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Abstract

Distributed applications can be structured as parties that
exchange messages according to some pre-arranged com-
munication patterns. These sessions (or contracts, or pro-
tocols) simplify distributed programming: when coding a
role for a given session, each party just has to follow the
intended message flow, under the assumption that the other
parties are also compliant.

In an adversarial setting, remote parties may not be
trusted to play their role. Hence, defensive implementa-
tions also have to monitor one another, in order to detect
any deviation from the assigned roles of a session. This task
involves low-level coding below session abstractions, thus
giving up most of their benefits.

We explore language-based support for sessions. We ex-
tend the ML language with session types that express flows
of messages between roles, such that well-typed programs
always play their roles. We compile session type declara-
tions to cryptographic communication protocols that can
shield programs from any low-level attempt by coalitions
of remote peers to deviate from their roles. Our main result
is that, when reasoning about programs that use our ses-
sion implementation, one can safely assume that all session
peers comply with their roles—without trusting their remote
implementations.

1 Session types for distributed programming

Programming networked, independent systems is com-
plex, because the programmer has little control over the
runtime environment. To simplify his task, programming
languages and system libraries offer abstractions for com-
mon communication patterns (such as private channels or
RPCs), with automated support to help the programmer use
these abstractions reliably and to relieve him from their low-
level implementation details (such as message format and
routing). As an example, web services promote declarative
types and policies for messaging, with tools that can auto-
matically fetch these declarations and set up proxies with a
simple typed programming interface.

From a security perspective, when parts of the system
and some of the remote parties are not trusted, commu-
nication abstractions can be especially effective: relying
on cryptographic protocols, implementations of these ab-
stractions can sometimes entirely shield programmers from
low-level attacks (such as message interception and rewrit-
ing) [1, 2]. However, this is seldom the case in practice, as
security concerns force the programmer to understand low-
level protocol issues.

Beyond simple abstractions for communications, dis-
tributed applications can often be structured as parties that
exchange messages according to some fixed, pre-arranged
patterns. These sessions (also named contracts, or work-
flows, or protocols) simplify distributed programming by
specifying the behaviour of each network entity, or role. By
agreeing on a common session specification, the parties can
resolve most of the complexity upfront. Then, when cod-
ing a role for a given session, each party just has to follow
the message flow for this role, under the assumption that the
other parties are also compliant. At run-time, sessions can
finally be instantiated by mapping roles to actual principals
and their hosts.

Language-based support for sessions is the subject of ac-
tive research [7, 8, 9, 13, 16, 30, 32]. In particular, several
recent type systems statically ensure compliance to session
specifications. In their setting, type safety implies that user
code that instantiates a session role always behaves as pre-
scribed in the session. Thus, assuming that every distributed
program that may participate in a session is well-typed, any
run of the session follows its specification.

In an adversarial setting, remote parties may not be
trusted to play their role. Hence, defensive implementa-
tions also have to monitor one another, in order to prevent
any confusion between parallel sessions, to ensure authenti-
cation, correlation, and causal dependencies between mes-
sages and, more generally, to detect any deviation from the
assigned roles of a session. Left to the programmer, this
task involves delicate low-level coding below session ab-
stractions, which defeats their purpose. Instead, we propose
to systematically compile session specifications to crypto-
graphic protocols.
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In this paper, we explore language-based support for ses-
sions and their implementations, as follows:

1. We design a small embedded language of types for
specifying messages, roles, and sessions, and we iden-
tify a secure implementability condition for these ses-
sions.

2. We extend F# [28] (a dialect of ML [23, 24]) with
distributed communication and sessions, so that type
safety yields functional guarantees: any sent message
is expected by its receiver, with matching payload
types.

3. We compile session types to cryptographic communi-
cation protocols, coded in F#, that can shield our pro-
grams from any low-level attempt by coalitions of re-
mote peers to deviate from their roles. We thus obtain
a secure, functional, distributed implementation of ses-
sions.

4. Our main theorem states that the safety guarantees im-
plied by session types do not depend on the implemen-
tations of any remote peers: from the viewpoint of our
distributed programs, any action that may occur may
also occur in an abstract setting, using a centralized
implementation that enforces all session types.

To our knowledge, this paper provides the first secure im-
plementation of session types, both formally and concretely.
It relates the semantics of three languages: at the level of
types, simple processes to specify communication patterns
and payloads; as a source language, a subset of F# with dis-
tributed communications and typed sessions; as an imple-
mentation language, a subset of F# with distributed com-
munications and cryptography.

Our compiler extracts session definitions, verifies that
they meet the secure implementability condition, generates
the corresponding cryptographic protocols, and emits their
code as F# modules. On the other hand, it leaves the code
that uses sessions unchanged, treating the session constructs
of the extended language as ordinary higher-order function
calls to their implementations. Hence, user code calls our
generated code to enter a session and then, for each received
message, generated code calls back user code and resumes
the protocol once user code returns the next message to be
sent. Taking advantage of this calling convention, with a
separately-typed user-code continuation for each state of
each role of the session, we can thus entirely rely on ordi-
nary typing à la ML to enforce session typing in user code.
(In the following, as we focus on session security, we treat
this important but well-understood aspect of session types
informally.)

The compiled protocols rely on a combination of stan-
dard techniques for authentication and anti-replay protec-

tion. The compiler does not introduce any additional mes-
sage: each abstract session message is mapped to a crypto-
graphic message with the same sender and receiver. Prin-
cipals are authenticated using X.509 certificates. All mes-
sages include a unique session identifier (obtained as the
joint cryptographic hash of its session type, its assignment
of principals to roles, and a fresh session nonce) and a se-
ries of signatures: one signature from the message sender,
plus one forwarded signature from each peer involved in
the session since the receiver’s last message (or the start
of the session). At any point in a session, each protocol
role knows exactly which messages to expect and what they
should contain, so we can use compact wire formats and
compile simple, specialized message handlers. Any mes-
sage that deviates from the expected format can be silently
dropped, or reliably detected as anomalous.

The security of automatically-generated cryptographic
protocol implementations crucially relies on formal verifi-
cation. To this end, our language design and prototype im-
plementation build on the approach of Bhargavan et al. [4],
which narrows the gap between concrete executable code
and its verified model. Our generated code depends on li-
braries for networking, cryptography, and principals, with
dual implementations. A concrete implementation uses
standard cryptographic algorithms and networking primi-
tives; the produced code supports distributed execution. A
second, symbolic implementation defines cryptography us-
ing algebraic datatypes, in Dolev-Yao style; the produced
code supports concurrent execution, and is also our formal
model. Thus, our security theorems apply directly to ar-
bitrary user code calling our session-generated code calling
our symbolic library code, within a formal model of a subset
of F# (rather than an ad-hoc abstract model of the protocol
loosely related to actual executable code).

Related work Session types have been explored first for
process calculi [17, 20, 32], to describe interaction on sin-
gle channels. Behavioral types [9, 21] support more expres-
sive sessions, typed as CCS processes possibly involving
multiple channels. Another type system [6] also combines
session types and correspondence assertions [19]. Recent
works consider applications of session types to concrete set-
tings such as CORBA [29], a multi-threaded functional lan-
guage [30], and a distributed object-oriented language [13].
In particular, the Singularity OS [16] explores the usage of
typed contracts in operating system design and implemen-
tation. In all these works, type systems are used to ensure
session compliance within fully trusted systems, excluding
the presence of an (active, untyped) attacker.

Sessions for Web Services are considered for the WSDL
and WS-SecureConversation specification languages (see
e.g. [3, 8]); Bhargavan et al. [3] verify security guarantees
for session establishment and for sequences of SOAP re-
quests and responses. In recent, independent work, Car-
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bone et al. [7] also present a language for describing Web
interactions from a global viewpoint and describe their end-
point projection to local role descriptions. Their approach is
similar to our treatment of session graphs and roles in Sec-
tion 2; however, their descriptions are executable programs,
not types. More generally, distributed languages such as
Acute and HashCaml [26, 12, 5] also rely on types to pro-
vide general functional guarantees for networked programs,
in particular type-safe marshalling and dynamic rebinding
to local resources.

Cryptographic communications protocols have been
thoroughly studied, so we focus on related work on their use
for securing implementations of programming-language ab-
stractions. They can provide secure implementations for
distributed languages with private communication chan-
nels [1, 2]. They can also help support the distributed im-
plementation of sequential languages such as JIF/Split [33],
while preserving high-level, typed-based integrity and se-
crecy guarantees. In a similar vein, the Fairplay [22] sys-
tem compiles high-level procedural descriptions toward se-
cure two-party computations. In other work, type-based
secrecy and integrity guarantees are enforced by a combi-
nation of static typechecking and compilation to low-level
cryptographic operations [15].

