotes the orientation of the action graphs we work with. (Note that this

composition is the horizontal juxtaposition of action graphs and has nothing to do with

contextual composition which we consider later.) A pair of natural numbers (k, o) is an

arity ; let α, β, . . . range over arities. I deal only with closed, shallow action calculi and so

usually omit these adjectives from now on.

An action calculus has a control signature K = {K,L, . . .} consisting of controls, each of

which has an arity. There are constants p : (2, 2), c : (1, 2) and ω : (1, 0) for permutation,

copy and discard. These constants represent only the swapping, sharing and elimination

of arcs, not of nodes. They satisfy simple equations, e.g. c·p = c representing the com-

mutativity of copying. There is also an operator called reflexion [Mil94] (similar to the

“trace” of Joyal et al. [JSV96]) which we need not detail here.

Finally, each action calculus has a binary reaction relation , relating action graphs

of equal arity. This relation is preserved by all constructions, i.e. by composition, tensor

product and reflexion.
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L

M

M

MK

Figure 11: The action graph K·c·(M ⊗ L) and the context −1,1·c·(M ⊗M)

For examples of action graphs, let K : (0, 1), M : (1, 1) and L : (1, 0) be controls. Then

the following are action graphs, with their arities:

K ⊗M : (1, 2)

K·c·(M ⊗ L) : (0, 1)

(K·M)⊗ (M ·L) : (1, 1) .

Composition · binds tighter than tensor ⊗, so the last can be written K·M ⊗M ·L.

A context C is an action graph containing a single hole with arity α, written −α. I

omit the arity, writing −, if it is determined by the rest of the context or the surrounding

discussion. Thus a context C : α β is an action graph of arity β with a hole of arity α.

Here are two contexts along with their domain and codomain arities (the arity of the hole

being fully determined in the second case):

−1,1·c·(M ⊗M) : (1, 1) (1, 2)

K·−·L : (1, 1) (0, 0) .

Figure 11 shows an action graph and a context using a graphical notation. It uses

nodes (rectangles with two blunt corners) to represent occurrences of controls, and arcs

to represent composition. An action graph with arity (m,n) has m source ports on its

left side and n target ports on its right side. A control node or hole of arity (m,n) has m

target ports at its left side n source ports at its right side. At a source node, branching of

arcs represents c and absence of arcs represents ω.

Two contexts are equal if the algebraic theory equates them, treating the hole as

a control distinct from all others. The composition of two contexts C : α β and

D : β γ, written here DC (note the conventional order of composition), is formed

by replacing the hole in D by C and joining the arcs according to the common ports.

(This is context composition, not horizontal action graph composition described earlier.)

Composition is clearly associative, and there is an identity context idα = −α for each

arity. An action graph a : α can be considered as a context a : (0, 0) α whose hole has

minimum arity. We shall use lower case letters a, . . . for action graphs.
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We have thus associated with an action calculus a reactive systemC-Ixt, whose objects

are arities, with distinguished null arity (0, 0), and whose arrows are contexts, including

action graphs.

4.3 Examples and a problem

In this subsection I give examples of specific RPOs in C-Ixt, illustrating several phenom-

ena. I end with an example showing cases in which RPOs fail to exist; this motivates the

strategy of defining a category “upstairs” (the domain of a functor with codomain C-Ixt)

for which enough RPOs do exist.

Remember that C-Ixt is really a family of reactive systems arising from action calculi;

each is determined by a control signature and a set of reaction rules.

Example 4.1 (arithmetic) I first illustrate how an RPO can determine a labelled

transition, using an action calculus for elementary arithmetic having controls 0 : (0, 1),

S : (1, 1), and + : (2, 1). The reactive system is shown in Figure 12; it is an example

of the sharing graphs of Hasegawa [Has99], which add sharing to the interaction nets of

Lafont [Laf90]. Nodes represent subexpressions, and the forking of arcs allows these to

be shared. The reaction rules are in the top diagram; the garbage collection rules allow

unattached expressions to be incrementally destroyed.

The middle diagram shows an action graph a occurring in a larger one b′, which also

contains an occurrence of the redex l1 of the rule for S. The contexts C ′ and D′ correspond

to the two occurrences, which overlap. Now what is the “just large enough” context C

which extends a to contain l1? It is not quite C ′, because C ′ has destroyed the possibility

of sharing S which is offered by l1. In fact it is C as shown in the lower diagram; it may not

seem “smaller” than C ′, but it is indeed a factor of C ′, as witnessed by the context E. (C ′

cannot be a factor of C; no context F surrounding C ′ can cause its S-node to be shared.)

So our synthesised labelled transition system will admit the transition a C Dr1. We

would expect to add further controls, e.g. for subtraction, before obtaining an interesting

behavioural congruence.

Example 4.2 (wiring) The preceding example used the forking and deletion of arcs to

represent the sharing of components. This non-linearity is a pervasive feature in process

calculi. CCS and the π-calculus depend heavily on it; witness the double occurrence of x

in its reaction rule for CCS: x̄.a | x.b a | b (and similarly for the π-calculus). The redex

has no direct representation in the family of action calculi introduced in this subsection

because we confine our attention to shallow, closed action graphs, i.e. ones without nesting

of graphs (needed for prefixing) and free names. Without such limitations, the redex is

exactly modelled by an action graph with a forked arc (representing the sharing of x)

connected to two controls representing the output and input prefixes, containing inside a

and b respectively. See [Mil96] for many examples.
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+

Arithmetic rules

+

+

S

+

0

S

SS

0 0

Garbage collection rules
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l0 r0

l1

+

0

+

S

+

0

S

b′

(0, 0)
(1, 1)

(1, 1)

(2, 2)

a

l1
D′

C ′

C ′a = D′l1 = b′

S

0

An action graph a overlapping a redex l1

a

l1 D′

0

S

(0, 0)
(1, 2) (1, 1)

(2, 2)

(1, 1)

C ′

D

C

E

Ca = Dl1 = b

S
+

0

b

An RPO for a and l1 w.r.t. C ′ and D′

Figure 12: A reactive system for arithmetic (Example 4.1)
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(0, 2)

(0, 2)

(0, 2)
(0, 0)

C ′

C

D
(0, 0) (0, 2)

a t0
t1

b
t2
t3

D′

K

K

K

K

(t1,t3)
(t1,t2)
(t0,t3)
(t0,t2)

E

(0, 4)

Figure 13: An RPO for copied wiring (Example 4.2)

Non-linearity can give rise to RPOs which are more complex than one might expect.

