
Algebrai Strutures and Dependent ReordsVirgile Prevosto1;2, Damien Doligez1, and Thérèse Hardin1;21 I.N.R.I.A � Projet MosovaB.P. 105 � F-78153 Le Chesnay, FraneDamien.Doligez�inria.fr2 L.I.P. 6 � Equipe SPI8 rue du Cap. Sott � 75015 PARIS, Frane[therese.hardin,virgile.prevosto℄�lip6.frAbstrat. In mathematis, algebrai strutures are de�ned aordingto a rather strit hierarhy: rings ome up after groups, whih rely them-selves on monoids, and so on. In the Fo projet, we represent thesestrutures by speies. A speies is made up of algorithms as well as proofsthat these algorithms meet their spei�ations, and it an be built fromexisting speies through inheritane and re�nement mehanisms.To avoid inonsistenies, these mehanisms must be used arefully. Inthis paper, we reall the onditions that must be ful�lled when goingfrom a speies to another, as formalized by S. Boulmé in his PhD [?℄. Wethen show how these onditions an be heked through a stati analysisof the Fo ode. Finally, we desribe how to translate Fo delarationsinto Coq.1 Introdution1.1 The Fo ProjetAlthough omputer algebra is based upon strong mathematial grounds, errorsare not so rare in urrent omputer algebra systems. Indeed, algorithms may bevery omplex and there is an abundane of orner ases. Moreover, preondi-tions may be needed to apply a given algorithm and errors an our if thesepreonditions are not heked.In the Fo language1, any implementation must ome with a proof of itsorretness. This inludes of ourse pre- and post- ondition statements, butalso proofs of purely mathematial theorems. In a omputer algebra library, asingle proof is of little use by itself. Indeed numerous algorithms, and thus theirproofs, an be reused in slightly di�erent ontexts. For example a tool writtenfor groups an be used in rings, provided that the system knows every ring isa group. Thus, we need a ompletely formalized representation of the relationsbetween the mathematial strutures, whih will serve as a ommon frameworkfor both proofs and implementations.In his PhD thesis [?℄, S. Boulmé gives a formal spei�ation of both the hi-erarhy of the library and the tools used to extend it. This formalization of the1 http:www-spi.lip6.fr/�fo

spei�ation, brie�y presented below (Se. 2), points out that some invariantsmust be preserved when extending an existing struture. In partiular, the de-pendenies between the funtions and the properties of a given struture mustbe analyzed arefully, as well as dependenies between strutures.We have elaborated a syntax that allows the user to write programs, state-ments and proofs. This syntax is restritive enough to prevent some inonsis-tenies, but not all. In this paper we desribe the ore features of this syntax(Se. 3), and present ode analyses to detet remaining inonsistenies (Se. 4).Then, we show how to use the results of this analysis to translate Fo souresinto Coq, in order to have Fo proofs veri�ed by the Coq system (Se 5).1.2 Fo's Ground ConeptsSpeies. Speies are the nodes of the hierarhy of strutures that makes up thelibrary. They orrespond to the algebrai strutures in mathematis. A speiesan be seen as a set of methods, whih are identi�ed by their names. In par-tiular, there is a speial method, alled the arrier, whih is the type of therepresentation of the underlying set of the algebrai struture.Every method an be either delared or de�ned. Delared methods introduethe onstants and primitive operations. Moreover, axioms are also representedby delared methods, as would be expeted in view of the Curry-Howard iso-morphism. De�ned methods represent implementations of operations and proofsof theorems. The delaration of a method an use the arrier.As an example, a monoid is built upon a set represented by its arrier. It hassome delared operations, (spei�ed by their signature), namely =, +, and zero.These operations must satisfy the axioms of monoids, whih are expressed in Foby properties. We an then de�ne a funtion, double , suh that double(x) = x+x,and prove some theorems about it, for instane that double(zero) = zero.Interfae. An interfae is attahed to eah speies: it is simply the list of all themethods of the speies onsidered as only delared. As S. Boulmé pointed out,erasing the de�nitions of the methods may lead to inonsistenies. Indeed, someproperties may depend on previous de�nitions, and beome ill-typed if thesede�nitions are erased. This is explained in more detail in setion 2.2. Interfaesorrespond to the point of view of the end-user, who wants to know whihfuntions he an use, and whih properties these funtions have, but doesn'tare about the details of the implementation.Colletion. A olletion is a ompletely de�ned speies. This means that every�eld must be de�ned, and every parameter instantiated. In addition, a olletionis �frozen�. Namely, it annot be used as a parent of a speies in the inheri-tane graph, and its arrier is onsidered an abstrat data type. A olletionrepresents an implementation of a partiular mathematial struture, suh as(Z;+; �) implemented upon the GMP library.