Protocol synthesis and transformation have been ex-
plored in other settings: for instance, the Automatic Pro-
tocol Generation (APG) tool [25] generates authentication
protocols then verified using Athena [27] and, more re-
cently, Cortier et al. [11] verify the correctness of a generic
transformation to protect a protocol from active attacks (but
not from compromised participants).

Contents Section 2 defines two views of sessions, as global
communication graphs and as local role definitions. Sec-
tion 3 gives the (fairly standard) syntax and semantics for
our source and target languages. Section 4 outlines the li-
braries that embed our assumptions on cryptography and
principals, used by our implementation. Section 5 presents
our optimized cryptographic protocol, as a refinement of a
basic, intuitively secure protocol. Section 6 describes our
implementation code for sessions. Section 7 states our main
results, formally showing the correctness of the implemen-
tation. Section 8 concludes.

The appendix provides additional details on our imple-
mentation, including listings for selected libraries. A com-
panion paper also includes a detailed programming example
and all proofs [10].

2 Sessions

In this paper, a session is a static description of the valid
message flows between a fixed set of roles. Every message
is of the form f(ṽ), where f is the message descriptor, or

label, and ṽ is the payload. The label indicates the intent of
the message and serves to disambiguate between messages
within a session. (Throughout the paper, both ṽ and (vi)i<n
denote a comma-separated list of values v0, . . . , vn−1; we
use (vi)i<n instead of ṽ when we need to refer specifically
to indexed values.)

We denote the roles of a session by the set R =
{r0, . . . , rn−1} for some n ≥ 2. By convention, the first
role (r0) sends the first message, thereby initiating the ses-
sion. In any state of the session, at most one role may send
the next message—initially r0, then the role that received
the last message. The session specifies which labels and
target roles may be used for this next message, whereas the
selection of a particular message and payload is left to the
role implementation.

As a running example, we consider a customer role C
arranging the delivery of an item with a store role S. This
arrangement may include several negotiation rounds, until
both C and S agree on the details, for instance the delivery
date and time. In addition, a third notary officer role O may
take part in the session to record the transaction, preventing
further disputes.

We define two interconvertible representations for ses-
sions. A session is described either globally, as a graph
defining the message flow, or locally, as a process for each
role defining the schedule of message sends and receives.
The graph describes the session as a whole and is conve-
nient for discussing security properties and the secure im-
plementability condition. More operationally, local role
processes are the basis of our implementation; they provide
a direct typed interface for programming roles.

Global session graphs We represent sessions as directed
graphs where nodes are session states tagged with their ac-
tive role, and edges are labelled with message descriptors.
Formally, a session graph G = 〈R,V,L,m0 ∈ V, E ⊆
V × L × V, r : V → R〉 consists of a finite set of roles
R = {r0, . . . , rn−1}, a set of nodes m,m′,mi ∈ V and a
set of labels f, g, l ∈ L, with initial nodem0, labelled edges
(m, f,m′) ∈ E , and a function r from nodes to roles such
that r(m0) = r0 ∈ R. We require that session graphs meet
the following properties:

1. Edges have distinct source and target roles: if
(m, f,m′) ∈ E , then r(m) 6= r(m′).

2. Two different edges cannot have the same label: if
(m1, f,m

′
1) ∈ E and (m2, f,m

′
2) ∈ E , then m1 = m2

and m′
1 = m′

2.

Property 1 disallows a role from sending a message to it-
self; such a message would be invisible to the other roles
and should not be part of the session specification. Prop-
erty 2 ensures that the intent of each message label is unam-
biguous; the label uniquely identifies the source and target
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Figure 1. Graphs for (a) a basic session, (b) a
session with a cycle, and (c) a three-party
session.

session states. Note that one can always transform graphs
so that they meet Property 2 by renaming message labels
that occur on multiple edges.

As usual, a path is a sequence of connected edges. By
Property 2 above, a sequence of labels uniquely defines a
path, so we just write f̃ to denote paths. To emphasize the
first node of a path, we write a pair (m, f̃). In particular,
paths of the form (m0, f̃), where m0 is the initial node of
the graph, are called initial paths; they represent possible
message sequences for the session. We say that a role r is
active on a path f̃ when r is the role of any source node of
a label of the path.

Figure 1 displays three increasingly complex session
graphs for our running example:

(a) The customer C sends a Request message to store S,
which may reply with either an Accept message or a
Reject message.

(b) As a refinement to (a), S may either Reject as before,
or accept the request and propose a delivery time by
sending an Offer message. C may then either Change
the delivery time or approve it by sending an Accept
message.

(c) A new officer role O acts as a notary for the transac-
tion. Initially, C sends its Request to O, which for-
wards this request to S. S negotiates with C as before,
and finally O receives either a Confirm from S indicat-
ing that the request is successful, or an Abort from C
indicating that the request is void.

In session (a), there are only two paths from the initial node;
hence, only two message sequences are allowed. In ses-
sions (b) and (c), however, the negotiation can be repeated
indefinitely, so the number and the length of possible mes-
sage sequences are unbounded.

Local session roles We now define a syntax for sessions,
as a map from roles to role processes that specify the local
operational behaviour of each role in the session:

τ ::= Payload types
int | string base types

p ::= Role processes
!(fi : τ̃i ; pi)i<k send
?(fi : τ̃i ; pi)i<k receive
µχ.p recursion declaration
χ recursion
0 end

Σ ::= Sessions
(ri : τ̃i = pi)i<n initial role processes

Role processes can perform two communication opera-
tions: send (!) and receive (?). When sending, the pro-
cess performs an internal choice between the labels fi for
i = 0, . . . , k − 1 and then sends a message fi(ṽ) where
the payload ṽ is a tuple of values of types τ̃i, a possibly
empty tuple of int or string types. Conversely, when receiv-
ing, the process accepts a message with any of the receive
labels fi (thus resolving an external choice). The µχ con-
struction sets a recursion point which may be reached by
the process χ; this corresponds to cycles in graphs. Finally,
0 represents a completion of the role for the session. On
completion, a session role produces values whose types τ̃ i
are specified on the process role ri : τ̃ i = pi. For conve-
nience, we often omit type annotations when the payload
or return type tuple is empty. Our concrete syntax uses the
keyword ‘mu’ for µ and keywords ‘session’ and ‘role’ in
front of session and role definitions.

Given the role processes for a session, if the sends and
receives are correctly matched, we can construct a corre-
sponding session graph. Appendix A details this construc-
tion; the companion paper [10] also gives the reverse con-
struction from session graphs to role processes.

We illustrate our local role syntax for the session graphs
of Figure 1(a,b). Session S1 corresponds to graph (a), with
role customer standing for C and role store standing for S.
Session S2 uses recursion to represent the negotiation loop
of graph (b).

session S1 =
role customer = !Request:string; ?(Reject + Accept)
role store:string = ?Request:string; !(Reject + Accept)

session S2 =
role customer = !Request:string;mu X.

?(Reject + Offer:string;!(Change:string;X + Accept))
role store:string = ?Request:string;mu X.

!(Reject + Offer:string;?(Change:string;X + Accept))

We equip role processes with a simple labelled semantics
that describes their execution, with labels η that range over
f , f with f a message label. We identify roles up to µ-
unfolding, so our semantics has just two rules for sending
and receiving:

(SEND) !(fi : τ̃i ; pi)i<k
fi−→r pi

(RECEIVE) ?(fi : τ̃i ; pi)i<k
fi−→r pi
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Traces of the labelled semantics represent possible series of
actions for these roles. For example, a complete trace for
customer in session S1 is:

!Request:string; ?(Reject + Accept)
Request−−−−→r

?(Reject + Accept)
Accept−−−→r 0

Distributed session runs At runtime, a session run in-
volves processes running on hosts connected through an un-
trusted network. Each process runs on behalf of a principal.
In general, a principal may be engaged in multiple sessions
with other principals, may play multiple roles within a ses-
sion run, and may also communicate with other principals
outside the session.

A run of a session S begins as a principal P0 initiates it,
taking its initial role r0, selecting other principals to play
the other roles, and sending a first message. If P0 picked
the principal Pi to play role ri, then Pi joins the session
run in role ri only when it receives the first message sent
to this role. The session run proceeds by exchanging mes-
sages between these principals until all role processes have
completed, at which point the run terminates. We consider
implementations that enjoy “message transparency”, that is,
every message exchange in a session is implemented as a
single message exchange on the network.