Figure 13 shows two identical action graphs a = b = K·c, where K : (0, 1); using the

identity contexts C ′ = D′ = −0,2 they are embedded in K·c. But the RPO C,D,E does

not consist of identity contexts! A candidate might choose to identify t0 in a with either

t2 or t3 in b, and similarly for t1. To be the “best” candidate, the C,D,E must handle

all these pairings; to indicate this we have indexed its targets by pairs in the diagram. In

fact we have

Ca = Db = K·c·(c⊗ c) .

Example 4.3 (reflexion) A surprising phenomenon is how the presence of reflexion

can affect the RPO. Let K,N : (1, 1), L : (0, 2) and M : (2, 0), and recall that i1 is the

identity of arity (1, 1) for action graph composition. Figure 14 shows a = L·(i1 ⊗K) and

b = (i1 ⊗K)·M embedded in C ′a = D′b = L·(N ⊗K)·M . The contexts C ′ and D′ do not

involve reflexion. In the RPO C,D,E shown we have Ca = Db = (i1⊗L)·(p⊗K)·(i1⊗M);

this extends a by only one control (M) in order to create an occurrence of b. The contexts

C and D do not use reflexion, but E does use it. If reflexion is forbidden then the

RPO C+, D+, E+ is such that C+a = D+b contains N ; this would yield a more complex

synthesised labelled transition relation.

These examples do not exhaust the phenomena which arise in finding RPOs in C-Ixt,

but they indicate that the general construction will not be trivial. The reader may feel

that, having coped informally with a number of phenomena, we are well on the way to

finding RPOs in every case. However, they do not always exist in C-Ixt! Here is a

counter-example.
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M

N
L

K(0, 0)

L

K

KL N

(0, 0) (0, 0)

(0, 0)
(1, 1)

(0, 2)

(2, 0)M

M

a

b D

C

E

N

M

D′

C ′

L

N

K

Figure 14: An RPO using reflexion (Example 4.3)

Example 4.4 (missing RPO) Let K : (0, 1) and L : (1, 0). Let a = b = K and let

C ′ = D′ = K·L⊗−0,1·L with arity (0, 1) (0, 0). Then C ′a = D′b = K·L⊗K·L; this is

shown in the upper diagram of Figure 15. The lower diagram shows two candidate RPOs,

for which it is easy to verify commutation:

C0, D0, E0 = −, −, K·L⊗−·L

C1, D1, E1 = −⊗K, K ⊗−, −·(L⊗ L) .

But if there were an RPO, then contexts C,D,F0, F1 would exist as shown making the

diagram commute, yielding a contradiction as follows: Neither C nor D can contain any

control, since F0C = F0D = −. Hence from CK = DK we deduce C = D, using the

criterion for context equality stated above (since the control K appears in neither C nor

D). Hence −⊗K = F1C = F1D = K ⊗−, a contradiction.

This counter-example involves neither copying nor discard of arcs, so is applicable to

linear action calculi too [LM02] — those in which all source ports bear exactly one arc.

Thus we cannot attribute the lack of RPOs to c and ω, even though they demand careful

treatment as shown in Example 4.1 and Example 4.2.

The counter-example also illustrates why RPOs do not always exist in C-Ixt. The

equations C0K = D0K = K and C1K = D1K = K ⊗ K hold respectively for the two

candidates; but if we “track” the two occurrences of a = K and b = K through these

equations, we find that they correspond to the same occurrence of K in the first case,

and to two different occurrences in the second case. This is a key to solving our problem;

we seek a suitable refinement of C-Ixt that possesses the RPOs we need. We expect its
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Figure 15: A missing RPO in C-Ixt (Example 4.4)
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contexts to track the occurrences of nodes. This is a similar idea to that of “colouring”,

which has been suggested by Sewell to replace his dissection based definitions [Sew].

The strategy is as follows. The next two subsections are devoted to the construc-

tion of A-Ixt, a well-supported precategory of arities and raw contexts. Replaying

the constructions of Section 3, we derive two categories from A-Ixt and a functor be-

tween them F : Ĉ-Ixt C-Ixt. Finally we state the RPO existence theorem for Ĉ-Ixt

(Theorem 4.16), thus showing that F has all redex-RPOs (Theorem 4.17).

4.4 Closed shallow action graphs

In this subsection, after introducing some notation, I define a class of action graphs. These

graphs are enriched in the next subsection to form raw contexts (graphs with a hole in

them), the arrows of the precategory A-Ixt. No attempt is made to verify formally that

the action graphs presented here correspond to action calculi terms quotiented by the

action calculi axioms (which are not presented here). Such an undertaking represents

future work and will be of more value when the tractable graph-theoretic features include

free names and nesting.

Notation I write [m] for the ordinal number {0, 1, . . . ,m−1}. The disjoint sum
∑

i∈I Xi

of a family of sets is taken to be the set
⋃

i∈I({i}×Xi). A particular case is when I = [n];

then the disjoint sum may be written, without parentheses, as X0 + X1 + · · · + Xn−1.