Parameters. We also distinguish between �atomi� speies and �parameterized�speies. There are two kinds of parameters: entities and olletions. For instane,a speies of matries will take two integers (representing its dimensions) as pa-rameters. These integers are entities of some olletion. For its oe�ients, thespeies of matries will also take a olletion as argument, whih must have atleast the features spei�ed by the interfae of ring. Of ourse, it an be a riherstruture, a field for instane.A speies s1 parameterized by an interfae s2 an all any method delaredin s2. Thus, the parameter must be instantiated by a ompletely de�ned speies,i.e. a olletion.2 Constraints on Speies De�nitionS. Boulmé, in [?℄, spei�ed di�erent onditions that must be ful�lled when build-ing the speies hierarhy. These onditions are required to de�ne a model of thehierarhy in the alulus of indutive onstrutions. By building a ategorialmodel of the hierarhy, S. Boulmé also showed that they were neessary ondi-tions. One of the objetives of this paper is to show how the implementation ofFo ful�lls these onditions.2.1 Del- and Def- DependeniesWe will now present these onditions through an example. We an take forinstane the speies of setoid, a set with an equality relation. More preisely,the speies has the following methods: a arrier rep, an abstrat equality eq, anda property eq_refl stating that eq is re�exive. From eq, we de�ne its negationneq, and prove by the theorem neq_nrefl that it is irre�exive. Using a Coq-likesyntax, we an represent setoid like this:8>>>>>><>>>>>>:rep : Seteq : rep �> rep �> Propneq : rep �> rep �> Prop := [x; y : rep℄(not (eq x y))eq_refl : (x : rep)(eq x x)neq_nrefl : (x : rep)(not (neq x x)) :=[x : rep; H : (not (eq x x))℄(H (eq_refl x))
9>>>>>>=>>>>>>;Thanks to the Curry-Howard isomorphism, funtions and spei�ations aretreated the same way. We must �rst verify that the methods have well-formedtypes. In addition, the body of every de�ned method must have the type given inits delaration. We an remark that the order in whih we introdue the methodsof the speies is important: in order to write the type of eq, we must know thatthere exists a Set alled rep. Similarly, the body of neq refers to eq, as does theproperty eq_refl. These three ases are very similar: a method m2 uses m1,and in order to typehek m2, we need m1 in the typing environment. In thisase, we speak of a del-dependeny of m2 upon m1.

On the other hand, in order to typehek neq_nrefl, it is not enough to havethe type of neq in the environment. Indeed, we must know that it is de�ned as(not (eq x y)), beause hypothesis H in the body of neq_nrefl must maththe de�nition of neq. Thus, neq must be unfolded during the typeheking ofneq_nrefl. We identify this ase as a def-dependeny. When dealing with in-heritane, this new kind of dependeny has a major drawbak: if we want torede�ne neq in a speies that inherits from setoid, then we will have to providea new proof for neq_nrefl. There is no suh problem with del-dependenies :the de�nition of neq remains valid for any de�nition of eq, provided it has theright type.2.2 Purely Abstrat InterfaeDef-dependenies do not our only in proofs. They an also appear at the levelof types. For instane, take the following speies de�nition (again in a Coq-likesyntax, O being a onstant of type nat).frep : Set := nat; p : (9x : rep j x = O)gHere, in order to aept the property p as well-typed, we have to know that repis an alias of nat. If we remove the de�nition of rep, then the resulting interfaeis learly inonsistent. Thus we annot aept suh a speies de�nition, beauseany speies must reeive a valid interfae. In a orretly written speies, thetype of a method annot def-depend upon another method. This restrition wasidenti�ed by S. Boulmé when representing speies by reords with dependent�elds.3 SyntaxIn this setion, we present the ore syntax of Fo and an intuitive explanationof its semantis. The omplete syntax is built upon the ore syntax by addingsyntati sugar without hanging its expressive power, so the properties of theore language are easily extended to the full language. In the rest of the paper,we will use the following onventions onerning variable names. Lambda-boundvariables, funtion names and method names are usually denoted by x or y.Speies names are denoted by s, and olletion names by . There is also akeyword, self , whih an be used only inside a speies s. It represents the �ur-rent� olletion (thus self is a olletion name), allowing to all its methods byself !x (see 3.5).3.1 Typestype ::= j � j type �> type j type * typeA type an be a olletion name (representing the arrier of that olletion),a type variable �, or a funtion or a produt type.