As an example, a principal Alice may begin a run of the
session S1 as a customer. Alice computes a unique ses-
sion run identifier s, picks the principal Bob to play the
role of store, and sends the first message Request(v), for
some string v, to Bob. (All messages implicitly contain the
session identifier s.) On receiving the message, Bob joins
the running session s as a store, sends either a Reject or an
Accept message back to Alice, and completes its part of the
session. After receiving the response, Alice completes its
role process and the session run s is terminated. This de-
scribes a session execution in which every principal is com-
pliant. If a principal is malicious, however, it may deviate
from its role. We consider a threat model where some of the
principals participating in a session may be malicious and
may collude with an attacker that also controls the network,
and can thus intercept, modify, and replay all messages.

Session integrity We say that a distributed session imple-
mentation preserves session integrity if during every run, re-
gardless of the behaviour of the malicious principals or the
network, the process states at the compliant principals are
consistent with a run where all principals seem to comply
with all sessions. Intuitively, every time a compliant prin-
cipal sends or accepts a message in a session run, such a
message must be allowed by the session graph; conversely,
every time a malicious principal tries to derail the session
by sending or replaying an incorrect message, this message
must be ignored.

Session integrity requires that all message sequences ex-
changed at compliant principals are consistent and comply

C S

C

O

Request

Reject

Accept

(a) (b)

C S

C

C

Request

Reject

Accept1
O

Accept2

Figure 2. (a) A session graph with a vulnera-
ble fork and (b) its safe counterpart.

with the session graph. For instance, in a run of the session
graph of Figure 1(c), a compliant officer Charlie should ac-
cept a Confirm from a store Bob only if a customer Alice
previously sent an Accept for the same session run to the
store Bob. Such properties on message sequences can also
be interpreted as injective correspondences between mes-
sage events [31] (see also Appendix C).

However, if in a session run, some malicious principals,
possibly in collusion with the network-based opponent, suc-
ceed in confusing a compliant principal into accepting or
generating a message sequence that deviates from the ses-
sion, we say that this run constitutes an attack against ses-
sion integrity. In the example above, if the store Bob is
malicious, it may Confirm a transaction to Charlie, without
ever completing its negotiation with Alice, hence causing
the compliant principals Alice and Charlie to have incon-
sistent session states. To avoid this attack, Charlie would
typically require further cryptographic evidence from Bob.

Even if all principals are compliant, a network-based op-
ponent could confuse them by mixing messages from dif-
ferent session runs, or by replaying old messages. If in our
example session above, the customer Alice sends a Change
to store Bob, that then sends a Reject to the officer Charlie,
a network-based opponent may intercept the Reject and re-
play an old Offer to trigger a new iteration of the loop.
Such attacks, as well as simpler attacks on the integrity of
message payloads, are reminiscent of common Dolev-Yao-
style [14] attacks against (flawed variants of) cryptographic
protocols; indeed, such protocols can be seen as particular
sessions.

A secure implementability condition for sessions For
some session graphs, it is difficult to rule out certain attacks
without either trusting some principals, or introducing ad-
ditional messages, or relying on a trusted party.

Consider for instance the session of Figure 2(a), where
S may send either a Reject to C or an Accept to O. Unless
C and O exchange some information, they cannot prevent a
malicious S from sending both messages, thereby breaking
the session specification.

To avoid such cases, we formalize a secure imple-
mentability condition as a third property of session graphs,
in addition to Properties 1 and 2 given above:
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3. For any two paths f̃1 and f̃2 starting from the same
node and ending with roles r1 and r2, if neither r1
nor r2 are in the active roles of f̃1 and f̃2, then r1 = r2.

Property 3 is trivially met for sessions with two roles; it ex-
cludes only some particular sessions where messages are
not seen by all roles, like the vulnerable session of Fig-
ure 2(a). There, the principals instantiating the roles reach-
able on the paths f̃1 and f̃2 may form a coalition (consisting
of just S in this case) that attacks both r1 and r2 (C and O
in the figure) by contacting them simultaneously. Neverthe-
less, such vulnerable session graphs can be transformed to
equivalent ones that meet Property 3, at the cost of insert-
ing additional messages. Figure 2(b) shows a safe coun-
terpart of the vulnerable session of Figure 2(a), in which
message Accept is split into two, Accept1 and Accept2, and
S is obliged to contact C no matter which branch is taken.
Appendix B shows the general transformation.

In the rest of this paper, we consider sessions that meet
Properties 1–3, and we describe distributed implementa-
tions that preserve their integrity.

3 Language specification

We now extend ML with typed sessions. We follow the
concrete syntax of F#, a dialect of ML, to which we add
the syntax for session type definitions. Formally, we give a
semantics only to a subset of this language (which we call
F+S) with primitives for both sessions and channel-based
communications. We compile programs in this language to
a language without the session constructs (which we call F).

T ::= Type expressions
t type variable
int, string, unit base types
T chan channel type
T1 → T2 arrow type

v ::= Values (also used as Patterns)
x variable
0, 1,. . . , Alice, , . . . constants for base types
l, c, n, . . . names for functions, channels, nonces
f(v1, . . . , vk) constructed term (when f has arity k)

e ::= Expressions
v value
l v1 . . . vk function application
match v with (|vi → ei)i<k

value matching
0 inert expression
let x = e1 in e2 value definition
let (li x0 . . . xki = ei)i<k in e

mutually-recursive function definition
type (ti = (|fji of T̃ ji)ji<ki)i<k in e

mutually-recursive datatype definition
session S = Σ in e session type definition
S.rb ṽ (v) session entry
s.p(e) session role (run-time only)

E[·] ::= Evaluation contexts
[·] top level
let x = E[·] in e2 sequential evaluation
s.p(E[·]) in-session evaluation (run-time only)

P ::= Processes
e running thread
P |P parallel composition

The grammar defined by T , v, and e (except for 0 and the fi-
nal three session-related constructs) generates a simple sub-
set of ML; this is the language we call F. Remark that 0
corresponds to an expression that will not reduce anymore.
Type expressions T include constructed types t, base types
int, string and unit, channel types T chan (with payload
type T ), and arrow types. Channel types T chan are in-
cluded only for compatibility to the concrete F# language;
our formal semantics is in fact untyped, using simply name
instead of typed channels; this allows us to reason about
arbitrary opponents. Values v include constants, functions,
and terms built with type constructors. We assume given
a finite set of principal constants, such as Alice and Bob,
which are implemented as strings.

Our language has four pi-calculus-like primitive func-
tions: new, send, recv, and fork, to which we give a se-
mantics below. It also has simple core libraries for func-
tional data, including booleans, tuples, lists and functional
records (as syntactic sugar for tuples). We omit their stan-
dard definitions.

F+S embeds the session types Σ of Section 2, as fol-
lows. F+S code can define named session types S = Σ; it
can enter such sessions in a given role r using the expression
S.rb ã (e). In case r is the initial role of the session, the first
argument ã is a tuple of principals that binds all roles for the
session and e is a message send; otherwise, ã is the single
principal that attempts to join the session in role r and e is a
message handler. A message handler is a tuple (concretely
implemented as a record) of continuations for each message
that the role may receive in its current state, whereas a mes-
sage send is an expression that yields a pair of a message
to be sent and a message handler to receive the next mes-
sage, if any. Their structure is illustrated in the example
below. Note that our syntax for session entry expressions
is consistent with F# syntax for function application, where
sessions S are implemented as modules containing func-
tions r for each role, and message labels f are implemented
as datatype constructors. In our semantics, session entry
expressions reduce to active session roles s.p(e′), where s
ranges over unique session identifiers, p is the current role
process, and e′ is the current expression for the role: either
a message-send expression or a message-handler value, de-
pending on p. (In session entries S.rb, the optional mark b
will be set to • to mark that the session is entered by the
opponent; this mark is used to specify security despite the
compromise of some principals.)
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As an example, the following F+S code initiates session
S1 of Section 2 as a customer:

let handle accept a r =
printf "The request has been accepted." in

let handle reject a r =
printf "The request has been rejected." in

S1.customer
{customer=‘‘Alice’’; store=‘‘Bob’’}
(Request("12 May 2007",
{ hAccept = handle accept; hReject = handle reject }))

In this code, the first argument to the customer role func-
tion instantiates the customer and store roles with prin-
cipals Alice (the running principal) and Bob (some re-
mote store). The second argument is the user code for the
customer role: it defines a Request to be sent with pay-
load "12 May 2007" and handlers (hAccept, hReject)
for each of the two messages Accept and Reject that may
be received next.