Examples in this section take the form S =
∑

v∈V Sv + [m] + [n], a ternary disjoint sum,

the first summand of which is itself a disjoint sum; S has elements of the form (0, (v, s))

for each v ∈ V and s ∈ Sv, (1, i) for each i ∈ [m], and (2, j) for each j ∈ [n].

If the sets X and Y are disjoint, I often write their union as X ]Y . This notation is to

be distinguished from a disjoint sum. In particular, (X1]X2)]X3 = X1](X2]X3) and will

often be written without parentheses; on the other hand, the disjoint sums X1 +X2 +X3,

(X1 + X2) + X3 and X1 + (X2 + X3) are all distinct but in bijective correspondence. If

f : X Z and g : Y Z are two functions withX disjoint from Y , then f]g : X]Y Z

is their union.

I use f : X ½ Y , f : X ³ Y and f : X ½³ Y for respectively injective, surjective

and bijective functions, and f : X ↪→ Y for an injection which is an inclusion. Finally, ◦

denotes function composition, IdX the identity function on the set X, and ∅X the empty

function from ∅ to X.

Definition 4.5 (control signature) We fix a control signature K, a set of controls,

equipped with an arity function called arity : K N2 and let K,L, . . . range over K. For

arity(K) = (m,n) we write K : (m,n); in this case, two functions extract the components

of the pair: arin(K) =̂ m and arout(K) =̂ n. ¥
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Definition 4.6 (action graphs) A (closed, shallow) action graph G =

(m,n, V, contr , src) comprises an arity (m,n), a set V of nodes, called a support, a

control map contr : V K assigning a control in K to each node in V , and a source map

src : T S assigning a source (port) in S to each target (port) in T , where

� the source set S =̂
∑

v∈V [arout(contr(v))] + [m] comprises the binding sources for

each v ∈ V and the input sources indexed by [m];

� the target set T =̂
∑

v∈V [arin(contr(v))] + [n] comprises the argument targets for

each v ∈ V and the output targets indexed by [n]. ¥

Nomenclature We may write a graph as G = (V, contr , src) : (m,n), or just

G = (V, contr , src) when the arity is understood. We denote the empty graph

(∅,∅K,∅∅) : (0, 0) by 0. We shall abbreviate arin(contr(v)) to arin(v) etc., when there

is no ambiguity. We denote the injections induced by the disjoint sums S and T as

follows:

bind(v) : [arout(v)]½ S for the binding sources of each v ∈ V ;

in : [m]½ S for the input sources;

arg(v) : [arin(v)]½ T for the argument targets of each v ∈ V ;

out : [n]½ T for the output targets. ¥

We shall write bind(v, i) and arg(v, j) for the ports bind(v)(i) and arg(v)(j). For any

injection f into a set A we write Af for the range of f ; thus for example S in is the set

of all input sources and T arg(v) the set of argument targets of v. We shall also write for

example Sbind for
⊎

v∈V Sbind(v). With this notation we can represent our partitions as

S = Sin ] Sbind

T = T out ] T arg .

An example of an action graph with arity (1, 3) is shown in Figure 16, with node names

and the control map omitted. The whole graph is in a rectangle, with input sources at

the left and output targets at the right. Nodes are drawn as rectangles with two corners

blunted to give orientation; we may want to tilt some of them, as here, or even turn them

upside down. The three nodes have arities (1, 1), (2, 1) and (1, 2). The arcs represent the

source map, with arrows pointing from source to target. Ports could be drawn as blobs,

but this is somewhat redundant; a target is always indicated by exactly one incoming arc,

and we indicate a source with no outgoing arcs by a little aborted arc.

Cycles are allowed. The graphs studied here are for action calculi which are closed,

meaning that free names such as x, y, . . . are not used as sources, and shallow, meaning

that nodes do not contain action graphs nested inside. I study the closed, shallow action
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Figure 16: A closed shallow action graph

graphs in this paper as a preliminary to future work on a full graphical presentation of

action calculi, since notions such as graph contexts are more clearly handled in this simpler

setting.

Convention Action graphs are almost always denoted by G suitably subscripted.

Rather than always explicitly list all their primary components V , contr , and src, or

their derived components S, T , bind , in etc., we shall follow a firm convention that the

names of these components are standard, decorated as necessary to connote the graph’s

name.

4.5 The well-supported precategory A-Ixt of arities and raw contexts

I proceed now to construct the well-supported precategory A-Ixt of raw contexts with a

support function and support translation operation (Definition 3.2).

The intuition of “context” is well-supplied by Figure 17; the graph G occurs inside

the dotted rectangle in G′, and we may think of the context in which G is placed as that

part of G′ lying outside the dotted rectangle. A context is therefore an action graph, but

with a little more structure since it has an internal as well as an external interface. The

internal interface is often called a hole. (I do not consider here contexts with more than

one hole.)

The lower diagram shows the context C which results when G is excised from G′;

in the notation of what follows, G′ = CG (C composed with G). Note the new targets

and sources on respectively the left and right sides of C’s internal interface; in particular,
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G′

G

The action graph G is a subgraph of G′

C

The corresponding context

Figure 17: The bottom context composed with the middle action graph yields the top
action graph
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the middle internal source lacks any targets and therefore represents the discard of the

corresponding output target of G — or of any other graph — when placed in the hole.