3.2 Expressions and Propertiesidenti�er ::= x, ydelaration ::= x [in type ℄expression ::= x j !x j fun delaration �> expressionj expression(expression { ,expression }*)j let [re ℄ delaration = expression in expressionAn expression an be a variable (x; y), a method x of some olletion ,a funtional abstration, a funtion appliation, or a loal de�nition with anexpression in its sope.Properties are boolean expressions with �rst-order quanti�ers:prop ::= expr j prop and prop j prop or prop j prop ! prop j not propj all x in type, prop j ex x in type, prop3.3 Fields of a Speiesdef_�eld ::= let delaration = expressionj let re { delaration = expression; }+j rep = type j theorem x : prop proof: [deps ℄ proofdel_�eld ::= sig x in type j rep j property x : prop�eld ::= def_�eld j del_�elddeps ::= { (del: j def:) { x }* }*A �eld � of a speies is usually a delaration or a de�nition of a methodname. In the ase of mutually reursive funtions, a single �eld de�nes severalmethods at one (using the let re keyword).The arrier is also a method, introdued by the rep keyword. Eah speiesmust have exatly one rep �eld.The proof language (the proof entry of the grammar) is urrently under de-velopment. For the time being, proofs an be done diretly in Coq, although theproperties themselves are translated automatially. The dependenies (Se. 2) ofa proof must be stated expliitely in the deps lause of a theorem de�nition.3.4 Speies and Colletion De�nitionsspeies_def ::= speies s [(parameter { , parameter }*) ℄[inherits speies_expr { , speies_expr }* ℄= { �eld ; }* endolletion_def ::= olletion implements speies_exprparameter ::= x in typej is speies_exprspeies_expr ::= s j s (expr_or_oll { , expr_or_oll }*)expr_or_oll ::= j expressionA speies_expr is a speies identi�er (for an atomi speies), or a speiesidenti�er applied to some arguments (for a parameterized speies). The argu-ments an be olletions or expressions. Aordingly, in the delaration of aparameterized speies, a formal parameter an be a variable (with its type) or

a olletion name (with its interfae, whih is a speies_expr). A olletion def-inition is simply giving a name to a speies_expr.3.5 Method and Variable NamesAs pointed out in [?℄, method names an not be �-onverted, so that they mustbe distinguished from variables. The notation self !x syntatially enfores thisdistintion, as we an remark in the following example.let y = 3;;speies a (x in int) = let y = 4; let z = x; let my y = self !y; endolletion a imp implements a(y)Here, a imp!z returns 3, while a imp!my y returns 4.3.6 A Complete ExampleWe will illustrate the main features of Fo with an example of speies de�nition.Assume that the speies setoid and monoid have already been de�ned, andthat we have a olletion integ that implements Z. We now de�ne the artesianproduts of two setoids and of two monoids.speies artesian setoid(a is setoid, b is setoid)inherits setoid =rep = a * b;let eq = fun x �> fun y �> and(a!eq(fst(x),fst(y)),b!eq(snd(x),snd(y)));theorem refl : all x in self, self !eq(x,x)proof :def: eq;{* (* A Coq sript that an use the definition of self!eq *) *} ;endspeies artesian monoid(a1 is monoid, b1 is monoid)inherits monoid, artesian setoid(a1,b1) =let bin op = fun x �> fun y �>let x1 = fst(x) in let x2 = snd(x) inlet y1 = fst(y) in let y2 = snd(y) inreate pair(a!bin op(x1,y1),b!bin op(x2,y2));let neutral = reate pair(a!neutral,b!neutral);endolletion z square implements artesian monoid(integ,integ)