Semantics We define a labelled semantics with an explicit
store ρ, that keeps track of generated names and active func-
tion and type definitions, plus, for programs with sessions,
session type definitions and information about running ses-
sions. Concretely, ρ contains names n; types (ti = (|fji of
T̃ ji)ji<ki

)i<k; function definitions (li x0 . . . xki
= ei)i<k;

session types S = Σ; and running sessions s ã (δ) : S,
where ã are the principals for all roles, δ is a set of roles
activated so far, and S is the session type variable name.
We use ] to express extensions of ρ with disjoint domain.
(Before extending ρ, we may use renaming to obtain dis-
tinct constructor, function, type, and session type names).
Transitions are either unlabelled (implicitly labelled with
the silent action) or labelled with an input z v or an output
z v, where z is either a channel name (e.g. c), or a session
name concatenated with a message label (e.g. sf, sf ), and
v is a value. We let α, β range over labels, and let ϕ, ψ
range over series of labels.

For F expressions (without sessions yet), we give a
small-step semantics as follows:

(APPLY) ρ, l v0 . . . vk −→e ρ, e{x0 = v0; . . . ; xk = vk}
when (l x0 . . . xk = e) ∈ ρ

(MATCH) ρ, match v with (|vi → ei)i<k −→e ρ, e0γ
when v = v0γ for some substitution γ

(MISMATCH) ρ, match v with (|vi → ei)i<k −→e

ρ, match v with (|vi → ei)0<i<k otherwise
(LETVAL) ρ, let x = v in e −→e ρ, e{x = v}
(LETFUN) ρ, let (li x0 . . . xki = ei)i<k in e −→e

ρ ] {(li x0 . . . xki = ei)i<k}, e
up to renamings of li

(TYPE) ρ, type (ti = λi)i<k in e −→e ρ ] {(ti = λi)i<k}, e
where λi = (|fji of T̃ ji)ji<ni

up to renamings of ti, fji

(FRESH) ρ, new () −→e ρ ] {n}, n
(SEND) ρ, send c v

c v−−→e ρ, () when c ∈ ρ

(RECV) ρ, recv c
c v−−→e ρ, v when c ∈ ρ

This semantics is standard; labels are used only to col-
lect calls to send and recv; the rules (FRESH), (LETFUN),
and (TYPE) extend ρ.

For processes, we have rules for forking new threads and
communicating on both sides of a parallel composition.

(EVAL)
ρ, e

α−→e ρ′, e′

ρ, E[e]
α−→P ρ′, E[e′]

(FORK) ρ, E[fork l] −→P ρ, E[()] | l ()

(COMMR)
ρ, P

z v−−→P ρ′, P ′ ρ′, Q
z v−−→P ρ′′, Q′

ρ, P |Q −→P ρ′′, P ′ |Q′

(COMML)
ρ, Q

z v−−→P ρ′, Q′ ρ′, P
z v−−→P ρ′′, P ′

ρ, P |Q −→P ρ′′, P ′ |Q′

(PARR)
ρ, P

α−→P ρ′, Q

ρ, R |P α−→P ρ′, R |Q

(PARL)
ρ, P

α−→P ρ′, Q

ρ, P |R α−→P ρ′, Q |R

The communication rules (COMMR) and (COMML) com-
bine a send and a receive action, which in turn may involve
session transitions that modify ρ (as shown below).

For sessions, we let σ range over S.rb ã and s.p, that
is, session entries parametrized by principals as well as run-
ning sessions.

We first define auxiliary transitions ρ, σ
η−→s ρ

′, s.p, from
role transitions p

η−→r p
′ and with the same labels, in order

to keep track of running sessions in the store:

(INIT)
p0

g−→r p′ S = (ri : τ̃i = pi)i<n ∈ ρ s fresh

ρ, S.rb
0 (ai)i<n

g−→s ρ ] {s (ai)i<n {r0} : S}, s.p′

(STEP)
p

η−→r p′

ρ, s.p
η−→s ρ, s.p′

(JOIN)

pj
f−→r p′ S = (ri : τ̃i = pi)i<n ∈ ρ
ρ′ = ρ ] {s (ai)i<n δ : S}

ρ′, S.rb
j aj

f−→s ρ ] {s (ai)i<n (δ ] {rj}) : S}, s.p′

Rule (INIT) initiates a session, adding a new record
s (ai)i<n {r0} : S to ρ with s being a freshly generated
session name. Rule (JOIN) requires that (1) rj for some
j < n is a role for the session S; (2) S is the session type
of s; (3) the set δ of already-running roles for s does not
contain rj ; and (4) the joining principal aj matches the prin-
cipal for rj in s. The label f records the first input label
for pj according to S.
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For sessions in expressions (hence in processes), we have:

(SESSION) ρ, session S = Σ in e −→e ρ ] {S = Σ}, e
up to renamings of S

(SENDS)
ρ, σ

g−→s ρ′, s.p safe σ

ρ, σ (g(ṽ), w)
sg ṽ−−→e ρ′, s.p (w)

(RECVS)
ρ, σ

g−→s ρ′, s.p s ã δ : S ∈ ρ safe σ

ρ, σ (w)
sg ṽ−−→e ρ′, s.p (w.g ã ṽ)

(ENDS) ρ, s.0 (v) −→e ρ, v

where the predicate safe σ, defined later in Sec-
tion 4, depends on the principal that enters the ses-
sion. Rule (SESSION) adds a session type definition to ρ;
Rules (SENDS) and (RECVS) enable role processes to
send and receive messages using the session transitions;
Rule (ENDS) returns the final value computed by a role pro-
cess.

4 Libraries for cryptography and principals

We now describe the design and interfaces of our li-
braries for cryptography and principals, coded as F# mod-
ules. (Formally, a F# module M is just an expression con-
text that binds types, session types, values, and functions;
we write M M ′ as syntactic sugar for M [M ′[ ]].) We fol-
low the approach of Bhargavan et al. [4] and provide a sym-
bolic implementation in addition to the standard concrete
implementation of these libraries. The symbolic implemen-
tation, written in the formal subset F of F# (see Section 2),
is an important part of our security model. Its code is listed
in Appendix D.

Cryptography The cryptographic library includes the fol-
lowing types and functions, plus a few auxiliary formatting
functions such as concat and utf8.

type bytes
type keybytes
val nonce: name → bytes
val hash: bytes → bytes
val genskey: name → keybytes
val genvkey: keybytes → keybytes
val sign: bytes → keybytes → bytes
val verify: bytes → bytes → keybytes → bool

It has abstract types bytes for bitstrings and keybytes for
cryptographic keys, and functions for constructing mes-
sages: nonce takes a (typically fresh) name and returns a
nonce; hash returns the cryptographic hash of a message;
genskey returns the signing key associated with a name
(used as a seed); genvkey returns the verification key as-
sociated with a signing key; sign signs a message using a
key, and verify checks a signature.

The concrete implementation of this library uses stan-
dard cryptographic algorithms. For example. the datatype

bytes is implemented as a byte array, and sign is imple-
mented as an asymmetric signing function (RSA-SHA1).

The symbolic implementation, on the other hand, uses
algebraic datatypes and datatype constructors to model
cryptographic operations. For example, the type bytes is de-
fined as an algebraic datatype, and sign is implemented as
the application of a binary constructor Sign that represents
signed bytes. (Both bytes and keybytes types are abstract
in the interface, and hence values of these types can be ac-
cessed only through the exported functions, preventing e.g.
trivial key leakage by pattern matching on signatures.)

Executing code linked with our symbolic libraries is use-
ful for debugging. More importantly, the symbolic imple-
mentation encodes our formal model of cryptography that
is used to establish our security results in the subsequent
sections. Specifically, we consider a variant of the stan-
dard Dolev-Yao threat model: the opponent can control cor-
rupted principals (that may instantiate any of the roles in a
session), intercept, modify, and send messages on public
channels, and perform cryptographic computations. How-
ever, the opponent cannot break cryptography, guess secrets
belonging to compliant principals, or tamper with commu-
nications on private channels. (We rely on private channels
only for simplicity; we could use instead, for instance, mes-
sage authentication codes.)

Principals This library manages principals and their data;
our implementation uses it to exercise the two privileges
associated with the principals that play session roles, that is,
signing values and receiving messages. Principals are just
strings. (For clarity we use the type alias principal instead
of type string.) The interface contains:

val skey : principal → keybytes
val vkey : principal → keybytes
val psend : principal → bytes → unit
val precv : principal → bytes
val safe : principal → bool
val psend• : (principal ∗ bytes) chan
val chans• : (principal ∗ bytes chan) list
val skeys• : (principal ∗ bytes) list

Functions skey and vkey return the signing and verification
keys of a principal, respectively. (In the concrete implemen-
tation, we fetch keys from a local X.509 store, and return
an error if no certificate is available.) Functions psend and
precv provide message delivery with replay protection (ex-
plained below): psend a v asynchronously sends message v
to principal a, whereas precv a receives a message sent to a.
Calling skey a and precv a is a’s privilege.