Definition 4.7 (raw context) A (closed, shallow, loose) raw context A = (V, contr , src)

of arity (m′, n′) to (m,n), written A : (m′, n′) (m,n), comprises a support V , which is

a set of nodes, a control map contr : V K assigning a control in K to each node in V ,

and a source map src : T S assigning a source (port) in S to each target (port) in T ,

where

� the source set S =̂
∑

v∈V [arout(v)] + [m] + [n′] comprises the binding sources for

each v ∈ V , the input sources indexed by [m], and the upput sources indexed by [n′];

� the target set T =̂
∑

v∈V [arin(v)] + [n] + [m′] comprises the argument targets for

each v ∈ V , the output targets indexed by [n], and the downput targets indexed by

[m′].

Furthermore, we require that the looseness condition is satisfied (see nomenclature defined

below):

src(T down) ∩ Sup = ∅ . Loose

The looseness condition precludes a “tight” loop from the back of the hole to the front, such

as is formed by reflexion in action calculi. It does not preclude such a loop proceeding via a

control, which indeed occurs in Figure 17; thus the contexts permit only limited reflexion,

which simplifies the definition of composition. (See Section 5 for further discussion.)

Finally, |A| is the support of A, i.e. V in this case. ¥

Note that an action graph G is just a raw context A as above in which m′ = n′ = 0.

Nomenclature As for action graphs, there are induced injections for raw contexts as

follows:

bind(v) : [arout(v)]½ S for the binding sources of each v ∈ V ;

in : [m]½ S for the input sources;

up : [n′]½ S for the upput sources;

arg(v) : [arin(v)]½ T for the argument targets of each v ∈ V ;

out : [n]½ T for the output targets;

down : [m′]½ T for the downput targets.

With naming similar to that in action graphs for the partitions of S and T , we have

S = Sbind ] Sin ] Sup

T = T arg ] T out ] T down .
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A0
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T down
0Sin

1 Sup
0

T down
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0 Sup
1

T out
1
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0

Figure 18: The composition of two raw contexts

Raw contexts cannot be composed when the supports of each operand in a composi-

tion intersect non-trivially. Composition is well-defined when the operands have disjoint

supports— one of the required properties of a well-supported precategory (Definition 3.2).

Definition 4.8 (identity and composition for raw contexts) The identity raw

context id(m,n) = (∅,∅K, src) : (m,n) (m,n) has

S =̂ ∅ + [m] + [n] = Sin ] Sup

T =̂ ∅ + [n] + [m] = T out ] T down
src :

{

down(i) 7→ in(i) i ∈ [m]

out(j) 7→ up(j) j ∈ [n] .

Let Ai = (Vi, contr i, srci) : (mi, ni) (mi+1, ni+1) be two raw contexts for i = 0, 1, with

V0 ∩ V1 = ∅. Their composition, illustrated in Figure 18 by nesting A0 inside A1, is

A1 ⊕A0 =̂ A2 = (V2, contr2, src2) : (m0, n0) (m2, n2) ,

where V2 =̂ V1 ] V0 and contr2 =̂ contr1 ] contr0 (thus determining arin2 = arin1 ] arin0

and likewise arout2, bind2, arg2), and

S2 =̂
∑

v∈V2
[arout2(v)] + [m2] + [n0] = (Sbind

1 ] Sbind
0 ) ] Sin

1 ] Sup
0

T2 =̂
∑

v∈V2
[arin2(v)] + [n2] + [m0] = (T arg

1 ] T arg
0 ) ] T out

1 ] T down
0 .

Note (see Figure 18) that T down
1 is in bijection with Sin

0 and [m1], while Sup
1 is in bijection

with T out
0 and [n1]. It remains to define the source function src2; this is done in terms of

two auxiliary functions σi : Si S2 (i = 0, 1) which describe how sources of A0 and A1
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“become” sources of A2:

σ0(s) =̂

{

s if s ∈ Sbind
0 ] Sup

0

src1down1(i) if s = in0(i) ∈ Sin
0

σ1(s) =̂

{

s if s ∈ Sbind
1 ] Sin

1

σ0src0out0(j) if s = up1(j) ∈ Sup
1

src2(t) =̂

{

σ1src1(t) if t ∈ T arg
1 ] T out

1

σ0src0(t) if t ∈ T arg
0 ] T down

0 .

¥

We have adopted the symbol “⊕” for composition of raw contexts as a reminder that it is

partial: the supports of the operands are required to be disjoint in order for a composition

to be defined.

Proposition 4.9 (raw contexts form a precategory) If A0 and A1 are raw contexts

with |A1| ∩ |A0| = ∅ then A1 ⊕ A0 is a raw context too. (In particular, ⊕ preserves the

Loose condition.) Composition is associative and has identity id (in the way required of

a precategory, see Definition 3.1).

Proof Follows immediately from Propositions 21 and 22 of [CLM00]. ¥

By definition composition satisfies Supp-comp and Supp-id (Definition 3.2), i.e.

|A1 ⊕A0| = |A1| ] |A0| Supp-comp

|idm| = ∅ . Supp-id

The only task remaining in order to show that A-Ixt is a well-supported precategory

is the definition of a support translation operation and the verification of its properties.

Definition 4.10 (support translation for raw contexts) Given a raw context

A : (m0, n0) (m1, n1) and an injection ρ whose domain contains the support of A,

i.e. Dom ρ ⊇ |A|, we define the support translation by ρ of A, written ρ¦A, as follows:

ρ¦A =̂ A′, where:

V ′ =̂ ρV

contr ′(v) =̂ contr(ρ−1(v)) thus determining arin, arout , bind , arg

S′ =̂
∑

v∈V ′ [arout
′(v)] + [m1] + [n0]

T ′ =̂
∑

v∈V ′ [arin
′(v)] + [n1] + [m0]

thus determining bijections ρS : S ½³ S′ and ρT : T ′ ½³ T whence we define:

src′ =̂ ρS ◦ src ◦ ρT . ¥
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This definition satisfies the appropriate healthiness conditions:

Proposition 4.11 (support translation is well-defined) If A satisfies Loose then

so does ρ¦A, thus ρ¦(·) is a well-defined operation on raw contexts.