4 Finding and Analyzing DependeniesAs said above, the syntax of Fo prevents some kinds of inonsistenies, but notall. To eliminate the remaining ones, we perform a stati analysis on the speiesde�nitions.4.1 Informal Desription of Stati AnalysisGiven a speies de�nition, we must verify that it respets the following on-straints.� All expressions must be well-typed in an ML-like type system. Rede�nitionsof methods must not hange their type.� When reating a olletion from a speies, all the �elds of the speies mustbe de�ned (as opposed to simply delared).� The rep �eld must be present or inherited in every speies.� Reursion between methods is forbidden, exept within a let re �eld.4.2 Classifying MethodsAs said in setion 2, when de�ning a speies s, it is important to �nd the de-pendenies of a method x upon the other methods of s, in order to hek theorretness of s. It is syntatially impossible for some dependenies to our inFo soure. For instane, we an not write a type that depends upon a funtionor a property, so that the arrier of s never depends upon another method. Thus,while in the work of S. Boulmé there is only one sort of method, we distinguishhere three kinds of methods: the arrier, the funtions, and the spei�ations.Eah of these an be delared or de�ned.All the dependenies that an be found in a Fo de�nition are summed up inFig. 1. In partiular, note that a def-dependeny an our between a statement
concrete type body

abstract type

proofdefined

declared

carrier function

signature

specification

decl−dependency def−dependency

statement

Fig. 1. Possible Dependenies Between Methods

and the arrier. Indeed, the example of setion 2.2 an be written in Fo:speies a =rep = nat;property p : ex x in self, base eq(x,0);endwhere base_eq is the built-in equality primitive.Sine we want to have a fully abstrat interfae for eah speies written inFo, suh a speies de�nition will be rejeted by the dependeny analysis.4.3 Identifying the DependeniesThe dependenies between the various kinds of methods annot be omputedin a uniform way. For instane, the del-dependenies of a funtion body b arefound by simply listing all sub-expressions of the form self !m in b. On the otherhand, to identify a def-dependeny of b upon rep, we need to typehek b. Wewill now desribe the omputation of the dependenies.Syntati Criterion. We mention here all the dependenies that are found bysimply looking at the Abstrat Syntax Tree (AST) of the method.� m1 is a funtion body and m2 is a funtion (either delared or de�ned): m1del-depends upon m2 if self!m2 is a sub-expression of m1.� m1 is a statement and m2 a funtion: m1 del-depends upon m2 if self!m2is a sub-expression of m1.� m1 is a proof and m2 a funtion or a statement: m1 del-depends upon m2 ifm2 appears in the del lause of m1. It def-depends upon m2 if m2 appearsin the def lause of m1.Typing Criterion. Some dependenies require a �ner analysis to be aught.This is done in the typing phase (Se. 4.7) and onerns the dependenies uponrep.� m1 del-depends upon rep if the type of a subexpression ofm1 ontains self.� m1 def-depends upon rep if rep is de�ned to � , and when typing m1, auni�ation step uses the equality self = � . In this ase, the uni�ation returnsself.Notations. *m1+s is the set of names upon whih m1, onsidered as a methodof the speies s, del-depends. Similarly, **m1++s is the set of names upon whihm1 def-depends. rep is onsidered as a name. Note that **m1++s � *m1+s.4.4 Name uniityA name an not belong to two distint �elds of a speies body. We take this on-dition as an invariant, whih is easy to hek syntatially. From a programmingpoint of view, suh situation would be an error, sine one of the two delarations(or de�nitions) would be ignored.