In the model, we assume a fixed finite population of prin-
cipals and an arbitrary but fixed predicate safe that indicates
whether a principal is compliant or possibly corrupted. This
predicate is used only to specify the security properties that
hold for compliant principals—clearly, our implementation
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could not guarantee the security of principals whose sign-
ing keys are compromised. To this end, in our semantics,
only safe principals may enter a session in compliant code,
and only unsafe principals may enter a session in oppo-
nent code. Formally, in rules (SENDS) and (RECVS), we
let safe σ hold if and only if either σ = S.r (ai)i<n and
safe a0, or σ = S.r• (ai)i<n and not safe a0, or σ = s.p.

Accordingly, opponent code is not given direct access to
psend, precv and skey. Instead, it is given a channel psend•

for sending messages to safe principals, a list chans• of
channels to receive messages sent to unsafe principals, and
a list skeys• of signing keys belonging to unsafe principals.
Using these, the attacker can receive messages sent to any
unsafe principal and sign any value on their behalf. Hence,
the initial knowledge of our Dolev-Yao opponent (called
K in Section 7) consists of the values psend•, chans• and
skeys•, and all the functions above except for psend, precv
and skey.

Anti-replay cache Like any protocol with responder roles,
our protocol relies on dynamic anti-replay protection for the
messages that may cause principals to join a session, that is,
the first messages they may receive in their roles. To prevent
such replays, each principal maintains a cache that records
pairs of session identifiers and roles for all sessions it has
joined so far. The cache for principal a is used only to filter
incoming messages through the call to an auxiliary func-
tion antireplay that can determine from the message header
whether the message may need replay protection (by check-
ing its header) and, when it is the case, which cache entry
is associated with the message. In the former case, the mes-
sage is transmitted. In the latter case, if the entry already
occurs in the cache for a, the message is ignored; other-
wise, the message is transmitted and the entry is added to
the cache. The code of psend, precv and antireplay is listed
in Appendix D. This simple mechanism is verified within
our formal model. It can be refined using any standard,
timestamp-based technique to bound the size of the cache
while preserving its correctness.

5 Protocol outline

We now outline the security protocol used to enforce ses-
sion compliance. (Section 6 describes its compiled imple-
mentation.) We present this protocol (called Third Protocol
below) as a refinement of simpler, intuitively secure pro-
tocols (First and Second protocols below), which are pre-
sented just as explanatory steps. Exploiting the session
structure and the implementability condition of Section 2,
our final, optimized protocol has compact messages and re-
quires minimal message processing.

These protocols implement sends and receives by con-
verting them to and from low-level bytes messages that con-

sist of a session identifier, a payload, and a series of signa-
tures (depending on each protocol as described below). The
identifier is computed as s = hash(D ã N ), where D ã N
is the tagged concatenation of D = hash(Σ), a digest of the
whole session type definition; ã, the principals assigned to
the session roles; and N , a nonce freshly generated by the
initiator. Every initial message also includes ã and N .

First protocol: signing the full session history In order
to prevent any misbehaviour from any of the principals par-
ticipating in a session, every message may include a record
of the whole session history, countersigned by the sender of
every message that extends the session. Every receiver can
then verify the validity of incoming messages by replaying
the recorded path on the session graph and verifying all its
signatures.

Although intuitively correct, this solution is inefficient,
as it requires both senders and receivers to do significant
work, since session runs (and hence their records in mes-
sages) may be arbitrarily long in the presence of cycles.

Second protocol: signing message labels Since the ses-
sion type is statically known, and since Property 2 of Sec-
tion 2 ensures that every label has unique source and tar-
get nodes, each sender may simply sign the message label,
rather than countersign the whole session record. Thus, ev-
ery sender may forward previously-signed labels and ap-
pend its own signed label to every message. Specifically,
every message now carries a series of cryptographic sig-
natures, each computed as ts = sign(s f t,skey(a)) where
s f t is the concatenation of the session identifier s, the
message label f , and a logical timestamp t and where a is
the principal assigned to the sending role of f , determined
by s. The timestamp disambiguates signatures for labels
occurring in cycles; when receiving a message, a series of
signatures is accepted only if they have increasing times-
tamps larger than the last-received message.

Although session records are now more compact, and
their processing may be partially cached, receivers still need
to dynamically replay session histories.

Third protocol: signing visible labels Next, we show how
to avoid any dynamic graph computation. We rely on the
following notion of visibility.

Let g̃ be the sequence of labels on a given path from
the initial node m0 to a node m with role r. Let f̃ be the
sequence of labels obtained from g̃ by erasing every label g
(1) whose sending role is r; or (2) that is followed by a label
whose sending role is either r or g’s sending role. (Thus, f̃
retains the last label sent by every role other than r, if any,
along the path g̃.) We then say that f̃ is visible from m.

For example, for session (c) of Figure 1, the bottom-right
node has a single visible sequence Accept-Confirm; the
central node has two visible sequences, Request-Contract
(along the initial path) and Change (through the cycle).
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Relying on visibility information computed at session-type
compile-time, we obtain an efficient protocol with compact
messages. To send a message with label f from node m
to m′ in the session graph, we compute (at compile-time)
the series of labels g̃f that is visible from m′ on a path
with final label f . The message for f then includes the
corresponding series of signatures, consisting of signatures
previously-received from other roles for g̃, plus a new sig-
nature for f computed by the sender. Conversely, to verify
a bytes message received at nodem, we pre-compute all se-
ries of visible labels at m, and accept a message only if it
is well-formed and has valid signatures that match a series
of visible labels. Hence, message sizes and receiver checks
are statically bounded by the number of roles.

6 Compiler implementation

In this section we present a translation from the ses-
sion definitions of Section 2 to generated code for each of
their roles, built on top of the libraries of Section 4. For
a given valid session, we describe the generated interface,
then present the generated protocol, and finally provide its
implementation.

Generated session-type interface We first generate type
declarations, including a record type principals that maps
roles to principals and, for each role, mutually recursive
types that reflect the message flow of a session from this
role’s viewpoint. We generate a type for each message sent
or received by the role. For sending, we use a sum type with
a constructor for each message that the role may send at this
point, along with the corresponding continuation type. For
receiving, we use a record type, with a message-handler for
each message that the role may receive at this point. These
types are mutually recursive when there is a cycle in the
graph.

We omit a general definition, and list instead the types
for the customer and store roles of session S2 in Section 2.

type principals = { customer: principal; store: principal }

type msg0 = Request of (string ∗ msg1)
and msg1 = { hReject : principals → unit → unit;

hOffer : principals → string →msg2}
and msg2 = Change of (string ∗ msg1) | Accept of (unit ∗ unit)

type msg3 = { hRequest : (principals → string →msg4) }
and msg4 = Reject of (unit ∗ string ) | Offer of (string ∗ msg5)
and msg5 = { hChange : (principals → string →msg4) ;

hAccept : (principals → unit → string) }

For each role of the session, we also generate a session-
entry function that inputs principal information and the
user’s message (or message handler). For session S2, these
functions have the following types.

val customer: principals →msg0 → unit
val store: principal →msg3 → string

We rely on ordinary ML typing of the session-entry pa-
rameters against the generated msgir types to ensure that
the nested messages and handlers provided by the user will
comply with role r for the whole session. Hence, inasmuch
as all principals enter sessions by calling our typed inter-
face, all their sessions will be correctly executed. In the rest
of the section, we describe more dynamic implementation
mechanisms that provide guarantees even when some prin-
cipals are compromised.

Role implementation In our implementation, the dynamic
state for each active role consists of a principal assign-
ment prins, the nonce (used in the session identifier), the
logical time (the timestamp of the last issued signature), and
a record tsigs of the last-received verified signature for each
role of the given session type Σ, if any.

type tsig = { tstime: int; tsval: bytes }
type tsigs = {

[
r: tsig;

]
for each (r : τ̃ = p) ∈ Σ }

type state =
{ prins: principals; nonce: bytes; time: int; sigs: tsigs }

In addition, much like in code implementing control au-
tomata, we generate distinct, mutually-recursive functions
indexed by series of labels, so that the current node and
stored signatures for the role are always statically known
when we generate the code for each of these functions. To
generate a message with label f in a state where g̃ denotes
the series of labels for the signatures currently stored in
tsigs, we implement:

val gen g̃ f : state ∗ payload(f) → bytes
val gensig p f : state → bytes

The function gensig p f computes a signature ts for
label f with stored timestamp time, as described above;
gen g̃ f computes a message that carries some payload
for f and includes a series of signatures for the labels visi-
ble by the intended receiver, with a last signature computed
by gensig p f . To check that a received message contains
valid signatures for the visible labels g̃′ in a state with stored
labels g̃f , we also implement

val chk g̃f g̃′ : state ∗ bytes → state ∗ payload(g̃′)

where f is the last label sent by the role, and can be omitted
when g̃ is empty (that is, when receiving a first message for
the role) and payload(g̃′) is the payload type for the last
label of g̃′, written last(g̃′), as specified in the session type.