Proof Immediate from src ′ =̂ ρS ◦ src ◦ ρT, since ρS and ρT are the identity on upput

sources and downput targets respectively. (Proposition 24 in [CLM00].) ¥

Furthermore, support translation satisfies the remaining axioms in the definition of a

well-supported precategory (Definition 3.2):

Proposition 4.12 (support translation properties) All of the following properties

hold:

ρ¦idm = idm Trans-id-r

ρ¦(A1 ⊕A0) = ρ¦A1 ⊕ ρ¦A0 Trans-comp-r

Id|A|¦A = A Trans-id-l

(ρ1 ◦ ρ0)¦A = ρ1¦(ρ0¦A) Trans-comp-l

ρ0 ¹ |A| = ρ1 ¹ |A| implies ρ0¦A = ρ1¦A Trans-res

|ρ¦A| = ρ|A| . Trans-supp

Proof All of these except the last follow from Proposition 25 in [CLM00]. Trans-supp

follows immediately from Definition 4.10. ¥

Thus:

Theorem 4.13 A-Ixt is a well-supported precategory. ¥

4.6 Constructing a functorial reactive system

Having established that A-Ixt is a well-supported precategory, the rest of the results

of Section 3 are immediately applicable, as we next see. We let Ĉ-Ixt be the track of

A-Ixt (Definition 3.3), a category of profiles and insertion contexts. The arrows are called

“insertion contexts” to remind us that they “insert” the nodes of the domain profile into

the codomain profile.

Now let C-Ixt be the support quotient (Definition 3.10) of A-Ixt. Finally let

F : Ĉ-Ixt C-Ixt be the support-quotienting functor (Definition 3.12). Then by

Theorem 3.14, F lifts arrows by their domain, creates isos, and creates compositions.

By Theorem 3.15, F allows IPO sliding.

A-Ixt has a distinguished object (0, 0): as stated immediately after Definition 4.7, a

raw context with domain (0, 0) is identical to an action graph. Recall that C-Ixt has the

same objects as A-Ixt does, so the distinguished object 0 of C-Ixt (viewed as a reactive

system) is just (0, 0). Likewise, let ε =̂ (0, 0,∅), the distinguished object for Ĉ-Ixt. Since

F(ε) = 0, we have that F lifts agents, and thus:
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Theorem 4.14 (F is functorial reactive system) The support-quotienting functor

F : Ĉ-Ixt C-Ixt is a functorial reactive system for any choice of D and Reacts. ¥

Thus all the congruence results of Section 3 in Part 1 are applicable to F (except

Theorem 3.34 since we are not dealing with multi-hole contexts) with one proviso: we

wish to determine choices of D and Reacts such that F has all redex-RPOs.¨

§

¥

¦
ε p0

p1 p

G0

G1 A0

A1
19

With regard to D, the strongest result obtainable is with D = C-Ixt,

i.e. with all contexts in C-Ixt reactive, so let us fix on this. Recall from

Definition 2.6, that F has all redex-RPOs if any square in Ĉ-Ixt, such as

in Figure 19, has an RPO provided that there exists r ∈ C-Ixt such that

(F(ε
G1 p1), r) ∈ Reacts.

So the key question is: for which choice of redexes l (first components of the Reacts

relation) do there exist RPOs in Ĉ-Ixt for squares such as Figure 19 where F(ε
G1 p1) = l.

The answer is that for almost an any choice of redexes, except the most pathological, RPOs

exist. In order to make precise which are these pathological cases, we need a definition

about action graphs.

Definition 4.15 (output-controlled) In any graph, a target is controlled if its source

is a bound source. G is output-controlled if all its output targets are controlled;

formally:

src(T out ) ⊆ Sbind . (output-controlled)

Since Cod src = Sin ] Sbind , an equivalent formulation is:

src(T out ) ∩ Sin = ∅ . (output-controlled)

¥

Informally, a graph satisfies this definition when it contains no “floating” wires con-

necting the left-hand interface ports with the right-hand ones.

Recall that in Ĉ-Ixt a context ε G (m,n,U), whose domain is the empty profile ε, is

actually a graph G : (m,n) with |G| = U . Thus the definition of output-controlled

applies to contexts in Ĉ-Ixt with domain ε.

RPOs do exist provided one of the legs is output-controlled:

Theorem 4.16 Let C0G0 = C1G1 = G in Ĉ-Ixt, where G1 is output-controlled.

Then there exists an RPO for G0, G1 w.r.t. C0, C1.

Proof See Corollary 6.28 in [Lei01b]. ¥

Now note that if G is output-controlled then ρ¦G is too for any injection ρ with

Dom ρ ⊇ |G|. Thus it is well-defined to say that a context with domain (0, 0) in C-Ixt

(the category formed by quotienting out support translations) is output-controlled.
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Because Theorem 4.16 is asymmetric in the use of the output-controlled hypothesis,

it directly implies the following.

Theorem 4.17 (F has all redex-RPOs) The functorial reactive system F : Ĉ-Ixt

C-Ixt has all redex-RPOs provided that every redex is output-controlled, i.e. pro-

vided that for all (l, r) ∈ Reacts, l is output-controlled. ¥

Happily, the requirement that redexes be output-controlled is a tolerable one since

redexes that are not are pathological (see Chapter 7 in [Lei01b]). Finally, Theorem 4.17

implies that all of the congruence results of Section 3 in Part 1 (except the one for multi-

hole contexts) are immediately applicable to F : Ĉ-Ixt C-Ixt, as desired.
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5 Conclusions and future work

Constructing RPOs is difficult, as witnessed by the daunting complexity in Chapter 6,

“RPOs for action graph contexts”, in [Lei01b] (the proof of Theorem 4.17 in the present

paper). It is therefore desirable that it not be done afresh for each new process calculus.