Notations. Let N (�) be the names of methods introdued in a �eld � (only onename when no mutual reursion), and D (�), the names that are introdued ina �eld de�nition. In the following, we will onsider this general form of a speiesde�nition (defspe), whih respets the invariant:speies s inherits s1; : : : sn = �1 : : : �m,suh that 8i; j � m;N (�i) \ N (�j) = ;.Then we de�ne the set of names of the speies s byN (s) = n[i=1N (si)! [0� m[j=1N (�j)1A4.5 Binding of a methodLet x 2 N (s). The binding Bs(x) of x is, roughly speaking, the body of thede�nition of x, if any. But, in ase of multiple inheritane, x may be assoiatedto several inherited de�nitions. Then Bs(x) is the last suh de�nition in the orderspei�ed by the inherits lause.De�nition 1 (binding of a method). Let s be a speies de�ned by defspe,and x 2 N (s). Bs(x), Is(x) and D (s) are reursively de�ned as follows.� if 8i � n; x =2 D (si) ^ 8j � m; x =2 D (�j) then Bs(x) = ?.� if 9i � m; �i is let x = expr then Bs(x) = expr, and Is(x) = n+ 1.� if 9i � m; �i is let re fx1 = expr1 : : : xl = expr lg, and xj = x thenBs(x) = expr j and Is(x) = n+ 1� if 9i � m; �i is theorem x : :::proof then Bs(x) = proof , and Is(x) = n+1� else let i0 be the greatest index suh that x 2 D (si0) then Bs(x) = Bsi0 (x),and Is(x) = i0D (s) = fx 2 N (s);Bs(x) 6= ?g4.6 Normal Form of a SpeiesTo ensure that a speies s meets all the onstraints, we ompute its normal form(def. 3), in whih inheritane resolution, dependeny analysis and typing areperformed. A speies in normal form has no inherits lause, and all its �eldsare ordered in suh a way that a �eld depends only upon the preeding ones.Sine rep has no dependenies, we hoose rep as the �rst �eld of the nor-mal form. Then, any other �eld may depend upon rep. To study dependeniesbetween funtions, we distinguish between let and let re de�nitions. If m1and m2 are de�ned inside the same let re �eld, they are allowed to mutuallydepend upon eah other � provided that a termination proof is given2. Thus, fora let re de�nition �, the mutual dependenies between the methods mi of �are not reorded in *mi+s.2 Note that this termination proof def-depends upon m1 and m2.

De�nition 2 (well-formedness).A speies s de�ned by defspeis said to be well-formed if:� the si are well-formed.� All the de�nitions are well-typed.� The di�erent �elds introdue di�erent names:8i; j; i 6= j) N (�i) \ N (�j) = ;� A given de�nition del-depends only upon previous �elds:8i � n;8x 2 N (�i); *x+s � i�1[j=1N (�j)Requiring that de�nitions are well-typed implies that def-dependenies areorretly handled. Indeed, typeheking will fail if the de�nition is missing.De�nition 3 (normal form). A speies s is said to be in normal form if it iswell-formed and it has no inherits lause.De�nition 4. hanged(y; x) is a relation over N (s), s being de�ned byspeies s inherits s1 : : : sm = �1 : : : �n endhanged (y; x) () �9j > Is(x); y 2 D (sj) ^ Bsj (y) 6= BIs(x)(y)�_ (9k; y 2 D (�k) ^ Is(x) 6= n+ 1)Theorem 1 (normal form of well-formed speies). For eah well-formedspeies s, there exists a speies nfs, whih is in normal form and enjoys thefollowing properties:� names: N (nfs) = N (s)� de�ned names: D (nfs) � D (s)� de�nitions: 8x 2 D (nfs) ;Bs(x) = Bnfs(x)� 8x 2 D (s) nD (nfs) ; 9y 2 **x++s s:t:� y =2 D (nfs) or� y 2 D (nfs) and hanged (y; x).The last lause ensures that we erase as few method bindings as possible,namely only the ones that def-depend upon methods that have hanged duringinheritane lookup, or upon a method that must itself be erased.The proof gives all the steps of the stati analysis performed on speies(inheritane lookup, dependeny analysis and typing). In the proof, we assimilatea speies in normal form and the ordered sequene of all its methods. s1�s2denotes the onatenation of two sequenes.Let norm(si) be a normal form of si. We �rst build the following sequene:W 1 = norm(s1)�:::�norm(sn)�[�1; :::; �m℄. W 1 may ontain several our-renes of the same name, due to multiple inheritane or rede�nition. To solvesuh on�its, we introdue a funtion =, whih merges two �elds sharing somenames.