For any path in the graph, there is a single active role r,
which can send a message to a role r′ with label selected
from the set F that collects the possible outgoing labels at
this particular node; moreover, we can pre-compute the se-
ries of stored labels g̃ for this active role. For each such g̃,
our compiler generates the following sending and receiving
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functions (the text in italics specifies how the compiler pro-
duces the code):

for all reachable g̃ with corresponding r, r′,F :[[
let rec|and

]
send g̃ st msg = match msg with

for each f ∈ F :
[
| f (v,w) →

let a’ = st.prins.r′ in let m = gen g̃ f st v in psend a’ m ;

if the next node is terminal: w else: recv g̃f st w
]]

for all reachable g̃ with r, r′,F and for each f ∈ F :[
and recv g̃f st w = let a = st.prins.r in

let m = precv a in verify g̃f st m w
and verify g̃f st m w = let path = visible g̃f m in

match path with
for each g̃′ s.t. g̃f + g̃′ visible from a receiving node for r:[
| t g̃′ → let st,payload = chk g̃f g̃′ st m in

if the next node is terminal: w.last(g̃′) st.prins payload
else: let next = w.last(g̃′) st.prins payload in

send g̃+g̃′ st next
]]

The function send g̃ takes st and msg = f (v,w) as pa-
rameters, for some label f ∈ F ; it sends f (v) to r′ and calls
recv g̃f st with the next received message given by precv a
and the message handlers w. (If the process terminates after
the send, it simply returns w.) The function recv g̃f st calls
the function verify g̃f st on the message it has received.
This function extracts from the message the partial history
(i.e. the partial path) it contains and verifies that it matches
one of the possible partial paths t g̃′ the role can expect to
encounter in this state. Specifically, the function visible g̃f
matches the message against every acceptable partial his-
tory, pre-computed as the visible sequences at node g̃f (see
Section 5). Finally, the incoming message m is checked
to include the corresponding series of valid signatures, and
send g̃+g̃′ is invoked to send the next message in the up-
dated state (or, if the role terminates after the receive, the
function simply returns the value produced by w). Here,
f̃+g̃ is the sequence of labels obtained from f̃ g̃ by erasing
from f̃ any label that has the same sending role as a label
in g̃. If any test fails while processing the message, the ses-
sion is stuck, with a 0 expression.

Relying on these definitions, our implementation exports
functions (ri)i<n and their types; these top-level functions
rely on auxiliary functions init and join that initialize the
state when a role initiates or joins the session:

val init: principals → unit state
for the initiator role r0:[
let r0 prins msg =
let st = init prins in send ∅ st msg

]
val join: bytes → unit state ∗ bytes
for all other roles r:[
let r self w =
let m0 = precv self in let st,m = join m0 in
if st.prins.r = self then verify ∅ st m w

]

7 Correctness results

In order to express and prove the correctness of our im-
plementation, we first use a reduction and testing seman-
tics and then, more precisely, use a labelled semantics that
explicitly tracks all interactions with the opponent. (The
labelled semantics is also used to structure the security
proofs.) So, we relate the behaviour of high-level processes,
of the form L S̃ U O, to their implementations LMS̃ U O′,
where

• L consists of the symbolic libraries of Section 4;

• S̃ is a series of session declarations; MS̃ is their im-
plementation, as in Section 6;

• U represents code that use sessions but does not access
Prins;

• O represents an F+S opponent that can access the “op-
ponent” interface of Prins, including recv• and skey•,
but not recv and skey and may use S.r• session entries;

• O′ is similar to O at the F level, with similar assump-
tions; in the implementation, we assume that O′ does
not accessMS̃—this entails no loss of generality, since
O′ may in particular include its own copy of our im-
plementation.

The conditions on U , O, and O′ can be checked easily (e.g.
by typing). Their code can freely use cryptography, and ex-
change messages on shared channels. This reflects our intu-
ition that U andO,O′ may be located on different machines
connected by a public network.

Our first security theorem is stated in terms of may test-
ing. As customary in process calculi, we use a special chan-
nel ω to mark global failure. We say that a configuration
∅, P may fail when ∅, P −→P

∗ ω()−−→P.

Theorem 1 If LMS̃ U O′ may fail in F for some O′ where
ω does not occur, then L S̃ U O may fail in F+S for someO
where ω does not occur.

The theorem states that low-level F configurations, where
sessions are implemented as described in Section 6, can not
deviate from high-level F+S configurations, where sessions
are ideally followed as prescribed by the session semantics
of Section 3.

Conversely, we can check that the theorem does not hold
if we relax our secure implementability condition. For in-
stance, consider the session of Figure 2(a), which fails to
satisfy Property 3. Assume that the principals for the client
and officer are safe and run a single session with an unsafe
principal for the store. As discussed in Section 2, a low-
level opponentO′ implementing the store can attack the ses-
sion by sending both Accept and Reject messages. The user
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code for the client and the officer can then communicate on
some auxiliary channel, detect that both of them have re-
ceived a final message, then emit ω in protest. On the other
hand, no high-level opponent running the store can cause
the same user code to emit ω. Appendix E lists the concrete
user code for conducting this test and reporting the attack.

Our second security theorem is more precise; it pro-
vides an explicit correspondence between high-level and
low-level runs. To this end, we extend our labelled seman-
tics so that it can represent the adversary as an abstract en-
vironment, rather than a top-level program.

Labelled transitions for modelling the adversary In the
transitions of Section 3, we do not maintain scope for the
sessions and values available to the opponent, and maintain
a global store ρ instead, using interfaces to ensure that the
opponent code cannot access some values. Now, we intro-
duce labelled transitions with an abstract environment, and
keep track of the values and sessions available to that en-
vironment. We let K represent this knowledge and capa-
bilities. Initially, K contains the opponent interfaces of our
libraries, including the verification keys of all principals and
the signing keys and channels of unsafe principals, as well
as any value exported by U . The set K grows as the oppo-
nent obtains new values in labelled output transitions. We
let Val(K, ρ) represent values computed from K by repeat-
edly applying type constructors in ρ to the elements of K
and constants in base types.

For all the active sessions recorded in ρ, high-level Ks
also record the state of all the roles instantiated to unsafe
principals, written s.p. (Hence, if ρ initially has no ses-
sions, K initially records no session states.) We define
auxiliary notations to access these session states: we write
K = K ′[σ] either when K records the state σ = s.p for an
active session s of ρ, or whenK = K ′ and σ = S.r•i ã with
safe ai = false.

We define transitions for F and F+S configurations
with K as follows:

(KAPPLY)

li, v0, . . . , vk ∈ Val(K, ρ)
(li x0 . . . xk = e) ∈ ρ

ρ, li v0 . . . vk −→e
∗ ρ, w

K, ρ, P −→K K ∪ {w}, ρ, P

(KSEND)
ρ, P

c v−−→P ρ, P ′ c ∈ K

K, ρ, P
c v−−→K K ∪ {v}, ρ, P ′

(KRECV)
ρ, P

c v−−→P ρ, P ′ c, v ∈ Val(K, ρ)

K, ρ, P
c v−−→K K, ρ, P ′

(KSTEP)
ρ, P −→P ρ′, P ′

K, ρ, P −→K K, ρ′, P ′

(KSENDS)
ρ, P

sg v−−→P ρ′, P ′ K, ρ′
sg−→o K′, ρ′′

K, ρ, P
sg v−−→K K′ ∪ {v}, ρ′′, P ′

(KRECVS)

K, ρ
sg−→o K′, ρ′ ρ′, P

sg v−−→P ρ′′, P ′

v ∈ Val(K, ρ)

K, ρ, P
sg v−−→K K′, ρ′′, P ′

(OSTEP)
ρ, σ

η−→s ρ′, s.p

K[σ], ρ
sη−→o K[s.p], ρ′

(OCOMM)
K, ρ

sg−→o
sg−→o

sf−→o K′, ρ′

K, ρ
sf−→o K′, ρ′

Rule (KAPPLY) lets the environment apply functions; its
hypothesis requires that the function be pure, and that both
the function and its arguments are known to the environ-
ment. (In addition, function with side effects, or calls
fromP to the environment, may be modelled using channel-
based communications.) Rules (KSEND) and (KRECV)
similarly represent channel-based communications with the
environment. Rule (KSTEP) enables P to make progress.
Rules (KSENDS) and (KRECVS) represent session steps
in the source semantics. They rely on auxiliary transitions
K, ρ

α−→o K
′, ρ′ that represent session operations in the en-

vironment. Rule (OSTEP) performs session steps for roles
in the environment (inits, joins, sends, and receives). In
addition, Rule (OCOMM) accounts for communications be-
tween roles in the environment, which may advance the ses-
sion without involving compliant user code.