This is the impetus for the leading example in this paper, namely action calculi-like con-

texts. Recall that the functorial reactive system F : Ĉ-Ixt C-Ixt is really a family

with varying choices of control signature K and of reaction rules Reacts. The fragment

of action calculi considered in Section 4 is thus a framework : if one can express states of

a computational model using controls (for atoms) and arcs (for names and sharing) and

reactions in terms of redexes that satisfy the condition output-controlled then RPOs

exist and hence Section 3 of Part 1 gives labelled transitions and operational congruences.

A framework is often deficient for two reasons: (i) it provides insufficient benefits to

compensate for the effort of casting a specific example in the framework’s form; (ii) it is

not rich enough to cover all the phenomena that one wants. Criticism (ii) hits home. The

fragment of action calculi presented in this paper is inadequate for most purposes: there

is no nesting of action graphs (needed for prefixing), no free names, no binding, limited

reflexion, no choice operator, and no multi-hole redexes (needed to represent faithfully

metavariables in reaction rules). I describe future work below that addresses these other

issues. Criticism (i), however, is unjustified when applied to the action calculi shown here:

getting “for free” a labelled transition system and a collection of operational congruences

is a worthwhile benefit.

The reverse situation held for action calculi as originally presented by Milner [Mil96]:

criticism (ii) was not such a problem but criticism (i) was: up until now there has been

little tangible reward to using action calculi to present specific examples of process calculi.

The central goal of future work is to construct a framework with rich enough structure

(perhaps like Milner’s original action calculi) to dodge criticism (ii) while still providing

the rewards of labelled transitions and operational congruences.

To this end, it will be important to pursue several research directions:

multi-hole redexes: The basic reaction rule of the π-calculus is

x̄〈y〉.a | x(z).b a | {y/z}b . (3)

There is a problem of adequately representing (3) in a reactive system. Currently I

require that the reaction rules Reacts consist of pairs of agents, not agent contexts.

As a result, the only way to represent (3) is via an infinite family of rules, one for

each possible instantiation of a and b. Thus there might be labelled transitions of

the form

x̄〈y〉
−|x(z).b

(4)
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out

in

in

x

y

Figure 20: Nesting of nodes

for all instantiations of b. But these are ungainly labels: the only important part

of any label of the form − | x(z).b is the top-level structure, namely x(z); the b is

irrelevant.

How can we winnow down the family of labels to a single one? The answer lies in

using the uniformity present in (3). The a and b there are really metavariables and

the rule can be expressed thus:

x̄〈y〉.−1 | x(z).−2 −1 | {y/z}−2 . (5)

This rule consists of a pair of 2-hole contexts which capture the uniformity present

in it. In Figure 13 of [Mil01], Milner proposes a formalisation of exactly this rule in

his bigraphical reactive systems, which cater directly for multi-hole contexts.

If we relax the condition on Reacts and allow it to contain pairs of contexts (L,R) for

which L,R : m n are arbitrary contexts, then it is easy to generate the reaction

relation (forgetting about the details of D)

A A′ iff (∃(L,R) ∈ Reacts, C,D. A = DLC & A′ = DRC) .

¨

§

¥

¦

B

A

F

C

L

D

B′ F ′

C′ D′

21

Contrast this to Proposition 2.7 for which the reaction rules

are closed-up under context application on the outside, not

also on the inside (as shown here). The hard problem is

to define labelled transitions A F A′. We cannot rely on

IPOs anymore since the domain of A is potentially different

from the domain of any redex L. A possible replacement for IPOs might be via

hexagon idem pushouts (which are special kinds of hexagon relative pushouts) as

suggested by Sewell. Notice how L and A are wrapped up in Figure 21 by arrows
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composed on either side. The hexagon idem pushout property guarantees that there

is no lesser hexagon bounded by B′, C ′, F ′, D′. It seems plausible that such hexagons

can yield the single labelled transition x̄〈y〉
−1|x(z).−2 from (5), which is lighter than

having the infinite family shown in (4).

In [Sew], Sewell already exploited the uniformity present in reaction rules when

looking at term algebras with parallel composition. He achieved lightweight labelled

transitions, but made use of complex context dissection lemmas. He is now look-

ing at the problem of recasting his results in terms of universal constructions (such

as hexagons). In conclusion, there are two important lines of research related to

multi-hole redexes which mirror what was done in my paper: (i) defining labelled

transitions by universal constructions and proving congruence for a variety of equiv-

alences and preorders; (ii) showing that the relevant universal constructions exist in

categories of interest (term algebras, graphs, etc.).

nesting: The nesting of agents inside nodes is essential for representing prefixing. For

example, in CCS the agent x.y.x̄ contains three levels of nesting with the name x

shared by the outermost and the innermost. In order to represent this with graph-

like constructions, we need that each node packages up the continuation agent, e.g.

as in Figure 20 which gives a possible representation of the CCS agent above.

At first glance, nesting is a trivial thing: term algebras, for instance, consists of just

pure nesting structure with nothing else. It is straightforward to calculate RPOs

for them. However the real challenge is the combination of wiring and nesting:

Figure 20 has an arc sourced by x that is forked and has targets at multiple levels.

In particular, even the notion of context composition is difficult: when composing

contexts that fork an arc at different nesting levels, the forks have to be normalised

in some way, either by pushing them in to the innermost level or pulling them out

to the outermost.