� If the two �elds �1 and �2 are delarations, �1 = �2 is a delaration too. Ifonly one of the �eld is de�ned, = takes this de�nition. If both �1 and �2 arede�nitions, then = selets �2.� Two let re �elds �1 and �2 an be merged even if they do not introdueexatly the same sets of names, beause you an inherit a let re �eld andthen rede�ne only some of its methods (keeping the inherited de�nition forthe others), or even add some new methods to this reursion. Merging twolet re �elds is not given for free, though. Indeed, it implies that the userprovides a new termination proof, that involves all the methods de�ned in�1 = �2.Our analysis builds a sequene W 2 of de�nitions from W 1 = �1 : : : �n, start-ing with W 2 = ;. This is done with a loop; eah iteration examines the �rst �eldremaining in W 1 and updates W 1 and W 2 . The loop ends when W 1 is empty.The loop body is the following:Let W 1 = �1;X and W 2 = 1 : : : m� if N (�1) \ ([mi=1N (i)) = ; then W 1 X and W 2 (1 : : : n; �1): if theanalyzed �eld does not have any name in ommon with the ones alreadyproessed, we an safely add it at the end of W 2 .� else let i0 be the smallest index suh that N (�1) \ N (i0) 6= ;, then wedo W 1 ((�1 = i0);X) and W 2 (1 : : : i0�1; i0+1 : : : m). In the aseof mutually reursive de�nitions, �1 an have some names in ommon withmore than one i, so that �1= i0 is kept in W 1 . In addition, we abstrat allthe �elds f igi>i0 suh that 9x 2 N (�1); y 2 N (i); y <defs x, where <defsis the transitive losure of **�++s.The omplete proof that this algorithm omputes e�etively a well-formednormal form that satis�es the onditions of theorem 1 an be found in [?℄. Infat, the algorithm an be applied to any speies, provided that �elds an bereordered aording to the last lause of def. 3. If it sueeds, then s is indeedwell-formed. If it fails, the de�nition of s is inonsistent, and thus rejeted.4.7 Typing a Normal FormOne inheritane resolution and dependeny analyses have been done, we haveto type the de�nitions of a speies in normal form. The typing algorithm forfuntions is basially the same as the Hindley-Milner type inferene algorithmused in the ML family of languages. We also hek that spei�ations are well-typed, but the veri�ation of proofs is left to Coq (Se. 5).The only trik here is that types must be preserved through inheritane sothat, if a method is rede�ned, we have to hek that the inferred type for thenew de�nition is ompatible with the old one. Moreover, we may detet a def-dependeny upon rep, as said in 4.3, while typing the statement of a propertyor a theorem. In this ase, we must rejet the speies de�nition, as explained inSe. 2.2, sine suh a speies an not have a fully abstrat interfae.The typing inferene rules are given in [?℄.

4.8 Parameterized SpeiesLet s be a parameterized speies, written speies s(is a) : : : where is a freshname. The typing environment of the body of s ontains a binding (;A(a;)),where A(a;) is an interfae de�ned as follows.If a = fxi : �i = eigi=1::n, thenA(a;) = hxi : �i[self ℄ii=1::nA olletion parameter may be instantiated by a riher struture than ex-peted. For instane, polynomials must be de�ned over a ring, but may perfetlybe given a �eld instead. So we de�ne a sub-speies relation 4 in order to instan-tiate a olletion parameter with arguments of the right interfae.De�nition 5 (sub-speies). Let Ts(x) be the type of x in s. Let s1, s2 be twospeies. s1 4 s2 () N (s2) � N (s1) ^ 8x 2 N (s2); Ts1(x) = Ts2(x)Thanks to the type onstraints during inheritane lookup, if a inherits fromb, then a 4 b. Sine only the types of the methods are onerned, the relation iseasily extended to interfaes.5 Certi�ation: the translation into Coq5.1 InterfaesAs in [?℄ interfaes are represented by Coq's Reords, and olletions by in-stanes of the orresponding Reords. In Coq, a Reord is a n-uple in whihevery omponent is expliitly named:Reord my reord := { label 1 : type 1; label 2 : type 2; . . . }.The main issue here is that we are dealing with dependent Reords: type_2 anuse label_1, as in the following example:Reord omparable :={ my type : Set; less than : my type �> my type �> Prop }.So the order in whih the di�erent labels appear is important.We de�ne a Reord type in Coq, whih denotes the interfae of the speies.If the speies is fxi : �i = eig, then the Reord is de�ned asReord name_spe : Type := mk_spefxi : �igWe expliitly give all the �elds of the Reord, inluding the inherited ones. Theyhave to be given in the order of the normal form beause del-dependenies anbe present even at the level of types.We also provide oerions between the Reord we have just built andthe Reord(s) orresponding to the interfae(s) of the father speies. Suhoerions re�et the inheritane relations of Fo.