We let −→KD denote a transition among the subset of the
−→K transitions that are silent. We write

ϕ⇒K for a series of
transitions where the observable transitions (with series of
labels ϕ) are interleaved with any number of silent ones.

The lemma below relates the reduction-based and
labelled-based semantics in F+S. A similar lemma holds
in F. These lemmas enable us to prove Theorem 1 using in-
ductions on traces.

Lemma 1 We have transitions K ] {ñ}, ρ ] {ñ}, P
ψ⇒K

ω()−−→K for some fresh names ñ if and only if ρ, P |O
−→P

∗ ω()−−→P for some process O that does not contain ω,
does not match on constructors in ρ, calls only pure func-
tions of ρ, and whose values defined in ρ are all included
in K.

Relating abstract and compiled sessions at runtime The
state of a role implementation in F is not entirely deter-
mined by the role process in F+S; in addition to S and s
recorded in ρ, and s.p within P , the implementation state
records the time, the session nonce, and a sequence of
signed timestamped labels g̃. We let T record this infor-
mation: T is initially empty; for every s (ai)i<n {r̃} : S
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in ρ, T (s) provides a term Ns in K and a path in the ses-
sion graph of S, decorated with strictly-increasing integers,
such that, for all roles ri attributed to safe principals safe ai,
there is a running session role process s.p if and only if the
role has received a message in the path, and p is the last role
process for that role of the path. Also, T records, for each
safe principal, the state of their cache. Finally, T records,
for each receiving role, whether a bad input has been re-
ceived so far—in that case, our session implementation for
the role has silently terminated.

We define a translation [[·]]T from F+S session expres-
sions to implementation states (F expressions and context).
In stores ρ, we replace every session type definition S with
the types and function definitions of MS , remove every ses-
sion entry s, and, if s is initiated by a safe principal, add a
fresh nonce Ns. In processes and expressions, we translate
only active session roles, as follows:

[[s.p(e)]]T = let xs = [[e]]T in S.send g̃ st (xs)
when p is an output

[[s.p(w)]]T = S.recv g̃ st w when p is an input
[[s.p(w)]]T = 0

when p is an input, after receiving a bad input
[[s.p(e)]]T = [[e]]T when p is 0

where s.p must be the last node for the role of p, denoted
r(p), in the trace of s in T , g̃ is the sequence of labels vis-
ible from s.p for this trace, and st is computed from Ns
and T (s) (including valid tsigs for g̃). Expressions of the
form S.r . . . are unchanged, but now interpreted as func-
tion calls, rather than primitive session entries. The transla-
tion also adds to the original processes the forward process
used by the adversary to communicate and the processes in-
volved in the cache management for all safe principals (as
described in Appendix D). In K, we replace high-level ses-
sion records for s with the session nonces recorded in T ,
and we add all the signatures from safe principals built from
T (s), as defined in function gensig p f , that are visible
from any role on the path that is instantiated to an unsafe
principal.

Implementation soundness for transitions We let ρLS̃
be defined by the deterministic reductions ∅, L S̃ [ ] −→P

∗

ρLS̃ , [ ]. An F+S configuration H = K, ρ, P is valid when
ρ includes ρLS̃ ; the names of P are defined in ρ and do not
include Prins names; the values in K defined in ρLS̃ are
built from the library interfaces of Section 4; the session
types in ρ are valid; and the sessions in ρ have a session
role in P for each safe principal and a session role in K for
each unsafe principal, such that these roles are reached on
a path in the graph of their session types, with a last label
with (at least) a safe sender or a safe receiver.

An F configuration W is a valid implementation of an
F+S configuration H when H is valid and W = [[H]]T for
some low-level state T , up to functional steps. Further, W

has no bad inputs when T has no bad input record for any
session. A low-level trace with labels ϕ is a direct transla-
tion of a high-level trace with labels ψ when ϕ is ψ after
replacing all session inputs and outputs sη v of ψ with in-
puts on channel psend• and outputs on channels in chans•,
respectively. We consider low-level traces where some low-
level inputs have been discarded (such as message replays)
or have not been processed yet (such as inputs that have
passed anti-replay filtering): a low-level trace is a transla-
tion of a high-level trace when it is a direct translation in-
terleaved with additional inputs on channel psend•.

The following theorem states that all low-level events on
the network can be explained by the high-level semantics,
thereby ensuring that attackers do not get anything from try-
ing to break the sessions at the low-level.

Theorem 2 Let W be a valid implementation of H . For
all transitions W

ϕ⇒K W ′ in F, where ϕ represents the ob-
servable actions of these transitions, there exists W ◦ valid
implementation of H◦ such that W

ϕ⇒K W ◦ −→∗
KD W ′′,

W ′ −→∗
KD W

′′, and H
ψ⇒K H

◦ with ϕ a translation of ψ.

8 Conclusions and future work

We present a simple language for specifying sessions be-
tween roles, and implement it as an extension of ML, with
protocol support for running secure distributed sessions. Al-
though session types are a rich area of study [7, 8, 9, 13, 16,
30, 32], we believe this paper is the first to address their se-
cure implementation. Our compiler generates custom cryp-
tographic protocols that guarantee global compliance to the
session specification for the principals that use our imple-
mentation, with no trust assumptions for the principals that
do not. Our theorems relate the runs and labelled traces
of a source semantics with primitive sessions to those of
an implementation semantics using ordinary communica-
tions and cryptographic primitives. Thus, we obtain a full-
fledged implementation for distributed sessions with strong
security guarantees.

Discussion In terms of protocol verification, our results
hold for any number of session declarations and any number
of principals, some of them controlled by the adversary, run-
ning in parallel any number of instances of these sessions.
Even for a single fixed session, we believe such results are
beyond automated tools for verifying cryptographic proto-
cols as soon as the session uses loops and branching. More-
over, our result holds for a realistic model—except for the
cryptographic primitives, the model is a functional refer-
ence implementation.

Cryptographically, our results hold within a symbolic
model à la Dolev-Yao. Although a probabilistic polynomial
semantics of ML is clearly outside the scope of this paper,
we believe our session-authentication mechanisms are also
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correct under standard, concrete cryptographic hypotheses.
Specifically, our usage of signing keys in generated proto-
cols complies with the rules of unforgeability under adap-
tive chosen-message attacks [18].

We do not consider other session security properties such
as confidentiality, left for future work. Moreover, we do not
treat important liveness properties, such as progress, global
termination, and resistance to denial of service. This is in
line with typical security protocol analyses, where the op-
ponent may block all messages anyway.

Prior work consider secure implementation for small
process calculi. In comparison, our host language is more
expressive and realistic. Hence, we have a running imple-
mentation for a language very close to the formal language
of the theorems, Also, we rely on this additional expres-
siveness: we use higher-order functions (and typing, in-
formally) to enforce the session discipline, and use stan-
dard functional programming for processing messages. Al-
though we could compile F+S to some process calculus,
this would considerably complicate our formalization and
proofs.

Overall, we believe that our work illustrates a compelling
alternative to protocol handcrafting. For any distributed ap-
plication that fits our session language, a few lines of high
level code can yield a complete distributed implementation
with authentication guarantees. In comparison, for session
graphs with a dozen of nodes, the design, implementation,
and verification of an adequate ad hoc protocol is a chal-
lenging task, even for security experts, even if one assumes
that all point-to-point communications are already secure.

Future work We are exploring variants of our design to
increase the expressiveness of sessions, with extended com-
piler and proof support. In particular, we are considering
session-scoped data bindings, to ensure that the same val-
ues are passed in a series of messages, as well as more dy-
namic principal-joining mechanisms, to enable new princi-
pals to enter a role by agreement among the current prin-
cipals. More generally, we would like to integrate sessions
with other language-based security mechanisms, such as se-
cure marshalling for richer types. It would also be inter-
esting (and delicate) to develop secure implementations for
existing session-description languages such as BPEL.

Another direction for future work is to extend sessions
with more explicit security requirements and relax our
message-transparency principle. For instance, one may dis-
tinguish “critical messages” with strong authenticity and
atomicity, and support them by running a complex sub-
protocol, such as Byzantine agreement or fair signing. (In
principle, F+S already enables this approach, as principals
may run other protocols on communication channels, but
does not offer linguistic support for them.) However, such
extensions would also unavoidably complicate our security
model for session programmers.
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A From role processes to session graphs

Session graphs and syntactic sessions are interconvert-
ible. Given a session graph and a mapping from labels and
roles to their types, we can construct role processes for each
role by translating each edge in the graph to dual send and
receive operations. Conversely, given the role processes for
a session, if the sends and receives are correctly matched,
we can construct the corresponding graph, as detailed be-
low.