There are many possible representations for nested graphs. One that seems most

promising comes out of recent work by Milner [Mil01]: the idea is to treat a nested

graph as a flat graph with an added parent function overlaid, a so called topograph

structure. RPOs can then be calculated by handling the wiring structure and the

nesting structure orthogonally.

Even without the full power of nesting, it may be possible to handle the π-calculus

(or variants thereof) indirectly. Honda and Yoshida [HY94a] give a translation in

terms of “concurrent combinators”; these encode prefixing in a flat structure by

using triggers to point to parts of agents that may execute. A synthesised labelled

transition relation for their combinator reaction rules might be too intensional since

the labels could detect exactly the combinators present in an agent. It is worth

trying this, though, to see what kind of equivalences would transpire.
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free names and binding: It is straightforward to add free names to graphs: the idea

is to enrich the set of source ports to include names. It is more subtle though to

make precise how a context can bind the names of the thing that goes in its hole.

It seems likely that the objects of the category of contexts need to contain name

sets to ensure that RPOs exist (analogously to inclusion of node sets in Ĉ-Ixt), i.e.

a context is an arrow of the form (m,n,U,X) (m′, n′, U ′, X ′), meaning that its

hole is expecting a context with support (nodes) U and names X. (This is similar to

Definition 67 in Milner’s work on bigraphical reactive systems [Mil01].) It is not clear

whether the downstairs category (the analogue of C-Ixt) should include these name

sets. For example, in π-calculus we write the binding context (νx)− without saying

which names can fit in the hole. Perhaps the functor from upstairs to downstairs

(like F : Ĉ-Ixt C-Ixt in this paper) will allow two kinds of IPO sliding: the first

with respect to nodes (as I have shown here) and the second with respect to names.

There has been recent work on modelling names and name binding in a categorical

way [TFP99, GP99] and it would be exciting to join together those syntactic models

with operational semantics, and in particular, the reactive systems shown here.

Name binding carries with it the problem of scope extrusion in labelled transitions.

In π-calculus, for example, it is a subtle problem to handle the labelled transition of

(νx)(ȳ〈x〉). There are many ways of handling this when looking at bisimulation, for

example, but most involve augmenting the definition with freshness side conditions to

cater explicitly for extrusion. An alternate approach [CS00] keeps track of extruded

names as annotations of the agents themselves, thus gaining the power of extrusion

but keeping the simplicity of bisimulation without added conditions. Adding these

annotations seems almost identical to adding name sets in the objects of a context

category (as outlined above).

sum: As discussed in Subsection 3.5 in Part 1, the proper treatment of summation (such

as occurs in CCS and the π-calculus) requires care. It is not good enough for sum to

be a free operator (just another control) if we want to describe its reactive behaviour,

e.g.

(x̄.a+ b) | (x.a′ + b′) a | a′

τ.a+ b a .

Consider the second reaction rule. In order for the sum to be rearranged so that

τ.a is on the left and the rest is on the right, we require + to be commutative,

associative, and have the empty agent as an identity.

The same problem surfaces for other operators that change the structural congruence

(syntactic equality). In the π-calculus, for example, replication is handled by the
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axiom

! a ≡ a | ! a . (6)

This seems hard to represent in terms of graphs since the RHS has, potentially, more

nodes than the LHS. When the problems of finding graph theoretic representation

of sum and replication are overcome (see Milner’s proposal in Figures 12 and 13

of [Mil01]), it may still be difficult to construct RPOs. A possible solution, at

least for replication, is to disallow the structural equality in (6), and instead confine

replication to be input guarded and to have a reaction rule of the form

x̄〈y〉 | !x(z).a {y/z}a | !x(z).a .

This is a commonly done in asynchronous variations of π-calculus [HT91].

Another way of handling replication is via an encoding in terms of combinators

(already mentioned above) [HY94b]. For input guarded summation, encoding [NP96]

is also an option.

full reflexion: The contexts considered in Section 4 have only a limited form of reflexion,

as enforced by the condition Loose that prevents tight loops linking a hole to itself.

This simplifying assumption makes the composition of contexts and the composition

of the associated embeddings easy. (Embeddings, which are morphisms between

graphs, are not introduced in this paper but play a central role in the construction

of RPOs; see Section 6.2 in [Lei01b].) With full reflexion, the composition of contexts

can create arcs that are formed from arbitrarily many segments of arcs present in the

inner and outer context. Indeed, it is difficult to prove even that the composition of

reflexive embeddings is associative [Lei01a]. Better technology for handling reflexion

has been developed in [LM02] for graphs with linear wiring. Proving the existence

of RPOs for full reflexion with non-linear wiring represents a future challenge.

inductive presentation of labelled transitions: In Part 1, the way of deriving la-

belled transitions from reactions yields a direct characterisation. This is in contrast

to the inductive presentation usually found in the process calculus literature. Can

the gap be bridged, though? In other words, can an inductive presentation of labelled

transitions be synthesised from reaction rules? It seems plausible. For any partic-

ular reactive system whose syntax is generated from some constructors, one could

instantiate Lemma 2.17 of Part 1 (recalled here) by substituting each constructor

for C:

C

F ′ F

C′
is an IPO a F ′ a′′ C ′ ∈ D

Ca F C ′a′′
.
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There are several interesting questions that follow: Under what conditions can we

synthesise an inductive presentation that generates precisely the same labelled tran-

sition relation as the direct presentation gives? Under what conditions would an

inductive presentation satisfy any of the GSOS rule formats [GV92, Blo93]? If some

set of the latter is satisfied, it would be enlightening to compare two different proofs

of congruence for strong bisimulation, say — one based on the RPO theory shown

in this paper and the other based on GSOS reasoning, particularly as provided by

recent categorical treatments of the latter [TP97].