5.2 SpeiesUnlike [?℄, a speies s is not represented by a MixDRe, that is a Reord thatmix onrete and abstrat �elds. For any method m de�ned in s, we introdue amethod generator, genm. If a method is inherited, the orresponding generatorhas been de�ned in a preeding speies, and does not need to be reompiled.This o�ers a kind of modularity.For instane, in the following speiesspeies a =sig eq in self �> self �> bool;let neq = fun x �> fun y �> notb(self !eq(x,y));endThe method generator for neq is�abst_T : Set:�abst_eq : abst_T� > abst_T� > bool:�x; y : abst_T:notb(abst_eq x y)Then, eah speies that inherits from setoid an use this de�nition of neq,instantiating abst_eq with its own de�nition of eq. This way, we an handlelate-binding.More formally, Let � be a normal form of a speies s, (sequene � = fxi :�i = eig of methods). Let e be an expression ouring in a �eld � (e being adelaration, a statement, a binding, or a proof). We de�ne below � e e, whih isthe minimal environment needed to typehek e (or �). Due to def-dependenies,e an not simply selet the methods � depends upon. Eah time � def-dependsupon , we must also keep the methods upon whih itself del-depends.De�nition 6 (Minimal Environment). Let � = fxi : �i = eig and e be anexpression. � e e is the environment needed to typehek e, and is de�ned asfollows. � u e = fxj : �j = new_ej jxj 2 *e+ ^ (xj : �j = ei) 2 �gwhere new_ej = � ej if xj 2 **e++? otherwiseU1 = � u eUk+1 = Uk [[(xj :�j=ej)2Uk� u ej� e e = [k>0Ukwhere fx : � = ?g [fx : � = eg = fx : � = eg

We turn now to the translation of the de�nition d of a method y in Coq,aording to the environment � e d. This is done by reursion on the strutureof the environment. [d℄oq is the straightforward translation of d in Coq, eahall self!x being replaed by the introdued variable abst_s.De�nition 7 (Method Generator).J;; dK = [d℄oqJfx : � = e; lg; dK = Let abst_x : � := (genx abst_x i)in Jl; dKJfx : � = ?; lg; dK = �abst_x : �: Jl; dKwhere genx = J� e Bs(x);Bs(x)K and abst_x is a fresh name.The seond ase treats def-dependenies. The method x being de�ned in � asfx : � = eg has already been ompiled to Coq. Thus its method generatorgenx has been obtained by abstrating the names xi of � e Bs(x) (note that� e Bs(x) � � e d). Here, genx is applied to the orresponding abst_xi.The third ase onerns �simple� del-dependenies. We only abstrat x.5.3 ColletionsColletions are de�ned using the method generators. Namely, if implementss = fxi : �i = eig, the Coq translation is the following:De�nition _x1 := gen_x1:: : :De�nition _xn := (gen_xn (JxnKs):De�nition := (mk_s _x1 : : : _xn):where JxKs = fxi 2 N (s)j (xi; �i;?) 2 �eBs(x)g. JxKs represents the de�nitionsthat must be provided to the method generator in order to de�ne x. mk_s isthe funtion that generates the reord orresponding to the interfae of s.5.4 ParametersA natural way to handle parameters in Coq would be to reate funtions thattake Reords as arguments and return Reords. For instane, (the interfae of)a artesian produt an be de�ned like this:Reord artesian [A, B : basi objet℄ : Type :={ T : Set; fst : T �> A . . .}Another solution is to take the parameters as the �rst �elds of the Reord:Reord artesian : Type :={ A : basi objet; B: basi objet; . . .}