Given a session Σ = (ri : τ̃i = pi)i<n, we build the
graph G(Σ) = 〈R,V,L,m0, E , r〉 as follows.

• V , m0: we create a node m(fi)i<k
for every sending

subprocess !(fi : τ̃i ; pi)i<k within Σ; in particular, we
let m0 be the node for the process p0 (which must be
a send). We similarly create a node for each 0 subpro-
cess after a receive.

• E : we create an edge (mf̃ , fi,m) for every label fi,
where m depends on the subprocess q of Σ after re-
ceiving fi. (The subprocess q must exist and be
unique.) If q is a send, or q = 0, we use the corre-
sponding node created in V; if q is µχ.q′, we use q′

instead of q; if q = χ, we use q′ in the binding µχ.q′

within Σ. (This binding must exist.)

The definitions for R, L, and r are straightforward. The
construction fails if any of the conditions above fail, e.g. if
there is a send without a corresponding receive.

B Transforming graphs to meet Property 3

We say that a sessions graph has a blind fork for each
two paths that violate Property 3. We show how to eliminate
blind forks.

Suppose a graph G = 〈R,V,L,m0, E , r〉 has a blind
fork for the paths (m, f̃) and (m, g̃), ending in nodes m1

and m2 respectively. Hence, the roles r(m1) and r(m2) are
distinct, and not active on f̃ and g̃. In particular, f̃ is not
a prefix of g̃, and vice versa. Let mfork be the last common
node on two paths; we call it the forking node. To eliminate
this blind fork, we use the following transform:
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Figure 3. Eliminating blind forks

• for each edge (mfork, l,m
′′′) ∈ E , introduce two new

nodes m′,m′′ 6∈ V and two new labels l′, l′′ 6∈
L; replace (mfork, l,m

′′′) with the three new edges
(mfork, l

′,m′), (m′, l′′,m′′) and (m′′, l,m′′′); and ex-
tend r with r(m′) = r(m1) and r(m′′) = r(mfork).

We check that this transform introduces no new blind fork
at mfork and does not affect Property 3 at any other node.
Hence, by repeated application of this transform, we can
eliminate all blind forks.

Figure 3 illustrates the transform for a sample graph with
a blind fork: the graph on the left has two paths ending in
roles C and D with a forking node at B; the transformed
graph eliminates this fork by inserting C on all paths leading
out of the forking node; moreover, by inserting B on each
path, the transformed graph maintains the same source and
destination roles for all the original labels.

C Session integrity and correspondences

Session graphs enforce causal relationships between
message events. In cryptographic protocol analyses, such
relationships are typically written as injective correspon-
dence properties [31]. Indeed, from a session graph, one
can read a series of injective correspondences that hold in
any session run. Our session integrity theorem (Theorem 1)
guarantees that every correspondence read from a session
graph holds for compliant principals.

Consider, for example, session (c) in Figure 1. The fol-
lowing are some of the injective correspondence proper-
ties that hold in a session run where the principals Pc, Ps,
and Po play the roles C, S, and O, respectively:

• If Pc and Ps are compliant, for each Offer message
accepted by Pc, Ps must have sent one.

• If Ps and Po are compliant, for each Abort message
accepted by Po, Ps must have sent a Reject message
to Pc.

• If Po is compliant, then it never accepts both an Abort
and a Confirm message.

These correspondences correlate only two message events
occurring on a path. More generally, one can write nested
correspondences for sequences of messages on a path in
the graph, also enforced by session integrity. On the

other hand, some other session-integrity properties (with
mutually-exclusive events, or loops) are not expressible as
correspondence properties.

D Symbolic code for the libraries

In this appendix we provide the symbolic implementa-
tions for the libraries described in Section 4. Our code relies
on syntactic sugar: if ... then ... else is a shortcut for stan-
dard pattern-matching on the result of the test; the semi-
colon, which expresses sequentiality, can be written with
our let construct; function application where arguments are
not values can be unfolded using let bindings; and anony-
mous functions introduced with fun can be replaced by a
freshly named let binding for the function body.

Symbolic code for the Crypto library We first list the
Crypto library, which implements cryptographic types as al-
gebraic datatypes:

type keybytes = SKey of name | VKey of keybytes
type bytes = Nonce of name

| Hash of bytes
| Concat of bytes ∗ bytes
| Sign of bytes ∗ keybytes
| Utf8 of string

let nonce (n: name) : bytes = Nonce n
let genskey (n: name) : keybytes = SKey n
let genvkey (n:keybytes) : keybytes =

match n with
| SKey →VKey n

let hash (b:bytes) : bytes = Hash b
let concat (m1 : bytes) (m2 : bytes) : bytes = Concat (m1, m2)
let sign (m : bytes) (k : keybytes) : bytes = Sign (m, k)
let verify (m : bytes) (s : bytes) (k : keybytes) : bool =

match s with
| Sign (mm, sk) →

if k = VKey sk && mm = m then true else false
| →0

let iconcat (m : bytes ) : (bytes ∗ bytes) =
match m with
| Concat (m1, m2) → (m1, m2)

let utf8 (s:string) = Utf8 s
let iutf8 (m: bytes) = match m with | Utf8 m1 →m1

Symbolic code for the Prins library In our model, the
implementation of the Prins library is parameterized by a
finite list of principals and a safety predicate on those prin-
cipals. (In contrast, our concrete prototype implementation
retrieves cryptographic materials from a partial database
and does not serve the opponent!)
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let prins = . . . (∗ a fixed list of all principals ∗)
let safe (a:principal) = . . . (∗ a fixed predicate on principals ∗)
let skeys = List.map (fun a → (a, genskey (new()))) prins
let skey (a : principal) = List.assoc a skeys
let vkey (a : principal) = genvkey (skey a)
let chans = List.map

(fun a → let (n:name) = new() in (a, n)) prins

type cache contents = (bytes ∗ int) list
type cache result = Stale | Fresh of cache contents

let asend m a = fork (fun () → send a m)
let caches = List.map

(fun a → let (n:name) = new() in (a, n)) prins
let = map (asend []) caches (∗ caches init ∗)

let header s =
let (msg, sigs) = iconcat (ibase64 s) in
let (joinflag,header,payload) = iconcat3 (msg) in
let (host2, dest2, sid) = iconcat3 header in
let join = if (iS (iutf8 joinflag)) = "J" then true else false in

((int of string (iS (iutf8 dest2)),sid),join)

let antireplay old a msg =
let ((sid, r) as k), joining = header message in
if joining then

if List.mem k old then Stale
else Fresh(k::old)

else Fresh(old)

let psend (a : principal) (m : bytes) =
let ch = List.assoc a chans in
let cache = List.assoc a caches in
let oldcache = recv cache in
let r = antireplay oldcache a m in
match r with
| Fresh(newcache) → asend cache newcache; send ch m
| Stale → asend cache oldcache

let precv (a : principal) = recv (List.assoc a chans)

(∗ for modelling the opponent’s knowledge only: ∗)
let psend• = new()
let rec forward () =

let a,m = recv psend• in
fork forward; psend a m in

fork forward
let chans• = List.filter (fun (a,n) → not (safe a)) chans
let skeys• = List.filter (fun (a,k) → not (safe a)) skeys

The psend• channel implements a small server that receives
requests to call psend; this enables the opponent to send
messages to safe principals, but not to receive such mes-
sages sent by our implementation, by calling psend.

The opponent is given access to prins, safe, vkey,
psend•, chans•, and skeys•. Our generated protocol imple-
mentations access safe, skey, vkey, psend, and precv. User
code is given access only to principal constants.

E Counter-example for Theorem 1 without
enforcing Property 3

We list the concrete code for the two compliant roles
for the counter-example described below Theorem 1 for the
session S given in Figure 2(a), which violates Property 3.
Let U be the process:

let pr =
{ client = "Alice"; server = "Eve"; officer = "Bob"; }

let x = new()
let acceptbranch = send x "OK"
let rejectbranch pr′ =

if pr = pr′ then let = recv x in send ω ()

let office () = S.officer "Bob" {hReject=rejectbranch} in
fork office;
S.client pr (Request (42,{hAccept=acceptbranch}))

In this code, Alice plays the client role and Bob plays the
officer role for at most one run of the session. These com-
pliant principals synchronize using the side communication
channel x only when they both receive Accept and Reject
messages. In that case, Bob fails with ω. This behaviour
would be enabled in the F implementation but not in F+S.
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