It is not surprising that some of these areas (e.g. free names and multi-hole redexes)

require changes to the categorical abstractions of a reactive system, not just cleverer ways

of constructing RPOs. This pattern is well-established in this series of papers. I started

with reactive systems, then passed to functorial reactive systems when it became clear that

RPOs needed to be calculated in a separate category, then considered functorial monoidal

reactive system to cater explicitly for RPOs resulting in multi-hole contexts. As argued

in Subsection 3.7, it may be advantageous to make an orthogonal extension, replacing

categories by bicategories throughout. An intriguing possibility is that this extension is

not truly “orthogonal”, i.e. the power of enriched category theory could be brought to

bear on the problems listed above.

A test of the future work outlined above is to see what labelled transitions and opera-

tional congruences are generated for applications such as CCS, π-calculus, λ-calculus, and

ambients. It would be exciting (though not likely) to get congruences that coincide exactly

with well-known ones (open bisimulation for π-calculus, say). It should not be a cause

for dejection if the derived congruences do not match exactly the historically established

ones: π-calculus comes with a zoo of bespoke congruences, no single one of which is good

for all applications.

The best outcome of this work will be if the mathematical tools that are proposed

here ease the path for exploring new primitives and new patterns of behaviour inherent

in distributed computing. The development of mathematical techniques for reasoning

about hosts and host failure, agent mobility, and cryptography, for example, is critical for

guiding infrastructure and language design. Proofs techniques for these models are critical

for precise reasoning. Much work needs to be done before the tools of this paper are good

enough to address these applications.
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of Categories, 5(1):1–11, 1999. {17}

[JSV96] A. Joyal, R. Street, and D. Verity. Traced monoidal categories. Mathematical

Proceedings of the Cambridge Philosophical Society, 119(3):425–446, 1996. {23}

[Laf90] Y. Lafont. Interaction nets. In Conference Record of the Seventeenth Annual

ACM Symposium on Principles of Programming Languages, San Francisco, Cal-

ifornia, January 1990, pages 95–108. ACM Press, 1990. {25}

[Lei01a] J. J. Leifer. A category of action graphs and reflexive embeddings. Technical

report, Computer Laboratory, University of Cambridge, 2001. To appear. {44}

[Lei01b] J. J. Leifer. Operational congruences for reactive systems. PhD thesis, Computer

Laboratory, University of Cambridge, 2001. Available in revised form as Tech-

nical Report 521,Computer Laboratory, University of Cambridge, 2001, from

http://pauillac.inria.fr/∼leifer/. {2, 23, 38, 39, 40, 44}

[Lei02] J. J. Leifer. Synthesising labelled transitions and operational congruences in

reactive systems, part 1. 2002. Submitted for publication. Available from

http://pauillac.inria.fr/∼leifer/. {2}

[LM02] J. J. Leifer and R. Milner. Shallow linear action graphs and their embeddings.

Formal Aspects of Computing, 2002. To appear. Special issue in honour of Rod

Burstall. Available from http://pauillac.inria.fr/∼leifer/. {28, 44}

[Mil94] R. Milner. Action calculi V: reflexive molecular forms.

Third draft; with an appendix by O. Jensen. Available from:

ftp://ftp.cl.cam.ac.uk/users/rm135/ac5.ps.Z, 1994. {23}

[Mil96] R. Milner. Calculi for interaction. Acta Informatica, 33(8):707–737, 1996. {23,

25, 40}

RR n
�
4395



48 J.J. Leifer

[Mil01] R. Milner. Bigraphical reactive systems: basic theory. Technical Report

523, Computer Laboratory, University of Cambridge, 2001. Available from

http://www.cl.cam.ac.uk/∼rm135/. {20, 41, 42, 43, 44}

[MSS00] P. Mateus, A. Sernadas, and C. Sernadas. Precategories for combining proba-

bilistic automata. In M. Hofmann, G. Rosolini, and D. Pavlovic, editors, Proc.

CTCS ’99, volume 29 of Electronic Notes in Theoretical Computer Science. El-

sevier Science, 2000. {9}

[NP96] U. Nestmann and B. C. Pierce. Decoding choice encodings. In CONCUR ’96,

Concurrency Theory, 7th International Conference, Pisa, Italy, August 26–29,

1996, Proceedings, volume 1119 of Lecture Notes in Computer Science. Springer-

Verlag, 1996. {44}

[Sew] P. Sewell. From rewrite rules to bisimulation congruences. Theoretical Computer

Science. To appear. {30, 42}

[TFP99] D. Turi, M. P. Fiore, and G. D. Plotkin. Abstract syntax and variable binding. In

14th Annual Symposium on Logic in Computer Science, 2–5 July, 1999, Trento,

Italy, pages 193–202. IEEE Press, 1999. {43}

[TP97] D. Turi and G. Plotkin. Towards a mathematical operational semantics. In 12th

Annual IEEE Symposium on Logic in Computer Science, Warsaw, Poland, June

29 – July 2, 1997, pages 280–291. IEEE Press, 1997. {45}

INRIA



Unité de recherche INRIA Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scienti£que
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38330 Montbonnot-St-Martin (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)�������
	����������� ������� ��� ���

ISSN 0249-6399


	Introduction
	Motivation and goals
	Outline
	Acknowledgements

	Recapitulation of key definitions and theorems
	Sliding IPO squares
	Introduction and motivation
	Properties of A
	Construction of C-hat
	Operations on C-hat
	Construction of C
	Construction of F
	Replacing precategories with bicategories

	Action graph contexts
	Introduction
	Action calculi reviewed
	Examples and a problem
	Closed shallow action graphs
	The well-supported precategory A-Ixt of arities and raw contexts
	Constructing a functorial reactive system

	Conclusions and future work
	Bibliography