These two translations are quite similar for Coq. In the �rst one, artesianwill be a parameterized type, while it is not the ase in the seond one: A and Bare only the �rst two arguments of its unique onstrutor. The seond solutionseems to have some pratial advantages over the �rst one:� Parameters an be aessed diretly as �elds of the reord� Fields aesses (the equivalent of methods all) do not need extra arguments,as it would be the ase in the �rst solution.� Coerions between parameterized reords are easier to de�ne too.� More important, it re�ets the fat that olletions an not have parameters:in an implementation of artesian, the �elds A and B must be de�ned aswell as T and fst.6 Related WorkOther projets use Coq's Reords to represent algebrai struture. In partiu-lar, L. Pottier [?℄ has developed quite a large mathematial library, up to �elds.H. Geuvers and the FTA projet [?℄ have de�ned abstrat and onrete repre-sentations of reals and omplex numbers. In addition, R. Pollak [?℄ and G. Be-tarte [?℄ have given their own embedding of dependent reords in Type Theory.We an also mention Imps [?℄, a proof system whih aims at providing a ompu-tational support for mathematial proofs. However, none of these works inludea omputational ounterpart, similar to the Oaml translation of Fo. P. Jak-son [?℄ implemented a spei�ation of multivariate polynomials in Nuprl. Hisapproah is quite di�erent from Fo, as in his formalism, a group an not bediretly onsidered as a monoid, for instane.7 Conlusion and Future WorkTo sum up, we an say that Fo has now ahieved a quite good expressivepower. The stati analyses that are disussed in Se. 4 have been implemented[?℄ in a ompiler that generates Coq and Oaml ode. An important numberof mathematial strutures have been implemented, and performanes are good.It seems to us that we provide a well-adapted framework to prove the prop-erties needed for eah speies' implementation. It it is now neessary to de�nea proof language for Fo, dediated to users of omputer algebra systems. Thisis urrently under development.Building mathematial strutures requires the whole power of the Calulusof Indutive Construtions, but higher-order features are mostly needed only tohandle dependenies. One we have sueeded to build an appropriate environ-ment, the proofs themselves stay in �rst order logi most of the time. This maylead to a quite high level of automatization in the proof part of the projet,leading to proofs in dedution modulo [?, ?℄. We ould then try to delegate somepart of the proofs to rewriting tools. Similarly, it would be interesting to o�erpowerful tools that allow the user of Fo to de�ne his own Fo proof tatis.

D. Delahaye's PhD [?℄ presents very promising developments in this area andmay be of great help here. From the Curry-Howard point of view this futurework is the ounterpart in the proof universe of the basi expressions of the Folanguage.Referenes[1℄ G. Betarte. Dependent Reord Types and Formal Abstrat Reasoning: Theory andPratie. PhD thesis, University of Göteborg, 1998.[2℄ S. Boulmé, T. Hardin, and R. Rioboo. Polymorphi data types, objets, modulesand funtors: is it too muh ? Researh Report 14, LIP6, 2000. available at<http://www.lip6.fr/reports/lip6.2000.014.html>.[3℄ S. Boulmé. Spéi�ation d'un environnement dédié à la programmation erti�éede bibliothèques de Calul Formel. PhD thesis, Université Paris 6, deember 2000.[4℄ B. Buhberger and all. A survey on the theorema projet. In W. Kuehlin, editor,Proeedings of ISSAC'97. ACM Press, 1997.[5℄ D. Delahaye. Coneption de langages pour dérire les preuves et les automatisa-tions dans les outils d'aide à la preuve. PhD thesis, Université Paris 6, 2001.[6℄ G. Dowek, T. Hardin, and C. Kirhner. Theorem proving modulo. ResearhReport 3400, INRIA, 1998.[7℄ G. Dowek, T. Hardin, and C. Kirhner. Hol-��: an intentional �rst-order ex-pression of higher-order logi. Mathematial Strutures in Computer Siene,11(1):21�45, 2001.[8℄ W. M. Farmer, J. D. Guttman, and F. J. Thayer. The imps user's manual. Teh-nial Report M-93B138, The mitre Corporation, 202 Burlington Road, Bedford,MA 01730-1420, USA, November 1995. Available at ftp://math.harvard.edu/imps/do/.[9℄ H. Geuvers, R. Pollak, F. Wiedijk, and J. Zwanenburg. The algebrai hierarhyof the fta projet. In Proeedings of the Calulemus Workshop, 2001.[10℄ R. Harper and M. Lillibridge. A type-theoreti approah to higher-order moduleswith sharing. In 21st Symposium on Priniple of Programming Languages, 1994.[11℄ P. Jakson. Exploring abstrat algebra in onstrutive type theory. In Proeedingsof 12th International Conferene on Automated Dedution, July 1994.[12℄ R. Pollak. Dependently typed reords for representing mathematial strutures.In TPHOLs'00. Springer-Verlag, 2000.[13℄ L. Pottier. ontrib algebra pour oq, mars 1999. <http://pauilla.inria.fr/oq/ontribs-eng.html>.[14℄ V. Prevosto, D. Doligez, and T. Hardin. Overview of the Fo ompiler. to appearas a researh report, LIP6, 2002. available at <http://www-spi.lip6.fr/�prevosto/papiers/fo2002.ps.gz>.[15℄ The Coq Development Team. The Coq Proof Assistant Referene Manual. ProjetLogiCal, INRIA-Roquenourt � LRI Paris 11, Nov. 1996.

